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Multi-agent systems Y e
Agents basic characteristics!:

Autonomy: the agents are at least partially
autonomous;

Local views: no agent has a full global view of the
system, or the system is too complex for an agent to
make practical use of such knowledge;

Decentralization: there is no designated controlling
agent.

1Michael Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons, 2002, ISBN 0-471-49691-X.

Susana Vieira November 4™, 2009 2

What happens in nature? ¥ e

"An individual ant is not very bright, but ants in a
colony, operating as a collective, do remarkable things.
A single neuron in the human brain can respond only to
what the neurons connected to it are doing, but all of
them together can be Albert Einstein."

By Deborah M. Gordon (Stanford University)

We are interested in systems where simple units
together behave in complicated ways
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 Learning from Nature o

Nature has inspired researchers in many different ways.

Airplanes have been designed based on the structures of birds'
wings.

Robots have been designed in order to imitate the movements
of insects.

Resistant materials have been synthesized based on spider
webs.

After millions of years of evolution all these species
developed solutions for a wide range of problems. Some
ideas can be developed by taking advantage of the
examples that Nature offers.
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 Learning from Nature o

Some social systems in Nature can present an intelligent
collective behavior although they are composed by
simple individuals.

The intelligent solutions to problems naturally emerge
from the self-organization and communication of these
individuals.

These systems provide important techniques that can be
used in the development of distributed artificial
intelligent systems.
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. Swarm Intelligence Y e

Based on the study of emergent collective intelligence
of groups of simple agents

Bird Flock

Animal Herd

Fish School
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. Swarm Intelligence Y e

Swarm Intelligence is an artificial intelligence technique
based on the study of collective behavior in self-
organized systems.
Swarm Intelligence systems are typically made up of a
population of simple agents interacting locally with one
another and with their environment. This interaction
often lead to the emergence of global behavior.

The main bio-inspired algorithms that have been
developed are:

Ant Colony Optimisation (ACO)
Particle Swarm Optimisation (PSO)
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Natural ants W oo

Individual ants are simple insects with
limited memory and capable of
performing simple actions.

However, an ant colony expresses a
complex collective behavior providing
intelligent solutions to problems such
as:

carrying large items

forming bridges

finding the shortest routes from the nest to

a food source, prioritizing food sources
based on their distance and ease of access.
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What is special about ants? ¥ mmeme

Ants can perform complex tasks:
nest building, food storage
garbage collection, war
foraging (to wander in search of food)
There is no management in an ant colony
collective intelligence
They communicate using:

pheromones (chemical substances), sound, touch
Curiosities:
Ant colonies exist for more than 100 million years

Myrmercologists estimate that there are around 20 000 species
of ants
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Ant colony optimization W oo

Ant Colony Optimization is one of the most used
method of the Artificial Life algorithms.
Introduced by: Marco Dorigo (1992), and is starting to
be used in industrial applications.
Applications: Travelling salesman problem, vehicle
routing, quadratic assighment problem, internet
routing, logistics scheduling.
There are also some applications of ACO in clustering
and data mining problems, including feature
selection.
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_EjThe foraging behaviour of ants ¥ -

How can almost blind animals manage to learn the shortest route paths
from their nests to the food source and back?

Magt Food

‘
- s m-""‘lﬁm

a) - Ants follow path between the
Nest and the Food Source

b) - Ants go around the obstacle following one
of two different paths with equal probability

c) - On the shorter path, more d) — At the end, all ants follow the shortest
pheromones are laid down path.

Fotos: http://iridia.ulb.ac.be/~mdorigo/ACO/Real Ants.html
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Mathematical framework bod =

j=3
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T
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Deposit pheromone @
Ant1, t=1
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. . i=3 O
Environment (time) R
updates pheromones O @)
= Time is the performance index Ant2,t=2
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Artificial ants ¥ s

Food Source
Destination

Artificial ants move in graphs
( . J
nodes / arcs Q 30
environment is discrete °°
¢ —_00

As real ants:
choose paths based on pheromone 8& ¢
concentration 0
A

deposit pheromones on paths
environment updates pheromones i” i
est
Extra abilities of artificial ants: Source
prior knowledge (heuristic 7)
memory (feasible neighbourhood N)
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. Mathematical framework Y e
Initialization
Choose node Set T, =1,
“ s For / =1: N,
Ty XMy A Build a complete tour
B ZTaX B’ ’f jEN Fori=1ton
P = &"i 3 Fork=1tom
jeN Choose node
0, otherwise Update N
Apply local heuristic
end

end
Pheromone update Analyze solutions
T(/+1):z'(/)(l—p)+A7:; Fork=1tom
Compute f,
end
Update pheromones
end
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Knowledge discovery process:

Interpretation
P

i

Feature selection ‘, Patterns
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P |
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data
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Based on “G. Piatetsky-Shapiro U. Fayyad and P. Smyth. From data mining to knowledge discovery in databases.
Artificial Intelligence Magazine, 17(3):37-54, 1996.”

