Design and Operational Insights for Autonomous Vehicle-based Storage and Retrieval Systems

Dr. Debjit Roy

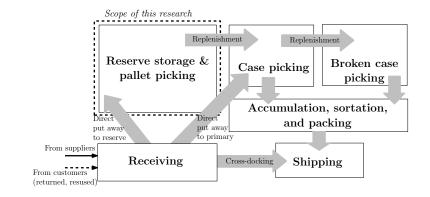
Material Handling Forum Seminar

November 16, 2011

Department of Management of Technology and Innovation Rotterdam School of Management (RSM) Erasmus University Rotterdam

- 2 Design Parameters and Trade-offs
- 3 Analytical Model to Evaluate Design Trade-offs
- Design Insights and Effect on System Performance

5 Conclusions

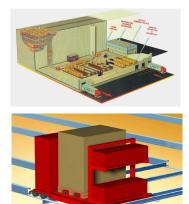

A (1) A (2) A (2) A

1 Scope and System Description

- 2 Design Parameters and Trade-offs
- 3 Analytical Model to Evaluate Design Trade-offs
- Design Insights and Effect on System Performance

5 Conclusions

Typical Warehouse Functions and Flows



- Reserve picking area handles unit-load operations
- Operations require high flexibility and responsiveness

・ロト ・ 同ト ・ ヨト ・ ヨト

AVS/R System: Overview

- AVS/RS: Uses autonomous vehicles
- System configuration
 - Rectilinear movement
 - Horizontal movement (x and y axes) by autonomous vehicles
 - Vertical movement (z axis) by lifts
 - Vehicles move between tiers using lifts
- Modular and adaptive design

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Comparison: AS/RS and AVS/RS

Category	AS/RS	\mathbf{AVS}/\mathbf{RS}	
Physical Configuration	Conveyors and Aisle-captive	Vehicles and Lifts	
	cranes as S/R devices	as S/R devices	
Load Movement	Simultaneous	Sequential	
Load/Unload Point	One per aisle	One per zone	
System Throughput	Determined by	Determined by	
	capacity of crane	number of vehicles	
	per aisle and number	and lifts	
	of aisles		

AVS/RS has potential to improve system efficiency, reliability, and throughput flexibility

・ロト ・四ト ・ヨト ・ヨト

Scope and System Description

2 Design Parameters and Trade-offs

3 Analytical Model to Evaluate Design Trade-offs

Design Insights and Effect on System Performance

5 Conclusions

Design Parameters in AVS/RS

System Sizing Decisions

- Number of vehicles and lifts, Depth/Width ratio
- Location of cross-aisle, number of zones

Operational Decisions

- Vehicle assignment rule, dwell point policy, command cycle
- Storage policy, transaction scheduling policy (FCFS, Random)

Need for Analytical Models

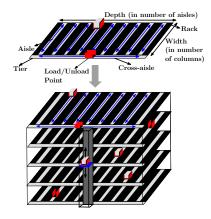
- Estimate transaction cycle time, queue lengths, throughput, vehicle utilization
- Quickly identify efficient operating range of design parameters

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Research Questions

• Influence of Depth/Width Ratio

• How does the Depth/Width $\left(\frac{D}{W}\right)$ ratio (deep aisles and shallow cross-aisle or shallow aisles and deep cross-aisle or somewhere in between) affect the system performance?

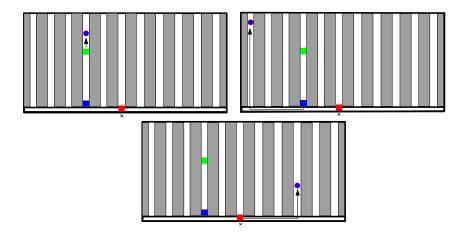

• Influence of dwell point policies

▶ How does the dwell point policy (Point of Service Completion (POSC), End of Aisle (EOA), and Load/Unload point (LU)) affect the system performance?

• Influence of zones

▶ How does the number of zones affect the system performance?

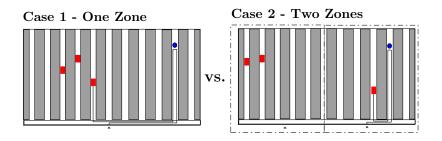
Modeling Approach - Single Tier, a Building Block



- What are the tradeoffs involved in single tier system with autonomous vehicles?
- Efficient single tier systems form effective building blocks for multi-tier systems

Dr. Debjit Roy (RSM)

A (1) < A (1) </p>


Effect of Dwell Point Policy: Retrieval

How does the dwell point policy influence storage and retrieval cycle times?

