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Cross-Section of Option Returns and Volatility

Abstract

We study the cross-section of stock option return by constructing decile portfolios of
straddles and delta-hedged calls and puts based on sorting stocks on the difference
between historical realized volatility and at-the-money implied volatility. We find that
a zero-cost trading strategy that is long (short) in the portfolio with a large positive
(negative) difference between these two volatility measures produces an economically
and statistically significant average monthly return. The results are robust to different
market conditions, to stock risk-characteristics, to various industry groupings, to
option liquidity characteristics, and are not explained by usual risk factor models.



1 Introduction

Options give options. They allow an investor to have a view about the underlying security

price and volatility. A successful option trading strategy must rely on a signal about at

least one of these inputs. The most common options trading strategies involve the investor’s

view about the underlying volatility. In the vernacular of option traders, at the heart of

every “volatility trade” lies the trader’s conviction that the market expectation about

future volatility, which is implied by the option price, is somehow not correct. Since all the

option pricing models require at least an estimate of the parameters that characterize the

probability distribution of future volatility, volatility mis-measurement is the most obvious

source of options mispricing.

The literature on the measurement and forecasting of realized volatility (RV) is extensive

and too voluminous to cite in detail here.1 A common finding reported by such studies is

mean-reversion: volatility tends to revert to its long-run historical average. This property

should be taken into account by options traders and incorporated into their expectations

about future volatility. Of course, mean-reversion does not imply that, at any point in

time, historical realized volatility is the best estimate of future volatility. However, this

feature of volatility does suggest that large deviations between traders’ expectations of

future volatility and historical realized volatility are likely to be temporary. One forecast

of future volatility is the implied volatility (IV), which can be obtained by inverting an

option pricing model such as the Black and Scholes (1973) model.2 Stocks for which IV is

much lower than RV have ‘cheap’ options, and stocks for which IV is much higher than RV

have ‘expensive’ options. Ex-ante, it is not obvious if these (cheap/expensive) options have

different expected returns than options for which IV is close to RV. However, we speculate

that, if there is volatility mispricing, it is more likely to manifest itself in extreme deviations

between these two volatility estimates.

We, therefore, sort stocks into deciles based on the log difference between their one-

year historical RV and their at-the-money (ATM) IV. RV is calculated using the standard

deviation of realized daily stock returns over the most recent twelve months. For each stock,

we obtain the IV estimate from one month to maturity, ATM options. In order to partially

1The interested reader is referred to the recent surveys in Granger and Poon (2003) and Andersen,
Bollerslev, Christoffersen, and Diebold (2006).

2Strictly speaking, IV is only a rough estimate of the market’s estimate of future volatility of the
underlying asset. Britten-Jones and Neuberger (2000) derive a procedure that gives the correct estimate
of the option-implied (i.e. risk-neutral) integrated variance over the life of the option contract when prices
are continuous but volatility is stochastic. Jiang and Tian (2005) improve upon this procedure and also
show it’s validity in a jump-diffusion setting.
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limit measurement errors, we compute the stock’s IV by taking the average of the ATM

call and put implied-volatilities. This also ensures that we construct a homogenous sample

with respect to the options’ contract characteristics across stocks, and that we consider the

most liquid options contracts for each stock. Having sorted the stocks by the log difference

between RV and IV we form an option portfolio for each decile.

We calculate equally-weighted monthly portfolio returns of straddles and delta-hedged

calls/puts on stocks in each decile. Since both of these strategies have a low delta, they have

very little directional exposure to the underlying stocks. We find that a zero-cost trading

strategy involving a long position in a portfolio of options with a large positive difference

between RV and IV and a short position in a portfolio of options with a large negative

difference generates statistically and economically significant returns. For example, a long-

short portfolio of straddles yields a monthly average return of 21.9% and a Sharpe ratio of

0.626. These returns are comparable to those in Coval and Shumway (2001), who report

absolute returns of around 3% per week for zero-beta straddles on the S&P 500. Similarly,

we find statistically and economically significant positive returns for high decile portfolios

and negative returns for low decile portfolios of delta-hedged calls and puts.

We then examine whether returns to the long-short strategy are related to aggregate

risk and/or characteristics. We consider the expected returns on delta-hedged positions in

the model of Duarte and Jones (2007). This model provides guidance in thinking about β’s

for (instantaneous) option returns. We use this model to compute theoretically expected

returns and compare them to realized returns. We find that alphas from this framework

are very close to raw returns. In fact, alphas from a more standard risk-factor model with

standard equity-risk and option-risk factors are also very high.3 We also explore whether

stock/option characteristics are related to the variation in our portfolio returns, by cross-

sectional regressions as well as via double sorted portfolios. Our analysis shows that, while

the option returns covary with some of the stock characteristics that are found to be impor-

tant for stock returns, this covariance is not enough to explain the high realized portfolio

returns. It is possible that the profits to our volatility portfolios arise as compensation for

some unknown aggregate risk. If such is indeed the case, the daunting task of formulating

a cross-sectional options return model that accounts for our portfolios returns is left to

future research.

Our results are robust to choice of sample periods as well as volatility measures. We,

3Although these regressions are linear factor models, we find that non-linear adjustments make virtually
no difference. For instance, conditioning betas on option greeks or Leland (1999) model yields the no
appreciable difference in alphas from standard alphas.
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consistent with the literature on transaction costs on options markets, find that trading

frictions reduce the profitability of the option portfolio strategy. For instance, the long-

short straddle portfolio returns are reduced to 4.1% per month if we consider trading

options at an effective spread equal to the quoted spread.4 Consistent with the notion that

liquidity affects the implementation of portfolio strategies, we also find that the profits

are higher for illiquid options than for liquid options. Our analysis, therefore, shows that

liquidity considerations reduce, but do not eliminate, the economically important profits of

our portfolios.

The underlying reason for the empirical regularity that we observe in equity option

prices is unclear. We reiterate that we cannot conclusively establish that our portfolio

returns are abnormal, only that they are not related to obvious sources of risk. If, however,

these returns are indeed abnormal, it is useful to consider why options are mispriced,

especially given the significant size of the option market and the quality of option traders.5

One potential reason is that investors overreact to the current information. Stein (1989)

studies the term structure of the implied volatility of index options and finds that investors

overreact to the current information. They ignore the long-run mean reversion in implied

volatility and instead overweight the current short-term implied volatility in their estimates

of long-term implied volatility. Stein’s finding is analogous to our results, where we find that

stocks with low (high) current IV are the ones that we find the highest under(over)-pricing.

Poteshman (2001) also finds evidence of overreaction in the index options market.

We find that while IV predicts future changes in volatility, changes in future realized

volatility are smaller in magnitude than the changes in IV at portfolio formation. These

facts, therefore, suggests that investors over-react to current events in their estimation of

future volatility. For instance, it might be the case that investors ignore the systematic

information contained in the cross-section of volatilities and over-weigh idiosyncratic events

in forming expectations about future individual volatility. To test this conjecture, we form

alternative real-time estimates of implied volatility using cross-sectional regressions. We use

these alternative measures to recalculate option prices and find that these repriced options

4De Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002) document that typically the ratio of
effective to quoted spread is less than 0.5. On the other hand, Battalio, Hatch, and Jennings (2004) study
two periods in the later part of the sample, January 200 and June 2002, and find that for a small sample
of stocks the ratio of effective spread to quoted spread is around 0.8.

5The total volume of the equity options for the year 2004 was worth approximately 220
billion dollars. For comparison, the total volume of the S&P 500 index options was
worth about 120 billion dollars (see the Options Clearing Corporation 2004 annual report at
http://www.optionsclearing.com/about/ann rep/ann rep pdf/annual rep 04.pdf). Evidence that
options traders are sophisticated investors is reported by Easley, O’Hara, and Srinivas (1998), Pan and
Poteshman (2006), and Ni, Pan, and Poteshman (2006) who show that options’ volume contains informa-
tion about future stock prices.
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do not lead to excess returns. Therefore, our results are also consistent with the hypothesis

that there is valuable information contained in the cross-section of implied volatilities which

is disregarded by option traders.

Our paper is related to the growing recent literature that analyzes trading in options.

Coval and Shumway (2001) and Bakshi and Kapadia (2003) study trading in index options.

Chava and Tookes (2006), Ni, Pan, and Poteshman (2006) and Ni (2006) study the impact

of news/information on trading in individual equity options. To the best of our knowledge,

we are the first to study the economic impact of volatility mispricing through option trading

strategies.

The rest of the paper is organized as follows. The next section discusses the data.

Section 3 presents the main results of the paper by studying option portfolio strategies.

Whether returns to option portfolios are related to fundamental risks and/or characteristics

is investigated in Section 4. We present robustness checks as well as impact of trading

frictions on portfolio profitability in Section 5. Section 6 presents a discussion of the

results. We conclude in Section 7.

2 Data

The data on options are from the OptionMetrics Ivy DB database. The dataset contains

information on the entire U.S. equity option market and includes daily closing bid and ask

quotes on American options as well as their IV and greeks for the period from 1996 to

2005. The IVs and greeks are calculated using a binomial tree model using Cox, Ross, and

Rubinstein (1979).6

We apply a series of data filters to minimize the impact of recording errors. First we

eliminate prices that violate arbitrage bounds. Second we eliminate all observations for

which the ask is lower than the bid, or for which the bid is equal to zero, or for which

the spread is lower than the minimum tick size (equal to $0.05 for option trading below $3

and $0.10 in any other cases). Third, to mitigate the impact of non-trading, we eliminate

from the sample all the observations for which both the bid and the ask are equal to the

previous day quotes and for which their is no volume.

6Battalio and Schultz (2006) note that, in the Ivy DB database, option and underlying prices are
recorded at different times creating problems when an arbitrage relation, the put-call parity, is examined.
This property of the data is not a problem for us because the tests that we conduct do not require perfectly
coordinated trading in the two markets.
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We construct portfolios of options and their underlying stocks. These portfolios are

formed based on information available on the first trading day (usually a Monday) im-

mediately following the expiration Saturday of the month (all the options expire on the

Saturday immediately following the third Friday of the expiration month). In order to have

continuous time series with constant maturity, we consider only those options that mature

in the next month. Among these options with one month maturity, we then select the

contracts which are closest to ATM. Since it is not always possible to select options with

moneyness exactly equal to one, we only keep options with moneyness between 0.95 and

1.05. We, thus, select an option contract which is close to ATM and expires next month for

each stock each month. After next month expiration, a new option contract with the same

characteristics is selected. Our final sample is composed of 120,028 monthly observations.

The average moneyness for calls and puts is very close to one. There are 3,885 stocks in

the sample for which it is possible to construct at least one IV observation.

We report summary statistics for IV and the annualized RV of the underlying stocks

in Table 1. For each stock, we obtain the IV estimate from one month to maturity, ATM

options. In order to partially limit measurement errors, we compute the stock’s IV by

taking the average of the ATM call and put implied-volatilities. RV is calculated using the

standard deviation of realized daily stock returns over the most recent twelve months. We

first compute the time-series average of these volatilities for each stock and then report the

cross-sectional average of these average volatilities. The other statistics are computed in a

similar fashion so that the numbers reported in the table are the cross-sectional averages

of the time-series statistics, and these can be interpreted as the summary statistics on an

“average” stock.

