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1 Introduction

Both market and academic interest in equity-index volatility measures has grown rapidly in
recent years. The best known example is the publication of the so-called volatility index, or
VIX, by the Chicago Board of Options Exchange (CBOE). Practitioners and academics alike
have established that this index correlates significantly, not only with future equity market
volatility, but also with global risk factors embedded in credit spreads or sovereign debt spreads.
This explains the moniker of “global fear index” which has been attached to the VIX measure
in the public press. Given the evident asset market implications, this is an area of growing
interest for financial and macro economists. Moreover, public and over-the-counter markets
have emerged to enable direct trading of volatility as measured by realized return volatility
indicators over a prescribed future horizon for a host of different financial assets.

These developments have been facilitated by the development of a “model-free” implied
volatility (MFIV) measure which, at least in principle, can be derived directly from a compre-
hensive cross-section of European put and call option prices with strikes spanning the full range
of possible values for the underlying asset at option expiry. Recent research has confirmed that
this pricing relationship is robust and remains approximately valid for a broad class of relevant
return generating processes, including jump-diffusive semimartingales models. This contrasts
sharply with the traditional Black-Scholes implied volatility (BSIV) measure which relies on a
specific, and counterfactual, assumption on the return dynamics. The latter induces the well
documented smile and smirk patterns in implied volatility across the strikes so the BSIV is
a direct function of the particular option used for the computation. The VIX replaces the
multitude of BSIV measures with a unique value obtained as a weighted average across all
observed option prices with appropriate time to maturity and, as mentioned, it remains valid
under general assumptions regarding the return dynamics.

Nonetheless, the requirements of theory for deriving the MFIV measure are not met by
existing data so some approximations are inevitable. There are, in particular, practical limita-
tions in terms of the existence of liquid options with strike prices covering the entire support
of the return distribution. As such, robust computational procedures are crucial. On this
dimension, the VIX has come in for criticism. For example, Jiang and Tian (2005b) find that
the CBOE implementation introduces random noise as well as systematic errors into the index.

In order to assess the implications of this criticism and explore some conceptual issues
concerning the construction of the volatility index it is useful to reflect on the notion it is
intended to capture. The theoretical foundation for the MFIV, and thus the VIX, makes this
transparent: the index aims to measure the expected integrated variance, or more generally
return variation, over the coming month, evaluated under the so-called risk-neutral, or pricing
(Q), measure. Since volatility is stochastic, the MFIV measure will typically differ from the
expected return variation under the actual, or objective (P ), measure. As such, the MFIV is
not a pure volatility forecast for the underlying asset, but rather bundles this forecast with
market pricing of the uncertainty surrounding the forecast. This implies that, in general,
implied volatilities will include premiums compensating for the systematic risk associated with
the exposure to equity-index volatility. Even so, all else equal, the volatility index will rise
in response to a perceived increase in future (objective P -measure) volatility and vice versa.
Consequently, the MFIV index should be strongly correlated with future realized volatility. In
fact, since derivatives markets aggregate the views of many agents who make trading decisions
based on current information stemming from diverse sources, including but vastly exceeding
the information contained in historical returns, many scholars deem implied volatility forecasts
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superior to other predictors generated by alternate methods, e.g., univariate time series models,
on purely a priori grounds. Of course, this issue has been explored from different angles in the
literature, but it has proven difficult to reach a firm conclusion due to the relatively short time
span of reliable option prices, the large degree of noise present in standard measures of ex-post
realized return volatility and, most importantly, the unobserved nature of the risk premiums
embedded in implied volatilities.

It is impossible to decisively establish superiority of a given implied volatility index relative
to others because any observed implied volatility level may be rationalized by appeal to an
embedded unobserved premium. Nonetheless, there are a number of dimensions on which such
indices may be assessed. First, consistent pricing of options of a given maturity across all
possible strikes induces a risk-neutral density which must satisfy certain regularity conditions
to exclude arbitrage opportunities. A primary requirement is that the risk-neutral density is
strictly positive for all possible future values of the underlying asset. From this perspective,
a striking feature of the computation of the VIX is that the CBOE truncates the tails of the
return distribution at the point where no reliable option prices with corresponding strikes can
be inferred. Moreover, the extent to which reliable option prices are available in these tail
regions differs across trading days so the severity of the truncation varies stochastically over
time. One sensible alternative is to apply a more theoretically coherent technique of extending
the risk-neutral density into the tails, and we do so later in the chapter. However, any such
procedure must rely on partially unverifiable assumptions, given the inherent data limitations.
This will inevitably introduce a degree of random noise into the measure. Hence, it is intuitively
appealing to focus on measures computed only over regions of the risk-neutral density where
it may be inferred in a reliable fashion. Of course, such a truncated implied volatility measure
should not be seen as representing the full MFIV but rather a deliberately down-scaled version
of the latter. In fact, this interpretation can be formalized rigorously as the construction may
be viewed as a variant of the so-called model-free “corridor implied volatility” (CIV) measure,
briefly discussed by Carr and Madan (1998). Hence, it may be appropriate to view the VIX as
an (imperfect) CIV index rather than a MFIV measure. Since the notion of CIV is not widely
known and never, as far as we know, has been explored in practice, we provide a detailed
exposition of the concept, linking it theoretically and empirically to the corresponding MFIV,
VIX, and BSIV measures.

Secondly, we compare the forecast performance of alternative implied volatility measures.
Although there is no requirement that a superior implied volatility measure is also a superior
predictor of future volatility, inconsistently constructed or excessively noisy measures will tend
to display poor coherence with the underlying market volatility movements and perhaps even
contain predictable forecast errors which may be eliminated through alternative constructions
of the measures. Hence, relative predictive ability can serve as an indirect indicator of the
quality of the measures. Of course, it is also of independent interest to establish which implied
volatility measures correlate most strongly with the underlying asset volatility and thus provide
useful guidance for volatility prediction. We facilitate efficient inference regarding predictive
performance by obtaining accurate measurements of the underlying ex-post realized volatility
(RV). We rely on recently developed techniques for constructing realized volatility measures
from high-frequency intraday return series on the underlying asset for this purpose.