Knowledge
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Motivation W s

Feature selection [

Feature selection almost always improves model
accuracy

Benefits:
Feature selection chooses the most relevant features
Collect/process less features

Less complex models run faster and are easier to
understand, verify and explain

Susana Vieira November 4™, 2009 18

Feature selection W o ome

What is feature selection?

Remove features X(i) to improve (or least
degrade) prediction of Y.

Objectives: reduce model complexity and
computational load without loosing accuracy
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Feature selection algorithms =~ ¥ ===

Filters
Based on general characteristics of data to be evaluated.
No model is involved.
Wrappers
Uses model performance to evaluate feature subsets.
Train one classification model for each feature subset.
Hybrid methods
Do not retrain the model at every step.

Search feature selection space and model parameter
space simultaneously.
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Optimization algorithm

. Objective function Y o=
Main objectives: Multicriteria algorithm:
Minimize the number of misclassifications, Ant sysEl Test
r . Upd Upd
or the classification error = ! heromoge  pheromane, || .
. 1 Ant I ‘test test
o — — foAr'::ta::i::Iyity - for"secI:c:i’:)yn Modeling
of features of features
b

Cost

N

Jl\‘

Reduce the number of features, or the %
features cardinality Featwren /

A\

N cycles Minimize

minimize f =w,e+w,N
Minimize
> Tradeoff precision vs. accuracy. number of featurex i
classification error
. ACO for feature selection ¥ sz . Choosing node in graph ¥ e
Probability of an ant choosing node i (cardinality of

features):
& e 20 1]
. Ky =L

’ .. b ZK[T,,” (t):l o '|:'7n” :|/5’n

Probability of an ant choosing node j (selection of

| features): } p
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Second colony:

Choose node
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S e if je @
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0, otherwise @ .

Pheromone update

24

t(l+1)=7((1- p)+Az] Subset:
{X3, X, X7,X1,X4}
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Heuristic for feature cardinality: Fisher’s score for the
features

2
() _ 'Llcl (I) B 'ucz (’) mean and variance values of feature
_—o'czl (i)+o_:2 (i) i for the samples in class ¢, and ¢,

Heuristic for selection of features: classification error
e(i) for the individual features

1

' Heuristics of ant systems ¥ e

Takagi-Sugeno fuzzy models are used,;

Antecedents Al are fuzzy sets obtained using fuzzy clustering
— membership functions.

Consequents y; are estimated using least squares estimation.

Feedforward Neural Network are used;
Input Layer Output Layer

ur ()= N
e(i)
H Data Sets W,n...\,......-..,..
Examples:
Number of | Number of |Size of
Data sets
features classes data set
Wine 13 3 178
Breast cancer 9 2 699
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Xy Bt
X!
Hidden  Layer(s)
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Results (Wine) ¥ e
Methods Reduced Classification accuracy (%)
Subsets
Best Mean Worst
AFS Approach 4-8 100 99.8 98.9
Corcoran and Sen (1994) 13 100 99.5 98.3
Ishibuchi et al. (1999) 13 99.4 98.5 97.8
Roubos et al. (2003) 4-7 99.4 - 98.3
Mendonga et al. (T-D) (2007) 11 100 99.9 99.4
Mendonga et al. (B-U) (2007) 4 100 98.5 92.7
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Results (Breast Cancer)

Fuzzy goals and constraints

ﬂ AT e TS

Let A be a given set of possible alternatives which
contains a solution to a decision making problem

under consideration.

A fuzzy goal G is a fuzzy set on A, characterized by y:
A — [0,1], represents the degree to which the
alternatives satisfy the specified decision goal.

A fuzzy constraint Cis a fuzzy set on A characterized
by y: A — [0,1], constrains the solution to a fuzzy

region within the set of possible solutions..
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Methods Reduced Classification accuracy (%)
Subsets
Best Mean Worst
AFS Approach 2-5 100 96.4 91.3
Wang et al. (POSAR) (2004) 4 95.94 - =
Wang et al. (CEAR) (2004) 4 94.20 - -
Wang et al. (DISMAR) (2003) 5 95.94 - -
Wang et al. (GAAR) (2000) 4 95.65 - -
Wang et al. (PSORSFS) (2007) 4 95.80 - -
Abony et al. (GG: R = 2) (2003) 8-9 95.71 90.99 84.28
Abony et al. (Sup: R = 2) (2003) 7-9 98.57 92.56 84.28
Abony et al. (GG: R = 4) (2003) 9 98.57 95.14 88.57
Abony et al. (Sup: R = 4) (2003) 8-9 98.57 95.57 90.0
Susana Vieira November 41" | 2009 29
Fuzzy goal Y =

Goal: “Product concentration should be about 80%”.