Both IV and RV are close to each other, with values of 58.3% and 60.0% respectively.

The overall distribution of RV is, however, more volatile and more positively skewed than

that of IV. The average monthly change in both measures of volatility is very close to zero.

Changes in IV can be quite drastic and usually correspond to events of critical importance

for the survival of a firm. For example, UICI, a health insurance company, has a ∆IV of

86% which corresponds to the release of particularly negative quarter loss for the fourth

quarter of 1999. During the month of December, UICI options went from trading at an

ATM IV of 31% to an IV of 117%. The stock price lost 56% of its value in the same month.

Many of the other large spikes in volatility happen during months of large declines in stock

prices. For example, the IV of the stocks in the technology sector jumped over 150% during

the burst of the Nasdaq bubble in the spring of 2000. Spikes in individual stock IV also

happen on earnings announcements (Dubinsky and Johannes (2005)).
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Individual equity options share some characteristics with index options, which have

been the primary subject of prior research. Figure 1 plots the time series of VIX (implied

volatility index that measures the markets expectation of 30-day S&P500 volatility implicit

in the prices of near-term S&P500 options) and the time series of the cross-sectional average

IV. Naturally, the level of IV is much higher than that of VIX. Both series have spikes that

correspond to important events, such as the Russian crisis of September 1998. The two

variables are also highly correlated. The correlation coefficient of the changes in VIX and

changes in equal-weighted (value-weighted) average IV is 67% (82%).

However, the two variables differ in an important way – the average stock IV is more

persistent than VIX. The autocorrelation coefficient of the average IV is equal to 0.947; the

same coefficient is 0.745 for VIX. Another way in which the equity option market differs

from the index option market is that the asymmetric volatility effect of Black (1976) is less

pronounced for individual equity options. The monthly correlation between the underlying

asset return and change in IV is –0.52 for index options and –0.34, on average, for individual

stocks (see Dennis, Mayhew, and Stivers (2005) for further discussion of this result).

3 Option Portfolio Strategies

Option prices are functions of observable (such as underlying price, expiration, moneyness

etc.) and unobservable quantities (underlying volatility).7 All option pricing models re-

quire, at least, an estimate of the parameters that characterize the probability distribution

of future volatility. It is well known that volatility is highly mean-reverting – the autocorre-

lation for individual stock volatility in our sample is 0.7. This implies that large deviations

of current volatility from it’s long-term average are temporary in nature and are likely to

reduce in magnitude at a quick rate (determined by the mean-reversion parameter). Any

forecast of future volatility must account for this mean-reversion. One such forecast is

embedded in the implied volatility of the stock.8 Note that mean-reversion does not imply

that, at any point in time, implied volatility should be the same (or close to) the long-

term average of volatility. Indeed, differences in RV and IV are a necessary consequence of

stochastic volatility. For instance, deviations of IV from RV will be more pronounced for

stocks with higher volatility of volatility than for stocks with lower volatility of volatility.

7In a general equilibrium, the options prices are ultimately functions of fundamental quantities, such as
investor utility function parameters. Therefore, our statement is strictly true only in partial equilibrium
where, for instance, stock prices and market prices of risk have already been determined and are treated
as exogenous parameters for pricing options.

8See footnote 2 for why this statement is only approximately true.
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However, high autocorrelation of volatility implies that large deviations between RV and

IV are unlikely to persist. Stocks for which IV is much lower than RV have ‘cheap’ options,

and stocks for which IV is much higher than RV have ‘expensive’ options. We sort stocks

into portfolios based on the difference between RV and IV and calculate returns on options

in these portfolios. It is not obvious, ex-ante, whether there are differences in expected

returns between these portfolios. However, we speculate that, if there is volatility mispric-

ing, it is more likely to manifest itself in extreme deviations between these two volatility

estimates.

3.1 Portfolios Descriptives

We sort stocks into deciles based on the log difference between RV and IV. Decile ten con-

sists of stocks with the highest (positive) difference while decile one consists of stocks with

the lowest (negative) difference between these two volatility measures. We give descriptive

statistics on these deciles in Table 2. All statistics are first averaged across stocks in each

decile to obtain portfolio statistics. The table reports the monthly averages of the contin-

uous time-series of these portfolio statistics. On average, the portfolios contain 110 stock

options in each month.

The RV generally increases as one proceeds from decile one to decile ten. Since our

stocks are sorted based on the difference between RV and IV, this also implies that IV

is lower for higher deciles than that for lower deciles. Another illustration of the same

phenomenon is call/put prices scaled by the stock price (last two rows of Table 2). Since

all our options are close to ATM, differences in the ratio of option price to underlying price

are directly related to the differences in IV – options in decile one are more expensive than

those in decile ten.

We also find a positive (negative) difference in decile one (ten) between IV in the

portfolio formation month and the average IV over the previous twelve months. Therefore,

there are higher deviations of RV from IV in portfolio formation month than those in the

prior months. In other words, portfolio formation month represents the month in which

the IV of options in decile ten (one) increased (decreased) over it’s normal level relative to

RV.

There is not much variation (not accounted for by differences in IV’s and underlying

prices) in option greeks across deciles. For instance, deltas of calls in all deciles are close to

0.53 while the deltas of puts in all deciles are close to –0.47. The gammas (second derivative
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with respect to underlying price) and vegas (first derivative with respect to volatility) are

of similar magnitude across deciles. We also estimate the volatility of volatility, ω, as the

standard deviation of changes in daily implied volatilities during the six last months, and

the correlation between stock returns and innovations to volatility, ρ, as the correlation

between daily changes in implied volatility and stock returns over the last six months. We

find that ω is higher for extreme portfolios than that for middle portfolios. This result is

not surprising since larger deviations of IV (current volatility) from RV (long-term average

of volatility) are more likely for those stocks with higher ω. Whether this difference in

levels of ω has any systematic impact on (the returns of) the portfolios, however, depends

on the sensitivity of these portfolios to risk factors. We discuss this issue later in the paper.

Finally, we find that ρ is less negative for the first two deciles but shows, no appreciable

pattern thereafter.

3.2 Portfolio Returns

We construct time series of calls, puts, straddles, and delta-hedged calls and puts returns

for each stock in the sample. Recall that we do not include stale quotes in our analysis

(we eliminate from the sample all the observations for which both the bid and the ask

are equal to the previous day quotes). To further ameliorate microstructure biases, we

also initiate option portfolio strategies on the second (Tuesday), as opposed to the first

(Monday), trading day after expiration Friday of the month. In other words, we start

trading a day after the day that we obtain the signal (difference between RV and IV). The

returns are constructed using, as a reference beginning price, the average of the closing bid

and ask quotes and, as the closing price, the terminal payoff of the option depending on

the stock price at expiration and the strike price of the option.9 After expiration the next

month, a new option with the same characteristics is selected and a new monthly return is

calculated. Prices and returns for the underlying stock are taken from the CRSP database.

Equally-weighted monthly returns on calls, puts, and underlying stocks of each portfolio

are computed and the procedure is then repeated for every month in the sample.

Since our interest is in studying returns on options based only on their volatility char-

acteristics, we want to neutralize the impact of movements in the underlying stocks. There

are two ways to accomplish this. One is through straddle portfolios and the other is

9The options are American. We, however, ignore the possibility of early exercise in our analysis for
simplicity. Optimal early exercise decisions would bias our results downwards for the long positions in
portfolio and upwards for the short positions in portfolios. The net effect is not clear. See Poteshman and
Serbin (2003) for a discussion of early exercise behavior.
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through delta-hedged portfolios. The advantage of latter relative to former is potentially

lower transaction costs since stock trading is cheaper than options trading. We turn to

the issue of execution costs in Section 5.2. The disadvantage is that straddle portfolios

are more profitable than delta-hedged portfolios because the former benefit from volatility

mispricing of two options (call and put) while the latter benefit from volatility mispricing

of only one option (call or put). We form option portfolios following both strategies.

The straddle portfolios are formed as a combination of one call and one put. For delta-

hedged portfolios, we use the delta (based on the current IV) provided to us by the IVY

database.10 Table 3 reports the returns on option portfolios. Since the stock returns are

on average positive, all the ten call portfolios have positive returns (Panel A), while nine

of the ten put portfolios have negative average returns (Panel B).11 The average returns

increase monotonically as one goes from decile one to decile ten. For calls (puts) decile one

has an average return of 2.8% (–28.1%) while portfolio ten has an average return of 22.1%

(0.4%).

The call and put portfolios are, however, characterized by very high volatility that ranges

from 53% to 75% per month. We report two measures related to the risk-return trade-off

for the portfolios: Sharpe ratio (SR) and certainty equivalent (CE). CE is computed for a

long position in the portfolio and is constructed using a power utility with a coefficient of

relative risk aversion (γ) equal to three and seven. SR is the most commonly used measure

of risk-return trade-off, but CE is potentially a better measure than SR because it takes

into account all the moments of the return distribution. Because of the high volatility and

the extreme minimum and maximum returns, which imply large high order moments, all

call and put portfolios have low SR and negative CE.

The returns to a long-short strategy, that is long in decile ten and short in decile one, are

noteworthy. The long-short call and put portfolios have high average return and volatility

that are generally lower than that of either portfolio in decile one or ten, leading to large

monthly SR equal to 0.377 and 0.780 for calls and puts, respectively. However, the very

10If there is volatility mispricing in options, a more powerful and profitable approach is to recalculate
delta based on an implied volatility estimate. Green and Figlewski (1999) note that a delta-hedged strategy
based on incorrect delta entails risk and does not provide a riskless rate of return. We, however, do not
attempt to estimate a new delta because we do not have an alternative estimate of implied volatility (only
a signal that IV is higher/lower than RV). This means that we are conservative in our construction of
delta-hedged portfolios – we earn lower returns and have higher risk.

11The magnitude of returns on options in the middle deciles is also close to the back of the envelope
calculations for average expected return of an option. For instance, it can be shown (see Cox and Rubinstein
(1985, page 190)) that average return on a call (for a Black-Scholes economy) is equal to RS ×∆c × (S/C),
where RS is the return on the stock. For deciles five/six, this translates into an average return of 13%
which is close to the sample average return of 12%.
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large minimum return of –245% for calls leads to negative CE for these portfolios.

Straddle portfolios exhibit a striking pattern with returns that go from –12.4% to 9.5%

respectively (Panel D). The volatility of the straddle portfolios is also low at between 17%

and 26% per month. The long-short straddle strategy has an average return of 21.9% with

a 20% monthly standard deviation (the minimum monthly return in the sample is –15.1%),

leading to a monthly SR of 1.085 and a CE(γ = 3) of 17.3% per month. To put all these

numbers in perspective, the value-weighted CRSP portfolio has a monthly SR of 0.111 and

a monthly CE of 0.488% (γ = 3) and –0.022% (γ = 7) for our sample period. Moreover,

the returns to the straddle portfolios are comparable to those in Coval and Shumway (2001,

Table III), who report absolute returns of around 3% per week for zero-beta ATM straddles

on the S&P 500.12

The magnitude of returns for delta-hedged calls (Panel E) and puts (Panel F) is lower

than that for straddles, as is to be expected. However, we see that our sorting criterion

still lends itself to positive returns for high decile portfolios and negative returns for low

decile portfolios. The long-short 10–1 portfolio returns for delta-hedged calls (puts) are

2.3% (2.6%) with standard deviations of 3.4% (2.4%). The low standard deviation of

these portfolios leads to high SRs. For instance, SR for long-short call (put) delta-hedged

portfolio is 0.677 (1.089). The absence of huge positive and negative returns also leads to

positive CEs. Even with γ = 7, CE is 1.9% for calls and 2.4% for puts.