Thirdly, we investigate the statistical properties of each candidate implied volatility series
relative to relevant historical realized volatility measures. This sheds additional light on issues
concerning the presence of risk premiums, systematic forecast biases and the presence of noise
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in the series.
We study the above issues in an empirical setting where we can obtain relatively precise

measures of the underlying return variation and we have access to high quality options data so
that we may construct alternative implied volatility measures, both of the model-free and the
Black-Scholes variety, with good accuracy. The market setting associated with the published
VIX measure is not convenient in this regard due to the underlying being a cash equity index.
The index has five hundred underlying stocks whose prices are never observed simultaneously
so the resulting index is plagued by well-established lead-lag or non-synchroneity biases at high
frequencies. This has implications for our ability to measure the underlying realized volatility
with precision from the intraday index returns. Moreover, the corresponding options data
not readily available. Such issues are alleviated greatly by instead using the S&P 500 futures
market and the associated options which are traded on the Chicago Mercantile Exchange
(CME). At the same time, the cash and futures return volatility are intimately linked so that
a volatility measure for one market should serve as a good proxy for the volatility of the other.

In summary, this chapter argues that the VIX index is closely related to the concept
of corridor implied volatility (CIV). We then relate different CIV measures, distinguished by
corridor width, to the ideal MFIV, the BSIV and a couple of historical RVmeasures. In this first
empirical study of CIV we establish that broad corridor CIV measures are near substitutes for
sensible empirical measures of MFIV while some narrower corridor width CIV measures tend
to mimic the BSIV measure. We systematically document the volatility forecast properties
of these measures and find, in contrast to some existing evidence, that the narrow corridor
or BSIV measures are more useful predictors of future volatility than the broad corridor,
MFIV or VIX measures. The statistical properties of the various measures are consistent
with the interpretation that the broad corridor implied volatility measures embed large and
time-varying risk premiums which encroach on their usefulness as direct indicators of future
volatility. Importantly, these findings should not be taken as a criticism of the MFIV concept.
Instead, it points to practical empirical implications of the dual features of market based
measures, namely as vehicles that simultaneously provide forecasts of future volatility and
price the risk associated with this expected future (stochastic) return variation.

The paper unfolds as follows. Section 2 provides the basic theoretical exposition of the
model-free, barrier and corridor implied volatility measures and their relationship to the Black-
Scholes measure. In that context, we also provide as explicit comparison of the Black-Scholes
prices for certain variance contracts with those prevailing in the market place. It serves to
highlight the inadequacy of the Black-Scholes setting for understanding the market pricing of
these newly developed variance products. In addition, we review the concept of realized return
volatility which is used both as the ex-post measure of actual realized volatility and as ex-ante
volatility forecast indicators. Section 3 describes the origin of our data and some details of the
data cleaning and construction. Section 4 reports on the empirical results. We first provide
some descriptive statistics to convey the basic behavior of the new corridor volatility measures
relative to the more traditional volatility series. We then explore both the in-sample and
out-of-sample performance of the various volatility measures as predictors of future volatility.
Finally, Section 5 provides concluding remarks.
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2 Theoretical Background

This section provides the theoretical foundation for the volatility concepts and measurements
explored in our analysis. We begin with a formal introduction of the concept of barrier and
corridor variance contracts. We next review the basic features of the so-called realized volatility
measures which are used to obtain relatively accurate measures of the actual (ex-post) return
variation of the underlying asset. Finally, we review the implementation procedures we adopt
in order to convert the various alternative volatility concepts into practical measures amenable
for empirical analysis.

2.1 Barrier Variance and Corridor Variance Contracts

Throughout this section we fix the current time at t = 0 and we consider only contracts which
pay off at a future fixed date T . For 0 ≤ t ≤ T , Ft denotes the time t value of the S&P 500
futures contract expiring at date T ′ where T ≤ T ′. Moreover, the prices of European put and
call options with strikeK and expiration date T are given by Pt(K) and Ct(K). To simplify the
exposition, the risk-free rate is assumed to be zero.1 In what follows, k = K/Ft indicates the
strike-to-underlying ratio, or moneyness of an options contract. Although moneyness, k, varies
with the underlying price Ft, we suppress this time dependence for notational convenience.
Thus, a put (call) is out-of-the-money (OTM) if k < 1 (k > 1), is at-the-money (ATM) if
k = 1, and is in-the-money (ITM) if k > 1 (k < 1). We also use τ = T − t to denote
time-to-maturity.

The option prices may be computed using the risk-neutral density (RND), denoted ht(FT ):

Pt(K) = EQt [(K − FT )
+] =

∫ ∞

0
(K − FT )

+ ht(FT )dFT ,

Ct(K) = EQt [(FT −K)+] =
∫ ∞

0
(FT −K)+ ht(FT )dFT .

The RND satisfies the relationship first exposited in Ross (1976), Breeden and Litzenberger
(1978), and Banz and Miller (1978),

ht(FT ) =
∂2Pt(K)

∂K2

∣∣∣∣∣
K=FT

=
∂2Ct(K)

∂K2

∣∣∣∣∣
K=FT

(1)

Let g(FT ) denote a general payoff at time T . The function g(FT ) is assumed to have a
finite second derivative which is continuous almost everywhere. Following Carr and Madan
(1998) and Bakshi and Madan (2000), for any x ≥ 0, g(FT ) can be represented as:

g(FT ) = g(x) + g′(x)(FT − x) +
∫ x

0
g′′(K)(K − FT )

+dK +
∫ ∞

x
g′′(K)(FT −K)+dK. (2)

By setting x = F0 and taking expectations in equation (2), one obtains

EQ0 [g(FT )] = g(F0) +
∫ F0

0
g′′(K)P0(K)dK +

∫ ∞

F0

g′′(K)C0(K)dK

1 In reality, of course, the risk-free rate is non-zero. However, in empirical tests below, we convert spot prices
of options into forward prices (for delivery at time-T ). To obtain forward prices, spot prices are multiplied by
erf (T−t), where rf is the risk-free rate over [t, T ]. For example, the forward put price is Pt(K) = e

rf (T−t)P st (K),
where P st (K) is the spot put price. A similar approach has been used in, for example, Dumas, Fleming, and
Whaley (1998).
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= g(F0) +
∫ ∞

0
g′′(K)M0(K)dK, (3)

where Mt(K) denotes the minimum of the put and call,

Mt(K) = min(Pt(K), Ct(K)).