æ

Effect of Number of Zones: Retrieval

Tradeoffs between: reduced horizontal travel and loss of vehicle pooling

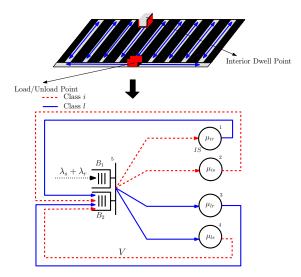
3

- Scope and System Description
- 2 Design Parameters and Trade-offs
- 3 Analytical Model to Evaluate Design Trade-offs
 - 1 Design Insights and Effect on System Performance
- **5** Conclusions

・ロト ・ 日 ト ・ ヨ ト ・ モ ト

Assumptions

• System Design Assumptions


- One Load/Unload point (relaxed later)
- Single command cycle
- Random vehicle assignment
- ▶ POSC dwell point policy (relaxed later)
- Random storage policy
- ▶ FCFS transaction scheduling

• Model Assumptions

- Poisson arrivals
- ▶ No blocking during vehicle movement

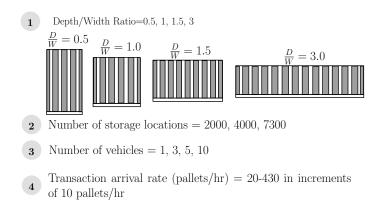
(4) (5) (4) (5) (4)

Queuing Model to Analyze Design Trade-offs

Model solved using a decomposition-based approach

Dr. Debjit Roy (RSM)

Design Insights for AVS/RS


3

Performance Measures

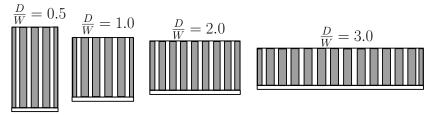
- Vehicle utilization
- **2** Average number of transactions waiting for service
- Solution Expected storage cycle time and retrieval cycle time
- O Distribution of vehicles in the tier

< 47 ►

Model Validation against Simulation

- 240 cases analyzed using AutoMod[©] simulation package
- Maximum absolute percentage errors in vehicle utilization and cycle times are 2% and 10% respectively

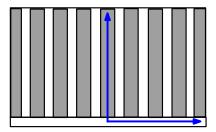
・ロト ・回ト ・ヨト ・ヨト

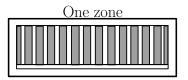

1 Scope and System Description

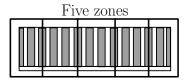
- 2 Design Parameters and Trade-offs
- 3 Analytical Model to Evaluate Design Trade-offs
- Design Insights and Effect on System Performance

5 Conclusions

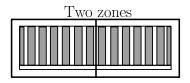
Effect of $\frac{D}{W}$ Ratio: Insight 1


What is the optimal Depth/Width Ratio=0.5, 1, 2 or 3?

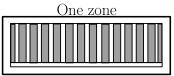

・ロト ・回ト ・ヨト ・ヨト

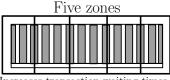

Effect of $\frac{D}{W}$ Ratio: Insight 1

Depth/Width Ratio = 2 is the best choice



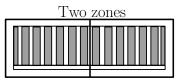
Effect of Number of Zones: Insight 2


(本間) (本語) (本語)


Design Insights for AVS/RS

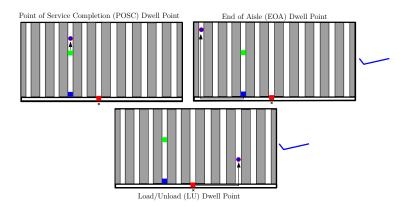
æ

Effect of Number of Zones: Insight 2



Increases vehicle travel times

Increases transaction waiting times


イロト イヨト イヨト イヨト

Typically 2-3 zones improves system performance

э.

Effect of Dwell Point Policy: Insight 3

LU and EOA dwell point policies are better than POSC

Dr. Debjit Roy (RSM)

3

(日) (四) (日) (日) (日)

Overall Impact of Design Parameters Setting

Example: 7300 Locations, 6 Vehicles, $\lambda_s, \lambda_r = (75, 75)$ pallets/hr

Comparison of Scenarios	$E[CT_s](sec)$	$E[CT_r](\operatorname{sec})$
One Zone, POSC Dwell, $\frac{D}{W} = 1.5$	147	187
Two Zones, LU Dwell, $\frac{D}{W}$ for each zone =2	97	128

~34% reduction in $E[CT_s]$ and ~32% reduction in $E[CT_r]$ with Two Zones, LU Dwell, and $\frac{D}{W} = 2$ for each zone

1 Scope and System Description

- 2 Design Parameters and Trade-offs
- 3 Analytical Model to Evaluate Design Trade-offs
- Design Insights and Effect on System Performance

5 Conclusions

Conclusions

- Developed analytical model of a single tier
- Model validates well against simulation
- Computationally inexpensive quick results
- Provided design insights for a single tier
- The number of zones and the Depth/Width ratio have a significant impact on system performance.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・