Note that these option returns do not appear to be driven by directional exposure to

the underlying asset. When underlying stocks are sorted according to the same portfolio

classification, the returns of the stock portfolios decline (though not monotonically) as we

go from decile one to decile ten (Panel C). However, since the deltas of all long-short option

portfolios are close to zero (see Table 2), even with an average stock volatility of 50%, a

return of –0.6% for the long-short stock portfolio is unlikely to account for the magnitude

of the option portfolios.

In unreported results, we find that the portfolios constructed by sorting on the levels

of RV (IV) do not produce the same patterns in average returns even though the signal

is on average (inversely) related to the signal (see Table 2). While it is in general true

that option portfolios of stocks with low realized volatility/high implied volatility (similar

to decile one in Table 3) exhibit lower average returns than portfolios of stocks with high

12In addition to the simple straddle returns, we also considered zero-delta and zero-beta straddles. Zero-
delta straddles were formed using the delta provided by the IVY database, while zero-beta straddles were
constructed following the procedure in Coval and Shumway (2001). The returns on these portfolios were
very similar to the ones reported in the paper for the plain vanilla straddles.
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realized volatility/low implied volatility (similar to decile ten in Table 3), average returns

for the long-short portfolios are often economically small and not statistically significant.

4 Controls for Risk and Characteristics

Our next task is to establish whether the large portfolio returns are systematic or abnor-

mal. Since options are derivative securities, it is reasonable to assume that option returns

depend on the same sources of risks or characteristics that explain individual stock re-

turns. The absence of a general formal theoretical model for the cross-section of option

returns, however, makes our endeavor non-trivial. We approach our problem from several

different perspectives. We first consider the expected returns on delta-hedged positions in

the model of Duarte and Jones (2007). This model, although stylized, provides guidance

in thinking about β’s for (instantaneous) option returns. We use this model to compute

theoretically expected returns and compare them to realized returns and obtain an alpha

in this framework. We then take the spirit of the model to run factor-model regressions

with the standard equity-risk factors augmented with risk-factors for options. Next, we

explore whether stock/option characteristics are related to the variation in our portfolio

returns. This analysis is done on individual options via cross-sectional regressions, as well

as via double sorted portfolios. We acknowledge that we (like others) are subject to joint

hypothesis problem – the estimated ‘alphas’ are derived from models and, therefore, rejec-

tion of the null of zero alpha is a joint rejection of zero alphas and the model. Our hope is

that these experiments taken together lend credence to our belief that the portfolio returns

from previous section are not related to obvious sources of risk and characteristics.

4.1 Expected Returns

This subsection draws heavily upon Duarte and Jones (2007) and the interested reader is

referred to their paper for further details. Individual stock return and volatility dynamics

are related to those of market through a simple factor model. Analytical expressions are

then derived for expected instantaneous returns on derivative positions. To be concrete,

assume that the stock returns and volatility follow the process:

dSt

St

= µt dt + σtdB1t

dσt = θt dt + ωt ρ dB1t + ωt

√
1 − ρ2dB2t , (1)
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where B1 and B2 are uncorrelated Brownian motions. Here, volatility of volatility is repre-

sented by ω and ρ is the correlation between stock returns and volatility. We assume that

the functional form of processes is the same for market and individual stocks (and suppress

the superscripts in the above equations to reduce notational clutter). The relation between

the Brownian motions for individual stocks and market is given by:

dBi
1t = ξi

11
dBm

1t + ξi
12

dBm
2t + dZ i

1t

dBi
2t = ξi

21dBm
1t + ξi

22dBm
2t + dZ i

2t , (2)

where ξ’s represent correlations between Brownian motions driving the stock processes

and market processes. Let λ1 and λ2 denote the prices of stock risk and volatility risk,

respectively. Then it follows from the above equations that

λi
1t = ξi

11λ
m
1t + ξi

12λ
m
2t

λi
2t = ξi

21λ
m
1t + ξi

22λ
m
2t . (3)

Let the price of a derivative be given by f(St, σt, t) and consider a total delta-hedged

portfolio, H , with hedge ratio n = −
(

∂f

∂S
+ ∂f

∂σ

ωρ

σS

)
= −

(
∆ + ν ωρ

σS

)
. It can be shown that

the excess return on this delta-hedged option is given by:

E

(
dH i

t

H i
t

)
− rtdt = ωi

t

√
1 − ρi2λi

2t

1

f i
t

∂f i

∂σi
t

. (4)

The estimation of the last equation is facilitated by expressing the expected returns in

a beta representation. If βi
mt and βi

σt are the betas of total delta-hedged portfolio with

respect to market and market volatility factor, respectively, then

βi
mt ≡ cov

(
dHi

Hi

1

f i

∂f i

∂σi

,
dSm

Sm

)/
var

(
dSm

Sm

)
=

ωi
t

√
1 − ρi2ξi

21

σm
t

βi
σt ≡ cov

(
dHi

Hi

1

f i

∂f i

∂σi

,
dHm

Hm

1

fm

∂fm

∂σm

)/
var

(
dHm

Hm

1

fm

∂fm

∂σm

)
=

ωi
t

√
1 − ρi2ξi

22

ωm
t

√
1 − ρm2

. (5)

Subsituting equations (3) and (5) into equation (4), we finally obtain:

E

(
dH i

t

H i
t

)
− rtdt =

1

f i
t

∂f i
t

∂σi
t

(
βi

mtσ
m
t λm

1t + βi
σtω

m
t

√
1 − ρm2 λm

2t

)
dt (6)

The last equation provides an analytical expression for instantaneous expected return on
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a total delta-hedged portfolio. We calculate the simple expected returns over an interval of a

month by including a variance adjustment. The individual betas, βi
m and βi

σ, are estimated

by running a first-pass time-series regression over the whole sample of scaled delta-hedged

returns on the market portfolio return and scaled delta-hedged market portfolio return,

respectively.13 Market parameters are taken from Duarte and Jones (2007, Table 3). We

report the betas, expected returns, actual returns, and the difference (alpha) for delta-

hedged calls (puts) in Panel A (B) of Table 4.

While we find very little variation in βσ across deciles, βm is higher (less negative) for

decile ten than it is for decile one. However, there is virtually no difference in expected

returns across deciles. The realized returns, on the other hand, show a spread of 2.5% for

calls and 2.6% for puts. Ergo, the abnormal returns (alphas) from this model are quite

close to raw returns.

It is useful at this stage to juxtapose these results with the values of ω reported earlier in

Table 2. We know that the extreme portfolios have higher volatility of volatility. However,

what matters for expected returns, as evidenced in equations (4) and (6), is the sensitivity

of these portfolios to volatility risk, βσ. Our portfolios show no variation in exposure to this

risk. Consequently, there is almost no variation in expected returns across these portfolios,

even though they have different levels of ω. In other words, our portfolio returns are not a

manifestation of the volatility of volatility effect.

4.2 Risk Adjusted Returns

We regress the long-short straddle and delta-hedged option portfolio returns on various

specifications of a linear pricing model composed by the Fama and French (1993) three

factors, the Carhart (1997) momentum factor, and a volatility factor. This last factor for

straddle portfolios is the Coval and Shumway (2001) aggregate volatility factor represented

by the excess return on a zero-beta S&P 500 index ATM straddle.14 For delta-hedged call

(put) portfolios, we construct a similar delta-hedged market call (put) factor. Since all the

factors are spread traded portfolios, the intercept from these regressions can be interpreted

as an alpha.

13The analytical expressions are for total delta-hedged returns. We use plain vanilla delta-hedged returns
in this analysis as Duarte and Jones (2007) show that this delta adjustment has an insignificant impact.
The results are, however, virtually unchanged for total delta-hedged portfolios. Note also that we, like
Duarte and Jones, assume that the parameters of the model are constant in the empirical implementation.

14We obtain data on the first four factors from Ken French’s web site while we construct the straddle
factor ourselves following the procedure described in Coval and Shumway (2001). During our sample
period, the return on the zero-beta S&P 500 index ATM straddle is –10.3% per month.
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The factor model considered here is an improvement over the previous subsection in

two ways. One, inclusion of non-market factors (such as SMB, HML, and MOM) is a

generalization of the market model. Second, since we run time-series regressions on portfolio

returns, the estimation error of imprecisely estimated individual betas is reduced. However,

any linear factor model is unlikely to characterize the cross-section of option returns over

any discrete time interval. We use a linear model merely to illustrate that the option

returns described in this paper are not related to aggregate sources of risk in an obvious

way.

Estimated parameters for these factor regressions are reported in Table 5. The first

regression shows that the straddle portfolio has a negative loading on the market factor.

Recall that decile ten consists of stocks that have lower current implied volatility (and,

therefore, lower deltas) than stocks in decile one. Since it can be shown that in a Black

and Scholes economy, the beta of an option is related to it’s delta (see Cox and Rubinstein

(1985, page 190)), the beta of the long-short straddle portfolio is expected to be negative.

The second regression shows that the loadings on Fama and French factors are negative

(although insignificant) too and positive (again insignificant) for the momentum factor.

The straddle portfolio loads positively on the zero-beta straddle portfolio. This coupled

with the common assumption of a negative volatility risk premium implies that our strategy

is a good hedge for volatility risk. Regressions (3)-(6) show similar pattern for delta-hedged

calls and puts, although none of the loadings are significant.15

We also make efforts to ameliorate the problem associated with linear factor models in

two ways. First, we estimate the following factor-model regressions with conditional betas:

Rpt = αp +
(
β0p + β ′

1pΘpt−1

)′
Ft + ept , (7)

where R is the return on portfolio, F ’s are factors, and Θ’s are option greeks (delta, gamma,

and vega). Conditional betas are used to proxy for the time-variation (over the life of the

option) in expected returns of options. The alphas from this model are very similar to ones

reported in Table 5. Second, we estimate Leland (1999) alpha. Leland proposes a correction

to the linear factor models, that allows the computation of a robust risk measure for assets

with arbitrary return distributions. This measure is based on an equilibrium model in

which a CRRA investor holds the market. Our estimate of Leland’s alphas are also very

close to the ones reported in Table 5. For instance, Leland alpha for straddle portfolio is

equal to 22.6%.

15Note that the betas in Table 5 are computed from unscaled returns while betas in Table 4 are computed
from scaled returns, and are, therefore, not strictly comparable.
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Overall, our results indicate that the portfolio returns reported earlier are not explained

by the usual risk factors. However, we advise caution in over interpreting this evidence.

The joint hypothesis problem is especially acute for us since there are no models for option

returns over discrete time periods. What seems unambiguous is that the option portfolio

returns are not related to obvious sources of risk and characteristics.