In other words, of the two plain vanilla options with strike K, Mt(K) equals the price of the
one that is currently out-of-the-money.

In the current setting the futures price process Ft is a martingale under the risk-neutral
measure. Suppose it follows the general diffusion:

dFt
Ft

= σtdWt, (4)

where Wt is a standard Brownian motion and σt is a strictly positive, cadlag (stochastic)
volatility process. Notice that we allow the volatility process to feature jump discontinuities.
By Ito’s Lemma,

g(FT ) = g(F0) +
∫ T

0
g′(Ft)dFt +

1

2

∫ T

0
g′′(Ft)F

2
t σ

2
t dt, (5)

which implies that

EQ0 [g(FT )] = g(F0) +
1

2
EQt

[∫ T

0
g′′(Ft)F

2
t σ

2
t dt

]

. (6)

Combining equations (3) and (6), one finds that

EQ0

[∫ T

0
g′′(Ft)F

2
t σ

2
t dt

]

= 2
∫ ∞

0
g′′(K)M0(K)dK, (7)

It is convenient to define the down-barrier indicator function as follows,

It = It(B) = 1[Ft ≤ B],

with B denoting the barrier. We now consider the contract with time T payoff equal to the
(down-) Barrier Integrated Variance,

BIV ARB(0, T ) =
∫ T

0
σ2t It(B)dt.

In other words, the contractual payment is given by the realized variance calculated only when
the futures price lies below the barrier B. As B diverges to ∞, the payoff approaches the
standard integrated variance:

IV AR(0, T ) =
∫ T

0
σ2t dt.

Carr and Madan (1998) show how to synthesize the continuously-monitored barrier variance
when the underlying process is continuous. The no-arbitrage value of the down-barrier variance
contract can be derived from the relationship in (7). Suppose that the function g(FT ) is chosen
as

g(FT ) = g(FT ;B) =

(
− ln FT

B
+
FT
B
− 1

)
IT .

In the sequel we exploit the following properties of this g(FT ) function,
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(a) it is equal to zero for all values of FT ≥ B,

(b) its first derivative is continuous for all FT ,

g′(FT ) =

(
− 1

FT
+
1

B

)
IT ,

(c) its second derivative is continuous for all FT �= B,

g′′(FT ) =
1

F 2T
IT .

The relationship in (7) then implies that the value of the barrier variance contract is

BV AR0(B) = EQ0

[∫ T

0
σ2t Itdt

]

= 2
∫ B

0

M0(K)

K2
dK, (8)

The square root of the above expression can be interpreted as the option-implied barrier
volatility.

BIV0(B) =

√

2
∫ B

0

M0(K)

K2
dK, (9)

In the limiting case of B =∞, the barrier implied volatility coincides with the so-called model-
free implied volatility MFIV0. The concept of the model-free implied volatility was developed
in original work of Dupire (1993) and Neuberger (1994).2 The concept is referred to as “model-
free” because it does not rely on any particular parametric model, unlike the Black-Scholes
implied volatility. CBOE uses this concept as the basis for its recently redesigned volatility
index VIX.

The contract which pays the corridor variance can be constructed from two barrier variance
contracts with different barriers. Let B1 and B2 denote the lower and the upper barriers and
consider the contract with time T payoff,

CIV ARB1,B2(0, T ) =
∫ T

0
σ2t It(B1, B2)dt,

where the indicator function It(B1, B2) is defined as

It(B1, B2) = It = 1[B1 ≤ Ft ≤ B2].

In other words, this contract pays the corridor variance, or the variance calculated only
when the futures price between the barriers B1 and B2. The value of the corridor variance
contract is

CV AR0(B1, B2) = EQ0

[∫ T

0
σ2t Itdt

]

= 2

∫ B2

B1

M0(K)

K2
dK. (10)

Carr and Madan (1998) also introduce the contract which pays future variance along a
strike. This contract can be obtained as the limiting case of the corridor variance contract

2See also Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999), and Britten-Jones and
Neuberger (2000).
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when the distance between the upper and lower barriers shrinks to zero and when the payoff
is properly rescaled to have a non-negligible value.

SV AR0(B) = lim
∆B→0

B

∆B
CVAR0(B,B +∆B) = 2

M0(B)

B
. (11)

Note that we rescale the payoff by B
∆B as opposed to just 1

∆B in Carr and Madan. This
minor modification has the effect that, for Black-Scholes and most other canonical option
models, the value of the along-strike variance contract depends only on the moneyness B/F0
and not on the level of the underlying, F0, itself.

2.2 Barrier Variance Contracts under the Black-Scholes Model

In the Black-Scholes (1973) model, the instantaneous volatility is constant, σt = σ, and the
value of the barrier variance can be computed in closed form as:

BVAR0(B) = 2

(
N(y)

(
σ
√
τy − 1

)
+
F0
B
N(y − σ

√
τ) + σ

√
τn(y)− g(F0)

)
(12)

= 2

(
N(y)

(
−1− ln F0

B
+
1

2
σ2τ

)
+
F0
B
N(y − σ

√
τ)− σ

√
τn(y) +

(
1− F0

B
+ ln

F0
B

)
I0(B)

)
,

where

y = −
ln F0

B

σ
√
τ
+
1

2
σ
√
τ,

and n(·) and N(·) denote the standard normal probability and cumulative density functions
(pdf and cdf) respectively.

When σ
√
τ is small, the above expression can be approximately written as

BV AR0(B) ≈ σ2τI0(B).

Intuitively, if the current futures price is below the barrier (F0 < B), then for small σ
√
τ

it will remain there almost surely and the down-barrier variance is identical to the integrated
variance. On the other hand, if the current futures price is above the barrier, the futures will
remain above until maturity, almost surely, and the down-barrier variance is zero.