0.5

membership grade

70 75 80 85

About 80 %

95

Concentration [%]

Susana Vieira November 4™ , 2009

Fuzzy constraint

Constraint: “Product concentration should be

not substantially higher than 75%".

1

Not substantially
higher than 75 %

0.5

membership grade

70 75 80 85 90 95

Concentration [%)]
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Bellman and Zadeh’s model ¥ e

Fuzzy decision F is a confluence of (fuzzy) decision goals and
(fuzzy) decision criteria

Both the decision goals and the decision constraints should be
satisfied

F=GnNnC < /’lF(a)zﬂG(a)/\ﬂc(a)’ aeA

Maximising decision (optimal decision a*)
Decision with the largest membership value
a* = arg max a)A a
gmax 4 (@)~ 4 (3)

Alternative corresponding to the largest membership value is
denoted as the best alternative (solution)

Optimal fuzzy decision W e

Maximizing decision using min:

XM= s

1
Q
<
<
-
o0
§=)
@ H
120 | Fuzzy Decision p,
£
Q
g

1

X Concentration [%)]
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.. BZ model : example ¥ s
H Small dosage (fuzzy constraint) Large dosage (fuzzy goal)
1_

fuzzy decision

maximizing decision interferon dosage [mg]
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. Fuzzy criteria in feature selection ¥~

Two criteria are considered:
classification error F;

1
'ue
[}
s}
]
&)
&
=
Z
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£
]
= |
0 X
0 Y 100 200 ¢
Number of errors
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features cardinality F,

=

Membership Grade =

0 Ky 100

Nfmax f
Number of features n
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Fuzzy criteria in feature selection ¥~

Classic objective function
minimize f =w,e+w,N,

Fuzzy objective function
D(x) = F1(x) ° ... ° F,(X)
maximize D(x)
D(x)=U (I(F,,w,),I(F,,w,))
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 Fuzzy objective function of

. Fuzzy optimization Y =
Fuzzy goal F, j=12,.,n
Membership functions: F{(x): X — [0,1]
Fuzzy decision (Bellman and Zadeh model):
D(x) = F(X) ... o F,(x)
Optimal decision:
x =argmax D(x)
xeX
. Fuzzy criteria results ¥ =
Reduced Classification accuracy (%)
Data set Methods Subsets
Best Mean Worst
Wine AFS 4-8 100 99.8 98.9
(test) Fuzzy AFS 4 100 100 100
Breast cancer AFS 2-5 100 96.4 91.3
(cross validation) | Fuzzy AFS 3 100 100 100
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. Results: classical vs fuzzy criteria ¥ == Data sets ¥ s
Classical versus fuzzy objective function convergence: Examples:
Wine Breast Cancer
Number of | Number of |Size of
0.25 : 0.25 : Data sets
——Classical objective function ——Classical objective function features classes data set
c 0.2H — — — |~ Fuzzy objective function c 0.2+ — — —|——Fuzzy objective fu‘nction 1| Breast cancer original 9 2 699
Boasf{- oo Boast- oo oooo oo e 2| Wine 13 3 178
% E ‘
£ o1 - Il E e REEE 3| Vote 16 2 300
8ol 805 o o 4 | Diagnostic breast cancer 32 2 569
| .
o 0 | 5| Prognostic breast cancer 34 2 198
I
0 50 100 150 200 0 50 100 150 200 6 | Sonar 60 2 208
Iteration number Iteration number
7 | Musk 166 2 476
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. Results: classical vs fuzzy criteria¥ == .. Conclusions W=
Classification rates with 10-fold cross validation: Ants are natural multi-agents systems.
o p——— e A featu re selection alg_orlthm based on two
et NoFs AFS NF__ Fore v “NofeWars - nrdlBror  NF cooperative ant colonies was presented.
1 86 95 48 100 4 795 994 2 100 4 The problem is divided into two contradictory
2 M5 97 2n \S8—3 BRSO objectives: choosing the features cardinality
3 80.0 99.7 2-5 100 2-3 73.3 98.7 2-3 99.0 2 d I t th t I t f t
4 77.2 99.5 2-3 99.5 3 74.0 96.3 2-3 98.6 4 and selec Ing € most relevan eatures.
5 789 86 2 873 34 778 789 23 789 24 Fuzzy objective functions for feature selection
6 60.2 86.6 2-3 86.7 2 55.4 83.6 2-4 84.2 3-15 are Used.
7 77.7 78.3 2-20 85.0 6-22 74.7 79.8 2-6 83.5 9-107 \ x .
e 773 922 W 9o - 712 %08 - Bo - Fuzzy objective functions help the convergence
WTL 0/0/7 0/1/6 - 6/1/0 - 0/0/7 0/1/6 - 6/1/0 - of ACO.
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. Future work ¥ sz

New measures are being used in Ant feature selection
(AFS): Cohen’s kappa coefficient.