4.3 Stock Characteristics

We now investigate how the long-short straddle portfolio returns are related to equity

characteristics. We first run cross-sectional regressions of risk-adjusted option returns on

lagged characteristics. Specifically, our regressions specification is similar to that in Bren-

nan, Chordia, and Subranmanyam (1998):

Rit − β̂ ′
iFit = γ0t + γ′

1tZit−1 + eit , (8)

where R is the return on options (in excess of risk-free rate), F ’s are factors, and Z’s are

characteristics. The β̂’s on the left-hand side of the equation are estimated via a first-pass

time-series regression using the entire sample. The factors are the same as in Section 4.2.

Besides the primary variable of interest (RV–IV), the other characteristics chosen are: Size,

book-to-market, past six-month return, volatility of volatility (ω), proportion of systematic

risk (R2), and analyst forecast dispersion. The first two of these are motivated by Fama and

French (1992), the third one due to the evidence of momentum profits by Jegadeesh and

Titman (1993),16 and the fourth is based on the evidence reported earlier in Table 2 which

shows that ω is related to the difference between RV and IV. We include R2 since Duan and

Wei (2007) find that systematic risk proportion is useful for cross-sectionally explaining the

prices of equity options, and analyst dispersion because of the evidence in Diether, Malloy,

and Scherbina (2002). Finally, two option characteristics (gamma and vega) are chosen to

reflect information that is not directly contained in equities. All characteristics are lagged

by one month in regressions.

We run these regressions every month and report the time-series averages of γ coeffi-

cients and their t-statistics in Table 6. The second through fifth column report various

specifications for straddle returns while the last two columns report regressions results

for delta-hedged calls and puts. Consistent with results in prior sections, the difference

between RV and IV is strongly statistically significant in explaining the pattern of subse-

16See also Amin, Coval, and Seyhun (2004), who find a relation between index option prices and mo-
mentum.
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quent returns. Size, ω, R2, and analyst forecast dispersion have insignificant coefficients

for all options. The only stock characteristics that seem to have some predictive power are

book-to-market and momentum returns. Even amongst these two, book-to-market is not

significant for delta-hedged portfolios and momentum is not significant for delta-hedged

calls. Finally, Γ and V have explanatory power only for straddles and delta-hedged puts.

We conclude that some of the characteristics are useful in explaining the cross-sectional

pattern of option returns. However, the strongest determinant is the difference between

RV and IV. The predictive power of this variable is not subsumed even after controlling

for other characteristics (and risk-factors, via the left-hand side of the equation).

To provide yet another perspective of whether characteristics subsume our effect, we

consider two-way sorts – one based on the volatility signal (RV–IV) and the second based

on characteristics. The advantage of this approach over the cross-sectional regressions is

that it does not impose any linear structure of returns (the disadvantage is that we can

only control for one characteristic at one time). We sort stocks into quintile portfolios, as

opposed to deciles, to keep the portfolios well populated. Our sorts are conditional - we

first sort stocks into quintiles based on stock characteristics and, then, within each quintile

we sort stocks based on the difference between RV and IV. The five volatility portfolios

are then averaged over each of the five characteristic portfolios. They, thus, represent

volatility portfolios controlling for characteristics. Breakpoints for all stock characteristics

are calculated each month based only on stocks in our sample. We report average return

and the associated t-statistic of this continuous time-series of monthly portfolio returns

for straddles, delta-hedged calls, delta-hedged puts in Panels A, B, and C, respectively, of

Table 7. In all three panels, we find that the magnitude of returns is very similar across

all controls. It ranges from 15% to 17% for straddles, 1.6% to 1.8% to delta-hedged calls,

and 1.7% to 2.0% for delta-hedged puts. These numbers are also comparable to those in

Table 3, albeit a bit lower as expected (since we sort into quintiles in Table 7 as opposed

to deciles in Table 3).

We conclude that, while the option returns covary with some of the stock characteristics

that are found to be important for stock returns, this covariance is not enough to explain

the portfolio returns based on the volatility sorts.

16



5 Robustness and Trading Execution

5.1 Robustness

The results in the previous sections are presented after we have made many choices about

key variables and sample periods. In this section, we check whether our results our robust

to these decisions. We only present the salient features of these tests to not overwhelm the

readers with numbers (complete set of results can be obtained from us upon request).

Sub-sample returns

We replicate the analysis of Table 3 by dividing the data into two sub-samples. The

sub-samples are formed by considering two different states based on the sign of the changes

in the VIX index and the sign of the market value-weighted CRSP portfolio returns. The

conditional portfolio returns are higher in months in which VIX is increasing. For instance,

the long-short straddle portfolio has returns of 28.9% in months of positive changes in VIX

and 17.5% in months of negative changes in VIX. This pattern of returns also helps to

explain the positive loading of long-short portfolio returns on options factors in Table 5.

We obtain essentially the same result when we sort the sample based on market returns -

option returns are higher in months of negative market returns. These two results are not

completely independent since market returns and changes in VIX are negatively correlated.

When the sample is divided in the two subperiods 1996-2000 and 2001-2005 we observe

that the average returns are statistically significant in both subsamples, although the av-

erage returns are higher for the period 1996–2000. Since the options market is particularly

active during months in which the futures options expire (“triple witching friday”) we also

compute the average return for the strategies in only those particular months and compare

these to the returns in other months. We find that there is no statistically meaningful

difference in portfolio returns across these two sets of months.

Figure 1 shows that the equity option market was particularly active during the years

of the “technology bubble.” It is, therefore, useful to establish if portfolio returns are high

only in the technology industry. In unreported results, we find this not to be the case.

The long-short straddle portfolio is quite profitable in each industry. The highest average

return (24.2% per month) is in the finance sector while the lowest return (19.1%) is in

the utilities industry. We also check if the distribution of industries is uniform across our

volatility sorted deciles and find this to be the case.

Volatility measures
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Our basic measure of IV is the average of one-month ATM call and put IV. While it is

necessary for us to calculate the IV’s using the same options (same moneyness/maturity)

that we trade, it is still possible that the IV is biased in other ways. We check for this

possibility by rerunning our analysis with two modifications. First, we calculate the IV

using only the call or the put. Second, our options are American - this implies that early

exercise premium embedded in IV could make the IV measure not strictly comparable

to RV. We check for this by removing all observations in which stock pays a dividend

during the holding period.17 The results of both these experiments are virtually identical

to those reported in the paper. An alternative to the Black and Scholes implied volatility

provided by IVY database is a model-free implied volatility (Jiang and Tian (2005)). This

computation requires a large number of strikes for each stock at any point in time. The

median number of strikes for options in our database is three. This implies that we can

construct reliable estimates of model-free IV for a very small subset of stocks (for which

there are at least ten strikes for each option). Our results are qualitatively similar for this

restricted sample.

We calculate RV from daily stock return data. We do not use GARCH (or any ver-

sions, thereof) to estimate volatility as our purpose is not to forecast future volatility from

calibrated models. We can use high-frequency intra-day data to potentially improve our

measure of RV. However, unavailability of this data to us precludes us from doing this. Our

hope is that there is no systematic bias in our use of daily data vis-à-vis intra-day data,

especially since we calculate RV from a long time period of one year.

Earnings announcements

Dubinsky and Johannes (2005) find spikes in IV around earnings announcements. We

check whether this influences our results again by running two tests. First, we remove obser-

vations where our trade dates coincide with earnings announcement dates (approximately

5% of observations). Second, we remove all observations where a company announces an

earnings during the month prior to portfolio formation date or during the holding period

month. Removing these observations has no material impact on our results. In addition

to the above tests, we find that the earnings announcements are uniformly distributed in

number across portfolios. Moreover, none of the portfolios show abnormally positive or

negative earnings around these announcements - the SUE measure shows no pattern across

deciles.

17We acknowledge the fact that while this controls for early exercise option of calls, American puts might
still have a premium.
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5.2 Transaction Costs

There is a large body of literature that documents that transaction costs in the options

market are quite large and are in part responsible for some pricing anomalies, such as

violations of the put-call parity relation.18 It is essential to understand to what degree

these frictions prevent an investor from exploiting the profits on the portfolio strategies

studied in this paper. Therefore, in this section we discuss the impact of transaction costs,

measured by the bid-ask spread and margin requirements, on the feasibility of the long-short

strategy.

We consider the costs associated with executing the trades at prices inside the bid-ask

spread. The results reported so far are based on returns computed using the mid-point

price as a reference; however it might not be possible to trade at that price in every

circumstance. De Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002) document

that the effective spreads for equity options are large in absolute terms but small relative

to the quoted spreads. Typically the ratio of effective to quoted spread is less than 0.5. On

the other hand, Battalio, Hatch, and Jennings (2004) study a period in the later part of

our sample (January 2000 to June 2002) and find that for a small sample of large stocks the

ratio of effective spread to quoted spread fluctuates between 0.8 and 1. Since transactions

data is not available to us, we consider three effective spread measures equal to 50%, 75%,

and 100% of the quoted spread. In other words, we buy (or sell) the option at prices

inside the spread. This is done only at the initiation of the portfolio since we terminate

the portfolio at the expiration of the option.

In addition, to address the concern that the results might be driven by options that are

thinly traded, we repeat the analysis by splitting the sample into different liquidity groups.

For each stock we compute the average quoted bid-ask spread and the daily average dollar

volume of all the option contracts traded on that stock during the previous month. We

then sort stocks into terciles (low, medium and high liquidity) based on these characteristics

and calculate average returns and t-statistics for the long-short straddle portfolios for these

three groups of stocks. We report the results of these computations for straddle portfolios

in Panel A of Table 8.

Portfolio returns decrease substantially, as expected, after taking transaction costs into

account. The long-short straddle portfolio returns are reduced from 21.9% to 4.1% per

month if we consider trading options at an effective spread equal to the quoted spread.

18See for example Figlewski (1989), George and Longstaff (1993), Gould and Galai (1974), Ho and Macris
(1984), Ofek, Richardson, and Whitelaw (2004), Santa-Clara and Saretto (2005), and Swidler and Diltz
(1992).
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The liquidity of options also has an impact on returns as returns are higher for thinly

traded stocks. Consider, as an illustration, the results for terciles obtained by sorting on

the average bid-ask spread of options. The returns, computed from mid-points, to the long-

short straddle portfolio are 18.0% for stocks with more liquid options (low bid-ask spreads)

and 23.9% for stocks with less liquid options (high bid-ask spreads). These returns decline

further with transaction costs. If effective spreads are the same as quoted spreads, the

returns are still significantly positive at 8.2% for more liquid options and negative (and

insignificant) for less liquid options. This pattern arises because, by construction, the

impact of transaction costs (as measured by spreads) is higher for the tercile of stocks with

less liquid options. The results are qualitatively the same when we sort stocks based on

the options average daily trading volume.

The conjecture that trading costs might be lower for delta-hedged portfolios than for

straddle portfolios is investigated in detail in Panel B of Table 8. We consider the trans-

action costs of trading options only and assume that stock trades can be executed without

frictions. This is, obviously, a simplification (we do not have data on the trading costs of

stocks). While this assumption surely biases our returns upwards, we do not believe that

it is a serious omission for two reasons. One, stock trading costs are an order of magnitude

smaller than those of stocks (Mayhew (2002)). Second, delta-hedged strategies that finish

in-the-money require only half the spread to cover the positions at termination.19 The

pattern of higher returns for more illiquid options found in Panel A is repeated Panel B.