To provide some initial intuition, the top panel of Figure 1 plots the function

U0(p) =
BVAR0(H

−1
0 (p))

BVAR0(∞)
,

which is equal to the normalized barrier variance expressed in terms of the cumulative risk-
neutral probability p = H0(B). By construction, the function U0(p) is monotonically increasing
on [0, 1] with U0(0) = 0 and U0(1) = 1. The figure assumes that τ = 21 trading days and that
σ is set to the average at-the-money implied volatility over the studied period.

For comparison, the bottom panel of Figure 1 plots the same function U0(p) computed from
S&P 500 options, for a representative day in our dataset, 04/19/2000, when τ = 21 trading
days. The shape of the function U0(p) now differs dramatically from the Black-Scholes case,
mainly reflecting the very fat left tail of the empirical RND. It is evident that the same features
that induce systematic patterns in the Black-Scholes implied volatilities also will prevent the
Black-Scholes model assumptions from delivering realistic market pricing of barrier variance
contracts across the support of the RND.
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2.3 Realized Volatility Measures

Given the futures price dynamics under theQ-measure specified in equation (4), the logarithmic
futures price process under the actual P -measure will follow a semimartingale with the identical
spot volatility process, σt. For short term (log-) price increments, the semimartingale property
implies that the size of the innovation term is an order of magnitude larger than the size of the
expected mean term. Hence, for high-frequency returns, the drift may be neglected. This line
of reasoning is entirely general and provides a formal basis for the use of realized volatility as
an ex-post measure of return variation. Assuming that we have n + 1 log-price observations
available over the relevant measurement horizon, obtained at times 0 = t(0) < t(1) < . . . <
t(n−1) < t(n) = T , we may define realized volatility as the cumulative sum of squared returns,

RVn(0, T ) =
n∑

i=1

[
(lnFt(i) − lnFt(i−1)

]2
.

Conditional on the observed price path over [0, T ], realized volatility provides an unbiased
estimator of the underlying quadratic return variation, which is simply the integrated variance,
IV AR(0, T ) in the current setting. Consequently, the conditional expectation at time t = 0 of
the future quadratic return variation, denoted V0, will also equal the conditional expectation
of future realized volatility, i.e.,

V0 = EP0

[∫ T

0
σ2t dt

]

= EP0 [RVn(0, T )] . (13)

This relationship is critical as we cannot directly observe realizations of the integrated vari-
ance, while we can construct empirical measures of realized return volatility. Hence, the latter
will serve as our empirical proxy for the former. Theory stipulates that we exploit as many
returns in the computation as possible: the precision of the realized volatility measure im-
proves as the sampling frequency increases and eventually, in the limit of continuous sampling,
converges to the underlying integrated variance.3 In practice, the semimartingale property is
violated at the highest sampling frequencies due to the presence of market microstructure noise
in the recorded prices which may induce sizeable biases. Consequently, we follow the common
procedure of aggregating five-minute squared futures returns over the course of the trading
day to obtain a reasonably precise and unbiased empirical measure of the underlying return
variation.4.

We also need to measure the return variation during the overnight period when the futures
market is closed. In accordance with the general properties for realized volatility, the measure
will remain unbiased if we add the squared overnight return, obtained as the squared close-to-
open logarithmic price change, to the measure obtained over the trading period. We denote
(the square-root of) this RV measure, constructed from high-frequency data and the overnight
return as indicated, RVH. Obviously, the absence of detailed information on the price evolution
overnight has a detrimental impact on the overall precision of the measure but the effect is
limited due to the comparatively low volatility associated with non-trading periods.

3This property is highlighted by, e.g., Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and
Labys (2001), Barndorff-Nielsen and Shephard (2001, 2002), and Meddahi (2002).

4Given the limited microstructure effects in the S&P 500 futures market, the analysis of Andersen, Bollerslev
and Meddahi (2006) indicates that this should work well in practice. Alternatively, one may utilize even higher
frequency intraday returns and exploit the robust procedures advocated recently by, e.g., Bandi and Russell
(2005), Zhang, Mykland and Aït-Sahalia (2005), and Barndorff-Nielsen, Hansen, Lunde and Shephard (2006)
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Even though the use of high-frequency return based realized volatility measures has become
widespread in recent years, the reliance on daily squared returns for computation of realized
monthly return volatility remains common. In order to facilitate comparison across studies
and obtain a direct indication of the practical advantage of using the high-frequency based
measure, we also include a realized volatility measure computed as (the square-root of) the
cumulated daily squared returns, and denoted RVD, in the subsequent empirical analysis.

2.4 Construction of the Volatility Measures

In the empirical study, we compare and contrast properties of the interrelated volatility mea-
sures introduced above. These measures are constructed daily and assume a fixed horizon or
time to maturity of τ = 1 month (21 trading days).

We consider four corridor implied volatilities, denoted CIV1-CIV4, with barriers defined as
fixed percentiles of the RND. Specifically, we compute the corridor implied volatility as

CIV0(B1, B2) =

√

2
∫ B2

B1

M0(K)

K2
dK, (14)

with the barriers chosen so that B1 = H−1
0 (p) and B2 = H−1

0 (1− p) for p = 0.25, 0.10, 0.05,
and 0.025 for CIV1-CIV4, respectively. In other words, CIV1-CIV4 correspond to increasingly
wider corridors, where the corridor for CIV1 covers the range from the 25th and 75th percentiles
of the RND, the corridor for CIV2 covers the range from the 10th and 90th percentiles, and so
on. The model-free implied volatility, MFIV, corresponds to the limiting case of p = 0. The
two broad corridor CIV measures, CIV3 and CIV4 were chosen with an eye towards the largest
width of the RND which may be estimated with precision for almost all trading days. They
serve as potential proxies for the MFIV in that they capture the expected variation over very
wide ranges of the RND but can be measured with better accuracy. The narrower corridor
measures, CIV1 and CIV2, are included to highlight the different properties that arise from
focusing on ranges of the RND which display a lower sensitivity to the variance risk premium.