> Application problems:

Systems redesign to improve the survival of critically ill
patients using data based modeling

Two problems in ICU are considered: sepsis and self-

 Thank you all!
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extubation.
Problems addressed: number of features, missing data,
outliers.
H Data Sets W,n...\,......-..,..
Examples:
Number of | Number of |Size of
Data sets
features classes data set
Wine 13 3 178
Breast cancer 9 2 699
Vote 16 2 300
M_of_N 13 2 1000
Sonar 60 2 208
Susana Vieira November 4" , 2009 62
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Results (Wine) ¥ =
Methods Reduced Classification accuracy (%)

Subsets
Best Mean Worst

AFS Approach 4-8 100 99.8 98.9
Corcoran and Sen (1994) 13 100 99.5 98.3
Ishibuchi et al. (1999) 13 99.4 98.5 97.8
Roubos et al. (2003) 4-7 99.4 - 98.3
Mendonga et al. (T-D) (2007) 11 100 99.9 99.4
Mendonga et al. (B-U) (2007) 4 100 98.5 92.7
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Minimum number of errors and best number of
features for each iteration in Wine data set:

Results (Wine) [

Results (Breast Cancer)

Results (Breast Cancer) Y ===

Minimum number of errors and best number of
features for each iteration in Breast Cancer data set:

Best Number of features

(] " 0 i 40 S0 0 10 0 n 40
# tteration (1) # tteratson (1}
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Methods Reduced Classification accuracy (%)
Subsets

Best Mean Worst
AFS Approach 2-5 100 96.4 91.3
Wang et al. (POSAR) (2004) 4 95.94 - =
Wang et al. (CEAR) (2004) 4 94.20 - -
Wang et al. (DISMAR) (2003) 5 95.94 - -
Wang et al. (GAAR) (2000) 4 95.65 - -
Wang et al. (PSORSFS) (2007) 4 95.80 - -
Abony et al. (GG: R = 2) (2003) 8-9 95.71 90.99 84.28
Abony et al. (Sup: R = 2) (2003) 7-9 98.57 92.56 84.28
Abony et al. (GG: R = 4) (2003) 9 98.57 95.14 88.57
Abony et al. (Sup: R = 4) (2003) 8-9 98.57 95.57 90.0
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Results (Vote) 9 -
Reduced Classification accuracy (%)

Methods Subsets

Best Mean Worst
AFS Approach 4 100 94.3 87.1
Wang et al. (POSAR) (2004) 9 94.3 - -
Wang et al. (CEAR) (2004) 11 92.3 L L
Wang et al. (DISMAR) (2003) 8 93.7 . -
Wang et al. (GAAR) (2000) 9 94.0 - -
Wang et al. (PSORSFS) (2007) 8 95.3 - -
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Minimum classification accuracy

[=}

o

o

[=}

Results (Vote) W e

Minimum number of errors and best number of
features for each iteration in Vote data set:

7
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iteration iteration
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Results (M-of-N)

Average classification accuracy

Results (M-of-N) 9 -

Minimum number of errors and best number of
features for each iteration in M-of-N data set:

Best Number of features

0 10 20 30 40 50 0 10 20 30 40 50

# iteration (I)

Susana Vieira
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# iteration

Reduced Classification accuracy (%)

Methods Subsets
Best Mean Worst
AFS Approach 9 100 100 100
Wang et al. (POSAR) (2004) 7 100 - -
Wang et al. (CEAR) (2004) 7 100 . -
Wang et al. (DISMAR) (2003) 6 100 - -
Wang et al. (GAAR) (2000) 6 100 : -
Wang et al. (PSORSFS) (2007) 6 100 - -
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Results (Sonar) ¥ =
Compa rison results:
Test accuracy (%
Methods Nfumlber Reguced y (%)
ofrules | Subsets | Ayerage best error rate (%)

AFS approach 3 15-31 83.1
Ishibuchi et al. (2007) 10 all 82.7
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ffResuhs(Sonaﬂ

Minimum number of errors and best number of
features for each iteration in Sonar data set:
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# Iteration (I)

EEResuhs

Computational time and number of rules:

Dataset #Samples | #Features| #Rules | Time (s)
Wine 178 13 9 830
Breast Cancer 699 9 4 567
Vote 300 16 6 434
M-of-N 1000 13 6 125
Sonar 208 60 6 1343
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