For instance, the returns (calculated using midpoints) on delta-hedged calls increase from

1.1% to 2.9% per month, and the returns on delta-hedged puts increase from 2.3% to 2.6%

per month, as one goes from the lowest tercile of most liquid stock options to the highest

tercile of least liquid stock options (liquidity as measured by bid-ask spreads). Spreads de-

crease these returns on the portfolios. For effective spreads equal to the quoted spreads, the

delta-hedged calls have statistically insignificant returns of around 0.2% while delta-hedged

puts have statistically significant returns of around 0.7%.

Santa-Clara and Saretto (2005) show that margin requirements on short-sale positions

can be quite effective at preventing investors to take advantage of large profit opportunities

in the S&P 500 options market. However, margins on short positions have a smaller impact

on trades that involve options with strike prices close to the money. The short side of the

long-short strategy involves options with high current IV. Therefore, these options have

high prices and relatively high price-to-underlying ratios. Margin requirements for these

19For instance, a delta-hedged call with a delta of 0.9 will require shorting 0.9 shares of stock at initiation
and a further shorting of 0.1 shares at expiration if the call finishes in the money (which will deliver one
share of stock). Thus, both legs of the transactions in stock are on the same side (sell).
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options are relatively low and do not materially affect the execution of our strategies.

We conclude that trading costs reduce the profits to our portfolios but do not eliminate

them at reasonable estimates of effective spreads.20 We also find that the profitability of

option portfolios is higher for less liquid options.

6 Discussion

We have shown that (large) differences between RV and IV predict future option returns.

We now explore whether these deviations of IV from RV are temporary, as we conjectured

earlier in the paper, and what are the determinants of these deviations.

We first analyze the patten of volatilities before and after portfolio formation month.

We plot the level of IV and the difference of RV and IV twelve months before and after

portfolio formation date for the extreme deciles in Figure 2. By construction, decile one

(ten) consists of stocks with large negative (positive) differences between RV and IV at

time 0. Table 2 also shows that IV in decile one (ten) is higher (lower) than it’s own

twelve-month moving average. These facts are re-confirmed in the figure. However, the

figure also shows a striking pattern of IV after portfolio formation. IV for decile one (ten)

decreases (increases) after portfolio formation almost as quickly as it increases (decreases)

in the months preceding the portfolio formation date. These pattern of changes in IV are

not accompanied by similar pattern of changes in RV – the deviations of RV and IV are the

highest at time 0 (by construction) and are insignificant a year before and after portfolio

formation. These results show that deviations of RV from IV are indeed not persistent.

What leads to these temporary deviations? We know that some of the ‘causes’ are

fundamental - for instance, high volatility of volatility is naturally associated with large

swings in volatility (see Table 2). However, some of the reasons are more proximate. Stocks

in decile one (ten) have negative (positive) returns in the month immediately preceding the

portfolio formation date. Investors, cognizant of the asymmetric volatility (Black (1976))

effect, will revise upwards (downwards) their estimates of future volatility for stocks in

decile one (ten). In unreported results, we find that the realized volatility in the month

subsequent to portfolio formation does increase (decrease) for decile one (ten). Therefore,

IV predicts future changes in volatility. However, changes in future realized volatility

20Please note that we skip an additional day in constructing our portfolio strategies. While our motivation
for this procedure is to avoid microstructure issues, the unintended consequence of this approach is that
our traders trade only based on the closing quotes on Tuesday. In actual practice, the option traders would
have the whole day to decide when to optimally trade and minimize the market impact costs.
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are smaller in magnitude than the changes in IV at portfolio formation. These facts,

therefore, suggests that investors over-react to current events in their estimation of future

volatility. For instance, it might be the case that investors ignore the systematic information

contained in the cross-section of volatilities and over-weigh idiosyncratic events in forming

expectations about future individual volatility. To test this conjecture, we form alternative

real-time estimates of implied volatility using cross-sectional regressions. We want to use

these alternative measures to recalculate option prices and check whether these repriced

options lead to excess returns.

As a first step in this exercise, we estimate a cross-sectional regression model for implied

volatility, similar in spirit to that of Jegadeesh (1990) who identifies predictable patterns

in the cross-section of stock returns. Each month t, we specify the model as follows:

∆ivi,t = αt + β1t ivi,t−1 + β2t(ivi,t−1 − ivi,t−13:t−2) + β3t(ivi,t−1 − rvi,t−12:t−1) + ǫi,t , (9)

where ivi,t is the natural logarithm of the ATM IV for stock i measured at month t,

ivi,t−13:t−2 is the natural logarithm of the twelve months moving average of IVi, rvi,t−12:t−1

is the natural logarithm of the historical realized volatility (calculated using months t− 12

to t − 1) for stock i. Our model is motivated by the existing empirical evidence of a

high degree of mean-reversion in realized volatility, and by the evidence presented in the

previous subsections. In addition to the volatility signal (log difference between RV and IV)

we include the log level of implied volatility as well as the log difference between the level

of implied volatility and its twelve months moving average. We predict the log change in

implied volatility, instead of the level, to avoid the possibility of predicting a negative level.

We estimate a Fama and MacBeth (1973) regression wherein each cross-sectional estimate

is computed on the Monday following the third Friday of the month. We tabulate averages

of the cross-sectional estimates and t-statistics adjusted for serial correlation in Panel A

of Table 9. We also report the in-sample fit of these regressions measured by the average

R
2

t of each monthly cross-sectional regression. We find that the change in IV is negatively

related to the last period IV, the difference between last period IV and it’s twelve-month

moving average, and the difference between IV and RV. The average R
2

is quite large at

18.3%, and at times it is as high as 50%.

Second, we compute a prediction of each stock’s implied volatility in a real time fashion:

∆îvi,t = α̂t + β̂1t ivi,t + β̂2t(ivi,t − ivi,t−12:t−1) + β̂3t(ivi,t − rvi,t−11:t). (10)

The above equation is a direct analog of equation (9) except that we use the current month’s
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variables on the right hand side of equation (10) in order to use the most recent information

for our prediction: we use IV and RV measures available at t and parameter estimates also

obtained at time t. We obtain the prediction of the implied volatility level (ÎVi,t) in the

following way:

ÎVi,t = IVi,t × e∆îvi,t .

Panel B of Table 9 gives descriptive statistics on portfolios sorted on the difference between

RV and IV (the same sorting criterion as in the rest of the paper). We find that ÎV is indeed

higher (lower) than IV for decile ten (one). The economic implication of this alternative

estimate of implied volatility is then pursued by repricing the options involved in the

portfolio strategies by plugging the ÎV estimate into the Black-Scholes model. We find

that, while preserving the original sorting, returns on long-short portfolios of delta-hedged

calls/puts and straddles, computed using the “recalculated” prices, are both economically

and statistically insignificant.

Please note that, since the options are American, the Black-Scholes formula is obviously

incorrect for pricing. However, our objective in this exercise is not to compute the ‘true’

price of the option, rather it is to show that, on average, superior returns to portfolios are

related only to volatility (option price) mis-estimation. These results are consistent with

our hypothesis that there is valuable information contained in the cross-section of implied

volatilities which is disregarded by option traders.

7 Conclusion

We emphasize that our results do not depend on the validity of the Black and Scholes (1973)

or the Cox, Ross, and Rubinstein (1979) model. Implied volatilities should be interpreted

as representation of option prices. Therefore the reader should view our portfolio sorts as

sorts on option prices with decile one (ten) representing cheap (expensive) options. This

perspective does not require one to take a stand on the correct option pricing model. The

objective of our paper is to document the existence of a substantial spread in the cross-

section of U.S. equity options sorted on a very simple criterion.

The underlying reason for the empirical regularity that we observe in equity option

prices is unclear. While we find that our option returns are not related to obvious sources

of risk, we can not conclusively establish that these are true ‘alphas.’ It is possible that

the profits to our volatility portfolios arise as compensation for some unknown aggregate

risk. If such is indeed the case, the daunting task of formulating a cross-sectional options
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return model that accounts for our portfolios returns is left to future research.

If, instead, these returns are abnormal, this raises the question of what accounts for

this volatility mispricing. It may be that economic agents do not use all the available

information in forming expectations about future stock volatilities. In particular, they ig-

nore the information contained in the cross-sectional distribution of implied volatilities and

consider assets individually when forecasting volatility. This leads them to miss-estimate

the mean reversion parameter in the underlying stochastic volatility and, therefore, incor-

rectly price the option. The fact that the alternative implied volatility estimates computed

from our cross-sectional model eliminate the portfolio profitability lends some credence to

this possibility. Although it is not clear whether the failure to incorporate cross-sectional

information in volatility forecasts reflects behavioral biases, our evidence is also broadly

consistent with the possibility that the investors overreact to current information.

24



References

Amin, Kaushik, Joshua D. Coval, and Nejat H. Seyhun, 2004, Index option prices and stock
market momentum, Journal of Business 77, 835–873.

Andersen, Torben G., Tim Bollerslev, Peter F. Christoffersen, and Francis X. Diebold,
2006, Volatility and Correlation Forecasting, in Elliott Graham, Clive W.J. Granger,
and Allan Timmermann, ed.: Handbook of Economic Forecasting, vol. 1 . pp. 778–878
(North-Holland: Amsterdam).

Bakshi, Gurdip, and Nikunj Kapadia, 2003, Delta-hedged gains and the negative market
volatility risk premium, Review of Financial Studies 16, 527–566.

Battalio, Robert, Brian Hatch, and Robert Jennings, 2004, Toward a national market
system for U.S. exchange-listed equity options, Journal of Finance 59, 933–962.

Battalio, Robert, and Paul Schultz, 2006, Options and the bubble, Journal of Finance 61,
2071–2102.

Black, Fischer, 1976, Studies of stock price volatility changes, Proceeding of the 1976 meet-

ings of the 1025 American Statistical Association, Business and Economical Statistics

Section pp. 177–181.

, and Myron Scholes, 1973, The pricing of options and corporate liabilities, Journal

of Political Economy 81, 637–654.

Brennan, Michael J., Tarun Chordia, and Avanidhar Subranmanyam, 1998, Alternative
factor specifications, security charachteristics, and the cross-section of expected returns,
Journal of Financial Economics 49, 345–373.

Britten-Jones, Mark, and Anthony Neuberger, 2000, Option prices, implied price processes,
and stochastic volatility, Journal of Finance 55, 839–866.

Carhart, Mark M., 1997, On persistence in mutual fund perfromance, Journal of Finance

52, 57–82.

Chava, Sudheer, and Heather Tookes, 2006, Where (and How) Does News Impact Trading?,
Working paper.

Coval, Joshua D., and Tyler Shumway, 2001, Expected option returns, Journal of Finance

56, 983–1009.

Cox, John, Stephen Ross, and Mark Rubinstein, 1979, Option pricing: A simplified ap-
proach, Journal of Financial Economics 7, 229–263.