To construct the corridor implied volatilities, we first estimate the RND via the Positive

Convolution Approximation (PCA) method developed in Bondarenko (2003). The procedure
exploits the relationship in equation (1) to infer the conditional RND h0(FT ) and directly
addresses some important limitations of actual option data, namely that (a) options are only
traded for a discrete set of strikes, as opposed to a continuum, (b) very low and very high
strikes are usually unavailable, and (c) option prices contain substantial measurement errors
stemming from nonsynchronous trading, price discreteness, and bid-ask bounce. The PCA
method is fully nonparametric, guarantees arbitrage-free density estimates, controls against
overfitting in a small sample setting, and has been shown to be accurate in simulations. In
addition to the estimate for RND, the method also provides the input into computing the put
pricing function P0(K), the risk-neutral cumulative density function H0(K), and the barrier
variance function BVAR0(K) for arbitrary strikes. The latter allows us to compute the full
set of corridor variance measures.

Other option-implied measures that we consider include the at-the-money Black-Scholes
implied volatility (BSIV) and the CBOE’s new volatility index (VIX). In theory, VIX should
be very close to MFIV. However, as Jiang and Tian (2005b) point out the specific procedure
adopted by the CBOE to compute the VIX index introduces several potential biases. They
identify three types of approximation errors, namely (i) truncation errors due to the fact that
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very low and very high strikes are not available in practice; (ii) discretization errors induced
due to the numerical integration being implemented using a relatively coarse grid of available
strikes; and (iii) errors arising from a Taylor series expansion approximation. In practice,
the errors (ii)-(iii) are small and, in principle, can be rendered negligible through improved
implementation. On the other hand, the errors stemming from (i) can be considerable and
there is no simple solution.

Intuitively, the published VIX can be interpreted as a corridor implied volatility (CIV)
measure with barriers set to the lowest and highest strikes that CBOE uses on a given day to
compute the index. The fact that the barriers change stochastically from day to day, depending
on the liquidity in certain segments of the options market, may induce systematic biases in the
VIX.

Finally, besides option-implied measures, we also rely on realized volatilities, computed
using either daily or high-frequency returns. The realized variance measure, RVD, is computed
as the sum of 21 trading day close-to-close squared log-returns. The realized high-frequency
data based variance measure, RVH, also covers 21 trading days, but now all the 5-minute
intra-trading day and the overnight close-to-open squared log-returns within the month are
cumulated.

3 Data

The full sample period is from January 1990 through December 2006. Our data stem from
several sources. From the Chicago Mercantile Exchange (CME), we obtain daily prices of
options on the S&P 500 futures and transactions data for the S&P 500 futures themselves.
From the Chicago Board Options Exchange (CBOE), we obtain daily levels of the newly
redesigned VIX index. Although the CBOE changed the methodology for calculating the VIX
in September 2003, they have backdated the new index to 1990 using historical option prices.
Finally, from the U.S. Federal Reserve, we obtain Treasury bill rates, which are used to proxy
for the risk-free interest rate.

The S&P 500 futures have four different maturity months from the March quarterly cycle.
The contract size is $250 times S&P 500 futures price (before November 1997, the contract
size was $500 times S&P 500 futures price). On any trading day, the CME futures options
are available for six maturity months: four months from the March quarterly cycle and two
additional nearby months (“serial” options). The CME options expire on a third Friday of a
contract month. However, the quarterly options expire at the market open, while the serial
options expire at the market close. For the serial options, we measure time to maturity as the
number of calendar days between the trade date and the expiration date. For the quarterly
options, we use the number of calendar days remaining less one.

The option contract size is one S&P 500 futures. The minimum price movement is 0.05.
The strikes are multiples of 5 for near-term months and multiples of 25 for far months. If at
any time the S&P 500 futures contract trades through the highest or lowest strike available,
additional strikes are usually introduced.

The CME options on the S&P 500 futures and options on the S&P 500 Index itself, traded
on the CBOE, have been the focus of many empirical studies. For short maturities CME
and CBOE option prices are virtually indistinguishable. Nevertheless, there are a number of
practical advantages to using the CME options. First, as is well known, there is a 15-minute
difference between the close of the CBOE markets and the NYSE, AMEX, and NASDAQ
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markets, where the S&P 500 components are traded. This difference leads to non-synchronicity
biases between the recorded closing prices of the options and the level of the Index. In contrast,
the CME options and futures close at the same time (3:15 PM CST). Second, it is easier to
hedge options using highly liquid futures as opposed to trading in the 500 individual stocks.
On the CME, futures and futures options are traded in pits side by side. This arrangement
facilitates hedging, arbitrage, and speculation. It also makes the market more efficient. In fact,
even traders of the CBOE options usually hedge their positions with the CME futures. Third, a
additional complication is that the S&P 500 index pays dividends. Because of this, to estimate
the risk-neutral densities from CBOE options, one must make some assumptions about the
index dividend stream. No such assumptions are needed for the CME futures options. A
disadvantage of the CME options is their American-style feature. However, we conduct our
empirical analysis in such a way that the effect of the early exercise feature is minimal.

For each trading day, we estimate the implied volatility measures CIV1-CIV4, MFIV and
at-the-money BSIV. To obtain these values, we follow several steps, which are described in
more detail in Appendix B. Briefly, the steps include 1) filtering out unreliable option data;
2) checking that the option prices satisfy the theoretical no-arbitrage restrictions; 3) inferring
forward prices for European puts and calls; 4) estimating the RND for a continuum of strikes;
and 5) estimating the implied volatilities. For illustration, Figure 2 depicts the BSIV, nor-
malized option prices, and the risk-neutral pdf and cdf for a representative trading day in the
sample.

The realized volatility measure RVD is computed from official daily closing prices on the
S&P 500 futures, while the RVH measure is obtained from the last recorded transaction price
within each five-minute interval over the trading period combined with the overnight change
from the official closing price to the opening price the subsequent trading day.

4 Empirical Results

This section presents our empirical findings. We first review the basic statistical properties of
the various volatility measures and then investigate their relative performance as predictors of
the subsequent volatility of the underlying S&P 500 futures.

Related recent work with a focus on the properties of model-free implied volatility and
its relation to general asset market dynamics include Andersen, Frederiksen and Staal (2006),
Ang, Hodrick, Xing and Zhang (2006), Bakshi and Kapadia (2005), Bakshi and Madan (2006),
Bliss and Panigirtzoglou (2004), Bollerslev, Gibson and Zhou (2007), Bollerslev and Zhou
(2007), Bondarenko (2007), Carr and Wu (2004), Duan and Yeh (2007), Todorov (2007) and
Wu (2004).

4.1 Basic Features of the Volatility Measures

The top two panels of Figure 3 depict the level and daily returns for the S&P 500 futures
over our full sample period. The bottom panel plots the associated realized one-month return
volatility series, RVH, along with the CBOE VIX index measure. As explained in the previous
section, the VIX may be viewed as an indicator of future monthly volatility while RVH provides
a measure of the actual realized volatility over that month. A couple of points are evident
from the graph. First, there is good coherence between the VIX index and the ensuing market
volatility. However, since RVH is recorded daily but represents monthly (future) volatility,
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there is a great deal of induced serial correlation in this series.5 Hence, this feature must be
interpreted with some care. Second, it is evident that the VIX series almost uniformly exceeds
the subsequent realized volatility. This is consistent with earlier work establishing the presence
of a substantial negative variance risk premium in the VIX index. In other words, investors
are on average willing to pay a sizeable premium to acquire a positive exposure to future
equity-index volatility. Of course, the CBOE VIX is computed on the basis of options written
on the S&P 500 cash index while we compute the realized volatility from S&P 500 futures.
This may involve a mismatch which could explain the large and persistent gap between the
two volatility measures. In order to control for such effects we turn to an analysis of various
model-free implied volatility measures computed directly from options on S&P 500 futures
contracts which are compatible with the RVH series. We also include the VIX measure in the
analysis to facilitate comparison with existing work.

Table 1 reports various summary statistics for nine volatility measures: RVD, RVH, VIX,
BSIV, CIV1, CIV2, CIV3, CIV4, and MFIV over the full sample and two subsamples. Focusing
on the top panel, we first note that the mean of the VIX is compatible with the level of the
MFIV extracted from the CME futures options, and they both exceed the level of actual realized
volatility of the underlying asset, whether measured by RVD or RVH, by a margin of more than
23 per cent (0.185 versus 0.150). Second, VIX is highly correlated with both the MFIV and
the broadest corridor variance measure, CIV4, even if the VIX is slightly higher and a bit more
persistent than the corresponding measures obtained from the CME option futures market.
Since the VIX is constructed in a manner that, as argued earlier, effectively makes it a hybrid
between a pure model-free implied volatility and a broad corridor implied volatility measure,
it is reassuring that it does tend to mimic the behavior of these independently constructed
series based on related derivatives data. This is further supported by the extremely high
correlations between VIX, MFIV and CIV4 reported in Table 2. It suggests that we can study
the qualitative links between the VIX and concepts like (regular) model-free implied volatility
and corridor implied volatility through the corresponding features of the implied volatility
measures obtained from the S&P 500 futures option market.

Moving to the empirical features of the corridor implied variance based measures, which
have not been explored in the literature hitherto, we have, by construction, a monotonically
increasing pattern in the mean level of corridor implied volatility as we progress from CIV1 to
CIV4. In another manifestation of the large variance risk premium embedded in the options
markets we observe that the mean of the CIV2 measure, covering only eighty per cent of the
RND, also is significantly higher than the historical realized volatility of the underlying asset.
Moreover, not surprisingly, the narrower corridor volatility measures are more stable than
the corresponding broader measures in terms of higher serial correlation and lower sample
standard deviation, skewness and kurtosis. Note also that the realized volatility measures,
as expected, are more volatile than the implied measures. They have the highest standard
deviation, skewness and kurtosis statistics of all the series and they have the lowest serial
correlation at monthly and lower frequencies where the measurement overlap ceases to have
an effect. Such discrepancies are, of course, typical when comparing series that represent
expectations of future realizations versus the actual ex-post realizations. The latter embody
both an expected component, highly correlated with the implied volatility measures, and an

5Consecutive daily observations on the future monthly realized volatility share twenty of the twenty-one trad-
ing day realized return variation measures that are cumulated to provide the monthly realized volatility measure.
Thus, only at the twenty-one trading day (monthly) frequency are the series not mechanically correlated.
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unpredictable innovation term. The presence of the second component will naturally render
the realized volatility series comparatively erratic in nature.

The final volatility measure included in the analysis is the traditional ATM Black-Scholes
measure, BSIV. Although this measure also incorporates a significant variance risk premium, it
is an order of magnitude smaller than for the MFIV. In addition, it is noteworthy that BSIV is
extremely highly correlated with the intermediate corridor implied volatilities, and especially
CIV2. Nonetheless, it is more persistent than these mid-range corridor volatility measures and
sports lower sample skewness and kurtosis. In fact, at monthly and lower frequencies only the
CIV1 measure is more persistent than BSIV.

A last observation concerns the very strong degree of persistence in the volatility measures.
The autocorrelation patterns decay extremely slowly and are well approximated by a hyperbolic
shape in all instances, thus lending support to the hypothesis that the volatility process has
long memory components. Since this issue is not of direct relevance for our current study we
abstain from additional analysis of these features.