Cox, John C., and Mark Rubinstein, 1985, Options Markets (Prentice-Hall: Englewood
Cliffs, New Jersey).

25



De Fontnouvelle, Patrick, Raymond P.H. Fisher, and Jeffrey H. Harris, 2003, The behavior
of bid-ask spreads and volume in options markets during the competition for listings in
1999, Journal of Finance 58, 2437–2463.

Dennis, Patrick, Stewart Mayhew, and Chris Stivers, 2005, Stock returns, implied volatility
innovations, and the asymmetric volatility phenomenon, Working paper, forthcoming in
Journal of Financial and Quantitative Analysis.

Diether, Karl B., Christopher J. Malloy, and Anna Scherbina, 2002, Differences of opinion
and the cross-section of stock returns, Journal of Finance 56, 2113–2141.

Duan, Jin-Chuan, and Jason Wei, 2007, Systematic risk and the price structure of individual
equity options, Working paper, forthcoming in Review of Financial Studies.

Duarte, Jefferson, and Christopher S. Jones, 2007, The price of market volatility risk,
Working paper.

Dubinsky, Andrew, and Michael Johannes, 2005, Earnings announcements and equity op-
tions, Working paper.

Easley, David, Maureen O’Hara, and P.S. Srinivas, 1998, Option volume and stock prices:
evidence on where informed traders trade, Journal of Finance 53, 431–465.

Fama, Eugene F., and Kenneth R. French, 1992, The cross-section of expected stock returns,
Journal of Finance 47, 427–465.

, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial

Economics 33, 3–56.

Fama, Eugene F., and James D. MacBeth, 1973, Risk, return, and equilibrium: empirical
tests, Journal of Political Economy 81, 607–636.

Figlewski, Stephen, 1989, Options arbitrage in imperfect markets, Journal of Finance 44,
1289–1311.

George, Thomas J., and Francis A. Longstaff, 1993, Bid-ask spreads and trading activity
in the S&P 100 index option market, Journal of Financial and Quantitative Analysis 28,
381–397.

Gould, John P., and Dan Galai, 1974, Transactions costs and the relationship between put
and call prices, Journal of Financial Economics 1, 105–129.

Granger, Clive W.J., and Ser-Huang Poon, 2003, Forecasting volatility in financial markets:
a review, Journal of Economic Literature 41, 478–539.

Green, Clifton T., and Stephen Figlewski, 1999, Market risk and model risk for financial
institution writing options, Journal of Finance 54, 1465–1499.

Ho, Thomas S.Y., and Richard G. Macris, 1984, Dealer bid-ask quotes and transaction
prices: an empirical study of some AMEX options, Journal of Finance 39, 23–45.

26



Jegadeesh, Narasimhan, 1990, Evidence of predictable behavior of security returns, Journal

of Finance 45, 881–898.

, and Sheridan Titman, 1993, Returns to buying winners and selling losers: impli-
cations for stock market efficiency, Journal of Finance 47, 65–91.

Jiang, George J., and Yisong S. Tian, 2005, The model-free implied volatility and its
information content, Review of Financial Studies 18, 1305–1342.

Leland, Hayne E., 1999, Beyond mean-variance: performance measurement in a nonsym-
metrical world, Financial Analysts Journal 55, 27–36.

Mayhew, Stewart, 2002, Competition, market structure, and bid-ask spreads in stock option
markets, Journal of Finance 57, 931–958.

Ni, Sophie Xiaoyan, 2006, Stock option return: a puzzle, Working Paper.

, Jun Pan, and Allen M. Poteshman, 2006, Volatility Information Trading in the
Option Market, Working Paper.

Ofek, Eli, Matthew Richardson, and Robert F. Whitelaw, 2004, Limited arbitrage and short
sales restrictions: evidence from the options market, Journal of Financial Economics 74,
305–342.

Pan, Jun, and Allen M. Poteshman, 2006, The information in option volume for future
stock prices, Review of Financial Studies 19, 871–908.

Poteshman, Allen M., 2001, Underreaction, overreaction, and increasing misreaction to
information in the options market, Journal of Finance 56, 851–876.

, and Vitaly Serbin, 2003, Clearly irrational financial market behavior: Evidence
from the early exercise of exchange traded stock options, Journal of Finance 58, 37–70.

Santa-Clara, Pedro, and Alessio Saretto, 2005, Option strategies: Good deals and margin
calls, UCLA working paper.

Stein, Jeremy, 1989, Overreactions in the options market, Journal of Finance 44, 1011–
1023.

Swidler, Steve, and David J. Diltz, 1992, Implied volatilities and transaction costs, Journal

of Financial and Quantitative Analysis 27, 437–447.

27



Figure 1: VIX and IV

We select one call and one put for each stock in each month of the sample period. All options
have expirations of one month and moneyness close to one. The IV for each stock is the average
of the IV of the selected call and put. All options are American. The figure plots the time-series
of VIX and the time-series of the average IV. The sample period is January 1996 to December
2005.

Oct96 Aug97 Jun98 Apr99 Feb00

0.2

0.3

0.4

0.5

0.6

0.7

0.8
VIX
IV

28



Figure 2: Volatilities Before and After Portfolio Formation

Portfolios are formed as in Table 2. We plot the IV (in Panel A) and the difference in RV and IV
(in Panel B) for a period of twelve months before to twelve months after portfolio formation.
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Table 1: Summary Statistics

We select one call and one put for each stock in each month of the sample period. All options have
expirations of one month and moneyness close to one. We first compute the time-series average
of these volatilities for each stock and then report the cross-sectional average of these average
volatilities. The other statistics are computed in a similar fashion. We report statistics for the
level and change of the ATM implied volatilities (IV), and the level and change of the realized
volatilities (RV). The IV for each stock is the average of the IV of the selected call and put. RV is
calculated using the standard deviation of realized daily stock returns over the most recent twelve
months. The volatilities are in annualized basis. The sample period is 1996 to 2005.

Mean Median StDev Min Max Skew Kurt

IV 0.583 0.565 0.133 0.401 0.882 0.570 3.116
∆ IV -0.003 -0.007 0.159 -0.288 0.307 0.160 3.193
RV 0.600 0.591 0.111 0.445 0.796 0.235 2.365
∆ RV -0.002 -0.002 0.026 -0.052 0.049 0.045 4.567
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Table 2: Formation-Period Statistics of Portfolios Sorted on the Difference
Between RV and IV

We sort stocks into deciles based on the difference between the historical RV and the current IV.
Decile ten consists of stocks with the highest (positive) log difference while decile one consists of
stocks predicted to have the lowest (negative) log difference between RV and IV. The table reports
the formation period statistics on these portfolios. All statistics are first averaged across stocks in
each decile (the time-series average number of stocks in each decile is 110). The table reports the
monthly averages of these cross-sectional averages for each reported number. ω is the volatility
of volatility calculated using standard deviation of daily implied volatilities during the six last
months and ρ is the correlation between daily changes in implied volatility and stock returns
calculated using the last six months. ∆, Γ, and V are the delta, gamma, and vega, respectively, of
the options. C/S (P/S) is the call (put) to stock price ratio. The sample period is 1996 to 2005.

Decile 1 2 3 4 5 6 7 8 9 10

RVt − IVt -0.193 -0.095 -0.059 -0.032 -0.009 0.014 0.038 0.066 0.104 0.211
RVt 0.415 0.439 0.453 0.471 0.484 0.505 0.526 0.552 0.583 0.678
IVt 0.608 0.534 0.512 0.503 0.493 0.491 0.488 0.486 0.479 0.467

IVt−12:t−1 0.475 0.481 0.484 0.492 0.498 0.508 0.518 0.533 0.549 0.591

∆c 0.555 0.549 0.543 0.539 0.534 0.529 0.527 0.525 0.522 0.520
∆p -0.450 -0.456 -0.462 -0.466 -0.471 -0.475 -0.478 -0.480 -0.483 -0.487
Γ 0.117 0.118 0.120 0.121 0.123 0.125 0.127 0.131 0.138 0.154
V 3.531 3.778 3.864 3.882 3.846 3.863 3.733 3.660 3.544 3.312

ω 0.033 0.028 0.027 0.026 0.026 0.027 0.027 0.028 0.030 0.036
ρ -0.221 -0.244 -0.259 -0.267 -0.273 -0.281 -0.286 -0.285 -0.285 -0.272

C/S 0.063 0.058 0.055 0.054 0.053 0.052 0.052 0.051 0.051 0.051
P/S 0.060 0.054 0.052 0.052 0.051 0.052 0.052 0.052 0.052 0.054
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Table 3: Option Portfolios’ Returns

Portfolios are formed as in Table 2. The returns on options are constructed using, as a reference
beginning price, the average of the closing bid and ask quotes and, as the closing price, the
terminal payoff of the option depending on the stock price and the strike price of the option. The
delta-hedged portfolios are constructed by buying (or shorting) appropriate shares of underlying
stock. The hedge ratio for these portfolios is calculated using the current IV estimate. The
monthly returns on options are averaged across all the stocks in the volatility decile. The table
then reports the descriptives on this continuous time-series of monthly returns. Specifically, we
report the mean, standard deviation, minimum, maximum, Sharpe ratio (SR), and the certainty
equivalent (CE). CE is computed from a utility function with constant relative risk-aversion
parameters of three and seven. The sample period is 1996 to 2005.

Decile 1 2 3 4 5 6 7 8 9 10 10–1

Panel A: Call Returns

mean -0.001 0.052 0.079 0.081 0.109 0.130 0.131 0.109 0.147 0.231 0.232
std 0.562 0.601 0.613 0.589 0.624 0.655 0.667 0.656 0.670 0.761 0.493
min -0.907 -0.928 -0.896 -0.960 -0.967 -0.916 -0.958 -0.959 -0.977 -0.957 -1.150
max 2.102 2.032 2.056 1.625 2.150 2.150 2.531 1.985 1.813 2.929 2.267
SR -0.007 0.082 0.124 0.132 0.170 0.195 0.191 0.162 0.215 0.300 0.471
CE (γ = 3) -0.522 -0.592 -0.543 -0.667 -0.720 -0.550 -0.678 -0.727 -0.774 -0.692 -0.240
CE (γ = 7) -0.798 -0.856 -0.796 -0.912 -0.926 -0.823 -0.907 -0.915 -0.948 -0.905 -0.681

Panel B: Put Returns

mean -0.294 -0.251 -0.221 -0.185 -0.179 -0.156 -0.108 -0.089 -0.078 -0.000 0.294
std 0.540 0.581 0.606 0.638 0.651 0.653 0.669 0.658 0.656 0.768 0.395
min -0.932 -0.883 -0.899 -0.885 -0.891 -0.935 -0.912 -0.911 -0.954 -0.893 -0.488
max 2.435 2.769 2.546 3.462 3.161 3.112 2.692 2.890 2.616 3.615 1.604
SR -0.550 -0.436 -0.369 -0.295 -0.280 -0.243 -0.166 -0.140 -0.123 -0.004 0.743
CE (γ = 3) -0.705 -0.661 -0.659 -0.592 -0.602 -0.654 -0.600 -0.586 -0.683 -0.558 0.139
CE (γ = 7) -0.858 -0.794 -0.806 -0.766 -0.773 -0.859 -0.810 -0.811 -0.899 -0.771 -0.043
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Decile 1 2 3 4 5 6 7 8 9 10 10–1