The summary statistics for the subsamples are in line with those discussed above. As is
also evident from the bottom panel of Figure 3, the average volatility is higher in the second
subsample than the first, thus rendering the (right-skewed) volatility outliers less influential
in the computation of the skewness and kurtosis for the second subsample. These separate
subsamples play a pivotal role in the forecast analysis below.6

In summary, the various implied volatility measures are all highly correlated although
clearly not identical. Figure 4 displays the time-variation of the various corridor implied
volatility measures relative to MFIV and BSIV. The comparatively stronger coherence among
the MFIV and the broader measures CIV3 and CIV4 as well as the very high correlation
between BSIV and CIV2 is clearly visible in the top and bottom panels respectively. Another
common feature across the implied volatility measures is that they all embed a sizeable variance
risk premium. Concurrent research, e.g., Todorov (2007), concludes that the variance risk
premium in the VIX tends to grow more than proportionally with the level of underlying
volatility. The stationary and mean-reverting nature of realized volatility and the pronounced
mean reversion evident from the plots in Figure 4 then suggest that the variance risk premium
associated with the tails of the RND are particularly volatile. If this line of reasoning has
a degree of validity, MFIV may be a poorer predictor of future underlying volatility than
alternative, less premium sensitive, implied volatility measures such as BSIV and CIV1. On
the other hand, recent work by Jiang and Tian (2005a) reach the exact opposite conclusion as
they find their MFIV measure to dominate all other volatility forecasts, including the BSIV.
Since our understanding of the variance risk premium dynamics and its manifestation across the
different implied volatility measures is related to this issue, we now turn to a direct investigation
of the predictive ability of the various volatility indicators. Of course, the findings are also
highly relevant for the more general volatility forecasting literature.

4.2 The Relative Forecast Performance of Implied Volatility Measures

There is no simple way to rank alternative volatility forecasts as the relative performance
generally will depend on the intended use of the predictions. In other words, different loss
functions applied to a given forecast error distribution will typically not provide the identical

6The correlations among the volatility measures across the two subsamples were nearly identical to the
corresponding statistics for the full sample reported in Table 2. Hence, for brevity, we do not report these
correlation statistics for the shorter sample periods.
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ranking. Given this fundamental problem, we resort to the well-known root-mean squared
forecast error (RMSE) criterion which is widely used, simple to implement and equipped with
convenient statistical properties.

An intuitively appealing starting point from which to explore the predictive ability of the
different candidate volatility measures is to include each separately within an in-sample forecast
regression, also know as a Mincer-Zarnowitz regression. Letting the ex-post realized volatility
measure for month t + 1 be given by yt+1 and the volatility predictor j, among a set of J
candidate predictors, be denoted xj,t, j = 1, . . . , J , these univariate regressions take the form,

yt+1 = αj + βjxj,t + uj,t+1, (15)

where unbiased forecasts are subject to the constraint on the regression coefficients that αj = 0
and βj = 1. Moreover, the regression R2 captures the degree of variation in the ex-post realized
volatility explained by the forecast. Likewise, one may explore whether one predictor candidate,
xj subsumes another, xk, by including both in an encompassing regression of the form,

yt+1 = αjk + βjxj,t + βkxk,t + uj,t+1, (16)

where there is support for the hypothesis that xj subsumes the information content in xk if
βj > 0 and βk = 0.

It is clear from our prior findings that the implied volatility measures generally will not be
unbiased as they embed a sizeable premium related to equity market volatility risk. Nonethe-
less, they may well correlate strongly with future volatility and thus serve as useful indicators
for prediction. Instead of imposing a priori restrictions on the character of the risk premiums,
and thus the ensuing forecast biases, we allow the regressions to provide optimal (in-sample)
regression coefficients for (linearly) transforming the specific volatility measures into forecasts
of future realized volatility for the underlying asset. One immediate concern is that this may
induce a small-sample bias, or tendency for over-fitting, given the relatively short history of
monthly volatility forecasts, the strong persistence in the realized and implied volatility mea-
sures and even the possibility of regime shifts. To assess robustness against such concerns, we
split the full sample into an in-sample period of estimation, where the OLS regression coeffi-
cients are obtained, and an out-of-sample period in which we keep the regression coefficients
fixed and use them to construct monthly volatility forecasts on the basis of the subsequent
implied volatility measures constructed from available options data. In other words, no esti-
mation or recalibration is performed in the out-of-sample period. If the in-sample results are
reliable, there should be good coherence in the ranking of performance across the two distinct
sample periods. We select the initial ten years, covering 1990-1999, as the in-sample period
and then explore robustness of the results in the seven year out-of-sample period comprising
the years 2000-2006. The separation into the estimation and out-of-sample forecast period is
indicated by the vertical lines in Figure 3.

An additional complication is that the return variation concept often differs across studies
depending on the intended application or research question. Most commonly, it is reported on
an annual basis in units of standard deviation or volatility, as is standard for Black-Scholes
implied volatility. This is also the convention adopted by the CBOE when publicizing the
VIX. Finally, it has a rationale within the stochastic volatility literature, as the ATM BSIV is
approximately linear in the expected integrated volatility of the underlying asset up to expiry.
Given the focus on return volatility in the literature, the majority of our exposition concentrates
on forecast results for this concept of future monthly realized volatility. However, the theory
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for model-free implied volatilities is developed for the return variance so a number of relations
involving MFIV are more naturally couched in terms of variances. Finally, the small sample
properties of the predictive regressions are decidedly better when return variation is measured
in log volatilities as this eliminates the main positive outliers and renders the various series
close to Gaussian. As a consequence, many prior studies focus on this metric as well. For
robustness and compatibility with earlier work, we therefore provide supplementary results for
predictive regressions targeting the future monthly log return volatility as well as the future
monthly return variance. Since our empirical results turn out to be fully consistent across
these settings, we only provide a brief summary of these additional findings.

Results for the full set of predictive regressions along with selected encompassing regressions
for future return volatility are given in Table 3, while the supplementary results for log return
volatility and return variance are reported in Tables 4-5. Focusing on the columns on the left
side of Table 3, we first note that the VIX provides the worst in-sample fit among all candidate
implied volatility measures although it comes close to the theoretically related model-free and
broad corridor implied measures, MFIV and CIV4. The slightly narrower corridor measure
CIV3 seems to perform a bit better while the most narrow corridor measures CIV1 and CIV2
along with BSIV perform the best. However, overall the in-sample fit does not differ dramat-
ically across the implied volatility measures so a more definitive conclusion must await the
findings from the, in practice, more challenging out-of-sample evidence. As expected all the
implied volatility forecasts vastly outperform the benchmark consisting of the lagged realized
(historical) volatility measures, RVD and RVH, although the latter explain a fairly impressive
54% of the variation in subsequent monthly volatility. The fact that both the historical volatil-
ity indicators have a slope coefficient below unity and a significant positive intercept reflects
the mean-reverting character of realized volatility. More elaborate autoregressive time series
models, estimated from a long history of daily realized volatility measures, tend to perform
well, see, e.g., Andersen, Bollerslev, Diebold and Labys (2003), but it is beyond the scope of
the present chapter to pursue alternative time series volatility forecast procedures. We simply
note that timely high-frequency conditioning information is lost when aggregating the daily
realized volatility series into monthly measures. As such, the historical volatility series, RVD
and RVH, are mainly included to provide a simple and intuitive lower bound on the degree of
volatility predictability over the sample.