Panel C: Stock returns

mean 0.016 0.014 0.014 0.014 0.015 0.013 0.012 0.009 0.011 0.010 -0.006
std 0.061 0.057 0.060 0.058 0.063 0.065 0.066 0.067 0.068 0.076 0.043
min -0.173 -0.193 -0.185 -0.197 -0.227 -0.217 -0.215 -0.248 -0.232 -0.234 -0.189
max 0.164 0.137 0.160 0.163 0.178 0.194 0.236 0.164 0.201 0.302 0.159
SR 0.218 0.195 0.184 0.200 0.193 0.151 0.135 0.092 0.120 0.094 -0.144
CE (γ = 3) 0.011 0.009 0.008 0.009 0.009 0.006 0.005 0.002 0.004 0.001 -0.009
CE (γ = 7) 0.003 0.001 0.000 0.002 -0.001 -0.004 -0.005 -0.009 -0.007 -0.012 -0.014

Panel D: Straddle Returns

mean -0.125 -0.085 -0.064 -0.034 -0.023 -0.019 -0.004 0.012 0.032 0.098 0.224
std 0.180 0.183 0.194 0.203 0.203 0.229 0.224 0.223 0.224 0.266 0.213
min -0.497 -0.415 -0.396 -0.352 -0.433 -0.344 -0.453 -0.425 -0.368 -0.349 -0.204
max 0.616 0.876 0.821 0.929 0.998 1.223 1.081 1.158 1.092 1.255 0.892
SR -0.714 -0.483 -0.348 -0.184 -0.128 -0.095 -0.031 0.040 0.130 0.358 1.051
CE (γ = 3) -0.173 -0.130 -0.110 -0.083 -0.072 -0.074 -0.060 -0.043 -0.023 0.025 0.172
CE (γ = 7) -0.229 -0.177 -0.156 -0.130 -0.123 -0.124 -0.129 -0.106 -0.082 -0.051 0.110

Panel E: Delta-Hedged Call Returns

mean -0.016 -0.010 -0.008 -0.007 -0.005 -0.003 0.000 0.000 0.003 0.009 0.025
std 0.025 0.028 0.026 0.022 0.023 0.025 0.029 0.026 0.026 0.032 0.031
min -0.064 -0.058 -0.075 -0.051 -0.051 -0.045 -0.055 -0.048 -0.057 -0.058 -0.064
max 0.088 0.111 0.128 0.107 0.126 0.135 0.139 0.147 0.139 0.148 0.134
SR -0.772 -0.468 -0.424 -0.464 -0.340 -0.224 -0.089 -0.102 0.011 0.196 0.823
CE (γ = 3) -0.017 -0.011 -0.009 -0.008 -0.006 -0.004 -0.001 -0.001 0.002 0.008 0.024
CE (γ = 7) -0.018 -0.012 -0.010 -0.009 -0.007 -0.005 -0.002 -0.002 0.001 0.006 0.022

Panel F: Delta-Hedged Put Returns

mean -0.016 -0.012 -0.008 -0.005 -0.002 -0.001 0.000 0.002 0.004 0.010 0.026
std 0.022 0.021 0.021 0.020 0.021 0.021 0.022 0.021 0.021 0.028 0.025
min -0.072 -0.081 -0.088 -0.037 -0.042 -0.047 -0.052 -0.043 -0.036 -0.043 -0.021
max 0.092 0.094 0.089 0.110 0.118 0.111 0.098 0.114 0.094 0.142 0.126
SR -0.876 -0.719 -0.519 -0.383 -0.259 -0.196 -0.116 -0.065 0.032 0.250 1.047
CE (γ = 3) -0.017 -0.012 -0.008 -0.005 -0.003 -0.002 -0.000 0.001 0.003 0.009 0.025
CE (γ = 7) -0.018 -0.013 -0.009 -0.006 -0.004 -0.003 -0.001 0.000 0.002 0.008 0.024
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Table 4: Expected Option Returns

This table presents expected returns on delta-hedged calls and puts. The individual stock returns
follow a one-factor model and the market return has stochastic volatility. Both stock-risk and
volatility risk are priced. Further details are in the text. The expected return on a delta-hedged
option in this model is given by:
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t

H i
t
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− rtdt =
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∂fi

∂σi
t

(
βi

mtσ
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t λm
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σtω

m
t

√
1 − ρm2 λm

2t

)
dt ,

where λ′s are prices of risk, ρ is the correlation between the Brownian motions for return and
volatility processes, ω is the volatility of volatility. The betas, βm and βσ, are estimated from
regressions of scaled delta-hedged option returns on the market portfolio return and scaled delta-
hedged market portfolio return, respectively. Returns are scaled by 1

f
∂f
∂σ

. The market parameters

used are: λm
1 = 0.16, λm

2 = −0.12, σm = 0.06, ωm = 0.05/
√

12, and ρm = −0.7. The row titled
E[Hi] gives the expected return based on above equation (the expected ‘monthly’ return in the
table is adjusted for the variance term). The row titled Hi is the actual return and α is the
difference between the actual and the expected return. Actual returns on portfolios are the same
as in Table 3. Portfolios are formed as in Table 2. The sample period is 1996 to 2005.

Decile 1 2 3 4 5 6 7 8 9 10 10–1

Panel A: Delta-Hedge Calls

βc
mkt -0.352 -0.324 -0.300 -0.310 -0.293 -0.299 -0.282 -0.283 -0.235 -0.250 0.102

βc
vix 0.264 0.270 0.279 0.274 0.278 0.282 0.283 0.279 0.267 0.255 -0.008

E[Hc] -0.004 -0.004 -0.005 -0.006 -0.006 -0.006 -0.007 -0.006 -0.006 -0.006 -0.002

Hc -0.016 -0.010 -0.008 -0.007 -0.005 -0.003 0.000 0.000 0.003 0.009 0.025
α -0.013 -0.004 -0.002 -0.001 0.002 0.004 0.007 0.007 0.008 0.015 0.028

Panel B: Delta-Hedge Puts

βp
mkt -0.239 -0.211 -0.199 -0.180 -0.182 -0.168 -0.150 -0.174 -0.130 -0.191 0.048

βp
vix 0.198 0.195 0.203 0.197 0.195 0.201 0.193 0.188 0.182 0.182 -0.016

E[Hp] -0.002 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001 0.000 -0.006 -0.003

Hp -0.016 -0.012 -0.008 -0.005 -0.002 -0.001 0.000 0.002 0.004 0.010 0.026
α -0.014 -0.009 -0.005 -0.003 -0.000 -0.000 0.001 0.003 0.003 0.016 0.030
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Table 5: Risk-Adjusted Option Returns

Portfolios are formed as in Table 2. Returns on options are constructed based on the same
procedure as in Table 3. The monthly returns on options are averaged across all the stocks in
the volatility decile. We then regress the 10–1 portfolio returns on risk factors. We consider risk
factors from the Fama and French (1993) three-factor model (MKT-Rf, SMB, and HML), the
Carhart (1997) momentum factor (MOM), and the Coval and Shumway (2001) excess zero-beta
S&P 500 straddle factor (ZBSTRAD-Rf). DHCALL and DHPUT are S&P 500 delta-hedged call
and put factor returns. The first row gives the coefficient while the second row gives the t-statistics
in parenthesis. The sample period is 1996 to 2005.

Straddles Delta-Hedged
Calls Puts

(1) (2) (3) (4) (5) (6)

Alpha 0.237 0.243 0.028 0.026 0.026 0.026
(12.07) (12.59) (9.12) (7.43) (10.09) (9.65)

MKT – Rf -0.866 -1.223 -0.088 -0.047 -0.024 -0.023
(-1.63) (-2.08) (-1.11) (-0.63) (-0.30) (-0.31)

SMB -0.323 -0.084 -0.055
(-0.44) (-0.73) (-0.50)

HML -1.090 0.016 -0.023
(-1.64) (0.13) (-0.21)

MOM 0.093 0.104 0.006
(0.19) (1.05) (0.09)

ZBSTRAD – Rf 0.081 0.072
(3.25) (3.01)

DHCALL – Rf 0.151 0.119
(1.39) (1.23)

DHPUT – Rf 0.031 0.023
(0.32) (0.26)

R
2

0.114 0.114 0.036 0.041 -0.013 -0.035
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Table 6: Option Returns Controlling for Stock Characteristics
(Fama-Macbeth Regressions)

Each month, we regress risk-adjusted option returns on a number of stocks characteristics. The
risk-adjusted returns are calculated by subtracting factor model expected returns from raw re-
turns. The factors used in risk-adjustment are the Fama and French (1993) factors, momentum
factor, and an option factor. The option factors are ZBSTRAD-Rf, DHCALL, and DHPUT for
straddles, delta-hedged calls, and delta-hedged puts, respectively. rv−iv is the log difference of RV
and IV, Size is the market capitalization, BtoM is the book-to-market, Mom is the last six-month
cumulative return, ω is the volatility of volatility, R2 is from the market model regression, Disper
is the dispersion in analyst forecasts, and Γ and V are the option gamma and vega, respectively.
Returns on options are constructed based on the same procedure as in Table 3. The table reports
the average coefficient and the associated t-statistic from the monthly Fama-Macbeth regressions
on individual options (straddles, delta-hedged calls, delta-hedged puts). The last row gives the

average R
2

from the monthly regressions. The sample period is 1996 to 2005.

Straddles Delta-Hedged
Calls Puts

(1) (2) (3) (4) (5) (6)

const -0.001 0.040 -0.004 -0.039 -0.025 -0.009
(-0.09) (0.79) (-0.08) (-0.69) (-3.24) (-1.53)

rv − iv 0.241 0.237 0.224 0.206 0.022 0.023
(10.46) (9.79) (8.96) (8.39) (7.71) (9.62)

Size -0.003 -0.001 -0.001 0.001 -0.000
(-1.00) (-0.21) (-0.41) (2.17) (-1.34)

BtoM 0.025 0.050 0.020 0.001 -0.002
(1.18) (2.19) (0.89) (0.37) (-0.89)

Mom -0.011 -0.033 -0.031 0.002 -0.003
(-0.85) (-2.33) (-2.27) (0.60) (-1.98)

ω -0.309 -0.288 0.050 -0.007
(-0.89) (-0.81) (1.07) (-0.19)

R2 0.007 0.022 -0.003 0.003
(0.12) (0.42) (-0.58) (0.73)

Disper 1.158 1.038 0.168 0.031
(1.62) (1.41) (1.40) (0.39)

Γ 0.154 0.006 0.057
(3.26) (0.21) (6.07)

V 0.002 -0.001 0.001
(1.55) (-0.62) (5.96)

R
2

0.006 0.016 0.024 0.027 0.030 0.03236



Table 7: Option Returns Controlling for Stock Characteristics
(Double Portfolio Sorts)

Each month, we first sort stocks into quintiles based on stock characteristics and then, within
each quintile we sort stocks based on the difference between the historical RV and the current IV
(as in Table 2). The five volatility portfolios are then averaged over each of the five characteristic
portfolios. They, thus, represent volatility portfolios controlling for characteristics. For volatility
sorts, quintile five consists of stocks with the highest (positive) log difference while quintile one
consists of stocks predicted to have the lowest (negative) log difference between these two volatility
measures. Beta is the stock beta calculated from the market model using last 60 months, Size is the
market capitalization, BtoM is the book-to-market, Mom is the last six-month cumulative return,
ω is the volatility of volatility, R2 is from the market model regression, Disper is the dispersion in
analyst forecasts. Breakpoints for all stock characteristics are calculated each month based only
on stocks in our sample. Returns on options are constructed based on the same procedure as in
Table 3. The table reports the average return and the associated t-statistic of this continuous
time-series of monthly returns. The sample period is 1996 to 2005.

Volatility quintile
Control 1 2 3 4 5 5–1

Panel A: Straddle Returns

Beta -0.097 -0.047 -0.022 -0.006 0.051 0.148
(-6.19) (-2.64) (-1.10) (-0.31) (2.40) (10.14)

Size -0.102 -0.039 -0.020 0.003 0.065 0.168
(-6.76) (-2.34) (-1.06) (0.15) (2.93) (10.81)

BtoM -0.100 -0.040 -0.021 0.003 0.065 0.165
(-6.32) (-2.23) (-1.06) (0.17) (3.03) (10.91)

Mom -0.098 -0.042 -0.020 0.008 0.058 0.156
(-6.44) (-2.47) (-1.01) (0.40) (2.78) (10.70)

ω -0.096 -0.039 -0.012 0.018 0.056 0.151
(-6.65) (-2.34) (-0.69) (0.89) (2.63) (9.90)

R2 -0.101 -0.041 -0.022 -0.002 0.054 0.155
(-6.15) (-2.31) (-1.13) (-0.11) (2.48) (9.69)

Disper -0.102 -0.038 -0.022 0.004 0.064 0.166
(-6.62) (-2.18) (-1.10) (0.21) (2.99) (10.76)
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Volatility quintile
Control 1 2 3 4 5 5–1

Panel B: Delta-Hedged Call Returns

Beta -0.013 -0.006 -0.004 -0.000 0.004 0.016
(-5.56) (-2.90) (-1.73) (-0.20) (1.85) (9.04)

Size -0.012 -0.006 -0.003 0.001 0.007 0.018
(-6.07) (-3.09) (-1.54) (0.21) (2.63) (8.78)

BtoM -0.013 -0.007 -0.003 0.000 0.006 0.018
(-6.36) (-3.48) (-1.35) (0.19) (2.37) (9.33)

Mom -0.011 -0.007 -0.003 0.002 0.006 0.017
(-5.52) (-3.45) (-1.27) (0.83) (2.33) (7.95)

ω -0.011 -0.006 -0.001 0.003 0.006 0.017
(-5.25) (-2.63) (-0.42) (1.10) (2.30) (6.88)

R2 -0.013 -0.006 -0.004 -0.000 0.004 0.017
(-5.77) (-2.65) (-1.80) (-0.16) (1.83) (8.25)

Disper -0.012 -0.006 -0.003 0.001 0.006 0.018
(-6.06) (-2.97) (-1.43) (0.38) (2.54) (8.28)

Panel C: Delta-Hedged Put Returns

Beta -0.013 -0.005 -0.002 -0.000 0.004 0.017
(-7.32) (-2.97) (-1.16) (-0.13) (2.48) (13.22)

Size -0.013 -0.005 -0.002 0.001 0.007 0.020
(-7.53) (-2.69) (-1.11) (0.50) (3.30) (12.57)

BtoM -0.013 -0.005 -0.002 0.001 0.006 0.019
(-7.61) (-3.00) (-1.11) (0.39) (3.10) (12.36)

Mom -0.013 -0.005 -0.001 0.002 0.006 0.019
(-7.30) (-3.07) (-0.74) (0.91) (2.97) (11.72)

ω -0.013 -0.005 -0.001 0.003 0.006 0.019
(-7.31) (-2.56) (-0.36) (1.28) (2.89) (10.71)

R2 -0.013 -0.005 -0.002 -0.000 0.004 0.017
(-7.21) (-2.69) (-1.10) (-0.04) (2.51) (11.78)

Disper -0.013 -0.005 -0.002 0.001 0.007 0.020
(-7.45) (-2.50) (-1.20) (0.73) (3.20) (11.85)
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Table 8: Impact of Liquidity and Transaction Costs

We sort stocks independently into deciles based on the difference between the historical RV and
the current IV (as in Table 2) and into terciles based on stock options liquidity characteristics.
For volatility sorts, decile ten consists of stocks with the highest (positive) log difference while
decile one consists of stocks predicted to have the lowest (negative) log difference between RV
and IV. For stock options liquidity sorts, we consider terciles based on the average quoted bid-ask
spread of all the options series traded in the previous month, as well as terciles based on daily
average dollar volume of all the options series traded in the previous month. The returns on
options are computed from the mid-point opening price (MidP) and from the effective bid-ask
spread (ESPR), estimated to be equal to 50%, 75%, and 100% of the quoted spread (QSPR).
The closing price of options is equal to the terminal payoff of the option depending on the stock
price and the strike price of the option. The delta-hedged portfolios are constructed by buying (or
shorting) appropriate shares of underlying stock. The hedge ratio for these portfolios is calculated
using the current IV estimate. The monthly returns on options (or delta-hedged portfolios) are
averaged across all the stocks in any particular sub-group. Panel A reports returns on long-short
10–1 straddle portfolio while Panel B reports returns on long-short 10–1 delta-hedged calls/puts.
First row shows the average return while the second row shows the associated t-statistic (in
parenthesis) of this continuous time-series of monthly returns in each of the three stock options’
liquidity sub-groups. The sample period is 1996 to 2005.

Panel A: Returns on 10–1 straddle portfolios

ESPR/QSPR
MidP 50% 75% 100%

All 0.219 0.130 0.086 0.041
(11.83) (7.20) (4.78) (2.26)

Based on average bid-ask spread of options

Low 0.180 0.127 0.103 0.082
(6.68) (4.88) (4.01) (3.16)

Medium 0.220 0.135 0.096 0.059
(8.65) (5.48) (3.93) (2.39)

High 0.239 0.113 0.053 -0.008
(10.46) (5.11) (2.42) (-0.35)

Based on average trading volume of options

Low 0.233 0.124 0.070 0.015
(10.25) (5.63) (3.19) (0.66)

Medium 0.215 0.133 0.093 0.052
(9.02) (5.73) (4.02) (2.25)

High 0.177 0.119 0.090 0.061
(6.32) (4.33) (3.30) (2.25)
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Panel B: Returns on 10–1 Delta-Hedged portfolios

Delta-Hedged Call Returns Delta-Hedged Put Returns
ESPR/QSPR ESPR/QSPR

MidP 50% 75% 100% MidP 50% 75% 100%

All 0.023 0.013 0.007 0.002 0.026 0.016 0.012 0.007
(7.38) (4.12) (2.46) (0.77) (11.88) (7.59) (5.37) (3.12)

Based on average bid-ask spread of options

Low 0.011 0.005 0.003 -0.000 0.023 0.017 0.015 0.012
(1.59) (0.79) (0.39) (-0.02) (6.12) (4.66) (3.97) (3.31)

Medium 0.026 0.016 0.012 0.007 0.027 0.017 0.013 0.009
(7.02) (4.48) (3.23) (1.98) (9.19) (6.08) (4.58) (3.11)

High 0.029 0.015 0.008 0.001 0.026 0.013 0.006 -0.000
(10.25) (5.39) (2.94) (0.42) (11.43) (5.66) (2.81) (-0.08)

Based on average trading volume of stock options

Low 0.028 0.015 0.009 0.002 0.026 0.014 0.008 0.002
(9.87) (5.49) (3.22) (0.90) (11.03) (6.14) (3.59) (1.00)

Medium 0.030 0.021 0.016 0.011 0.027 0.018 0.013 0.009
(9.07) (6.32) (4.88) (3.40) (9.53) (6.44) (4.84) (3.20)

High 0.007 0.001 -0.002 -0.005 0.022 0.015 0.012 0.009
(0.88) (0.09) (-0.32) (-0.73) (5.85) (4.24) (3.41) (2.58)
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Table 9: Cross-Sectional Model for Predicting Implied Volatility

Panel A reports the time-series averages of the following Fama and MacBeth (1973) regression (t-statistics adjusted for serial correlation
are reported in parenthesis below the coefficient):

∆ivi,t = αt + β1t ivi,t−1 + β2t(ivi,t−1 − ivi,t−12:t−1) + β3t(ivi,t−1 − rvi,t−12:t−1) + ǫi,t ,

where IV is the implied volatility and RV is the historical realized volatility. Lowercase letters denote natural logs. We then estimate a
prediction for implied volatility using the following equation:

∆îvi,t = α̂t + β̂1t ivi,t + β̂2t(ivi,t − ivi,t−11:t) + β̂3t(ivi,t − rvi,t−11:t)

Stocks are sorted into deciles based on the log difference between historical RV and the current IV (as in Table 2). Panel B reports
statistics for these portfolios. We report formation-period volatilities and post-formation option returns. Option returns are computed
using, as a reference beginning price, the option price computed from Black and Scholes formula using the predicted implied volatility (ÎV)
and, as the closing price, the terminal payoff of the option depending on the stock price and the strike price of the option. All statistics
are first averaged across stocks in each decile. The table reports the monthly averages of these cross-sectional averages for each reported
number. The sample period is 1996 to 2005.

Panel A: Cross-sectional regression

ivt−1 ivt−1 − ivt−13:t−2 ivt−1 − rvt−12:t−1 R
2

-0.050 -0.257 -0.146 0.183
(-7.85) (-27.90) (-17.16)

Panel B: Portfolios sorted on RV-IV

Decile 1 2 3 4 5 6 7 8 9 10 10–1

Formation period volatilities
RVt 0.415 0.439 0.453 0.471 0.484 0.505 0.526 0.552 0.583 0.678 –

ÎVt 0.530 0.499 0.491 0.489 0.487 0.491 0.494 0.500 0.504 0.515 –
IVt 0.608 0.534 0.512 0.503 0.493 0.491 0.488 0.486 0.479 0.467 –

Post-formation returns
Straddles -0.026 -0.003 -0.043 -0.042 -0.028 -0.034 -0.033 -0.025 -0.066 -0.035 -0.009

(-1.37) (-0.17) (-2.49) (-2.27) (-1.43) (-1.62) (-1.67) (-1.21) (-3.48) (-1.59) (-0.44)

Delta-hedged -0.009 -0.004 -0.008 -0.008 -0.007 -0.006 -0.006 -0.005 -0.010 -0.008 0.000
Calls (-3.40) (-2.17) (-4.00) (-3.90) (-3.19) (-2.57) (-2.51) (-2.26) (-4.09) (-2.87) (0.14)

Delta-hedged -0.003 0.000 -0.003 -0.003 -0.001 -0.002 -0.000 -0.000 -0.005 -0.002 0.001
Puts (-1.26) (0.01) (-1.63) (-1.59) (-0.29) (-0.75) (-0.17) (-0.12) (-2.67) (-0.77) (0.35)
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