The encompassing regressions provide additional insights. First, to the extent that lagged
realized volatility conveys relevant information it is captured entirely by the high-frequency
based measure RVH rather than the daily return based measure, RVD. The former has the
superior in-sample fit, the encompassing regression including both measures adds no significant
explanatory power to what is provided by RVH alone and the regression coefficient associated
with RVD is now negative and insignificant. This is consistent with the findings in the literature
that realized return variability is measured much more accurately via high-frequency return
observations. This also supports our use of RVH as the ex-post measure of monthly realized
return variation for the dependent variable on the left hand side of the predictive regressions.
Second, note that the extremely strong correlation among the implied volatility measures
suggests that little can be gained by exploiting two of these simultaneously in the forecast
regression setting. This turns out to be true. Results for a representative scenario using
both CIV1 and VIX are reported in the table. This pair constitutes a serious candidate for
constructing a combined measure as the two displays the lowest correlation among our implied
volatility indicators. Nonetheless, the improvement of the in-sample forecast performance is
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slight and the coefficient on VIX is insignificant. In contrast, if the RVH measure is combined
with CIV1 we obtain a larger increase in R2 and both coefficients are significant. Hence,
even if RVH in isolation represents a poorer volatility forecast than VIX, it adds more useful
forecast information to the corridor variance measure than the VIX. Hence, the in-sample
evidence suggests that, in terms of predictive relevance, the information embedded in the VIX
is subsumed by our corridor variance measures while the historical volatility contains useful
independent information.

We now turn to the pivotal out-of-sample evidence reported in the central and right columns
of Table 3. The overall measure of forecast performance is the percentage (normalized) RMSE.
If we let ŷt denote a forecast for yt, it is formally defined as,

RMSE =

√
E [(ŷ − y)2]
√
E[y2]

· 100.

The middle column labeled “All days” covers the full out-of-sample period. The findings are
consistent with the in-sample results but the relative ranking is even more evident. The narrow
corridor implied volatility measures and the BSIV continue to provide superior forecasts, with
CIV1 now sporting the best overall performance. Forecast precision deteriorates monotonically
as we move to CIV3, CIV4, MFIV and VIX. As before, the lagged monthly realized volatilities
perform significantly worse than all implied volatility measures.

The last three columns of the table document performance over subsamples obtained by
sorting the monthly forecasts in ascending order of at-the-money Black-Scholes implied volatil-
ity (BSIV). Hence, results for a third of the monthly forecasts, corresponding to the lowest
BSIV measures, are provided in the “Low volatility” column, results for the next third are in
the “Medium volatility” column, and for the last third, associated with high BSIV measures,
in the last column. First, we note that the historical volatility series perform particularly
poorly in the extreme segments of the volatility distribution. It is apparent that the long
backward-looking nature of the historical measures constitutes a major disadvantage in terms
of providing timely signals concerning the current (and likely future) level of return volatil-
ity which is most problematic whenever the current volatility level is unusually high or low.
Second, all measures perform comparably in the low volatility regime in terms of normalized
RMSE. The slightly better performance of VIX than the other implied volatilities is likely due
to idiosyncratic sampling variation. In any case, the VIX and MFIV are the clear losers among
the implied volatility measures for the higher volatility scenarios. In fact, the ranking across
these two regimes is consistent with the overall findings as top performers listed in order are
CIV1, BSIV, CIV2, CIV3, CIV4 and finally the two full-fledged model-free implied measures,
MFIV and VIX.

The encompassing regressions largely confirm the observations drawn from the univariate
out-of-sample predictive regressions. Since the coefficients are fixed at values obtained from
the estimation sample, it is now feasible, and indeed common, for the combined forecasts to
underperform the univariate predictors. In particular, the VIX again adds no value beyond
what is captured by CIV1 as the combined forecasts fare worse than the CIV1 forecasts.
Moreover, the RVH continues to supplement CIV1 better than the VIX although the indicated
improvement, relative to forecasts generated by CIV1 alone, is slight.

The two supplementary set of results, based on the log volatility and variance measures
of the realized return variation and the corresponding measures for the predictor variables,
serve to underscore the robustness of the main qualitative findings. This is especially evident
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in Table 4 where, remarkably, the ranking of the top five log-volatility forecasts is identical
across all three volatility sorted subsamples and also consistent with the ranking obtained
for the volatility measures above, while CIV4, MFIV and VIX always perform worse and the
historical realized log-volatility measures remain at the bottom. Moreover, the combination of
CIV1 and RVH within one encompassing regression now appears even more successful in adding
explanatory power beyond what is captured by CIV1 alone, while VIX remains subsumed by
CIV1 in this setting. In contrast, the evidence is slightly less clear cut in the more noise
laden regression environment associated with Table 5. Even so, the out-of-sample findings still
produce the same ranking among the implied forecasts as before.

One obvious concern with this comparative predictive analysis is that the conclusions may
be driven by idiosyncratic features in the in-sample or out-of-sample periods. In particular,
the forecast precision of some implied measures such as the VIX may be more sensitive to the
discrepancy in average volatility across the subsamples than others. As a final robustness check,
we reverse the roles of the estimation and prediction sample. Hence, we run the in-sample
regressions for the seven year period 2000-2006, fix the regression coefficients at the point
estimates obtained for this period, and then use historical realized volatilities and observed
implied volatilities over 1990-1999 to forecast realized volatility in this “out-of-sample” period.
The results provide strong confirmatory evidence. The ranking of forecast performance is
identical to the one obtained earlier. Furthermore, this ranking is uniform across the volatility
sorted subsamples. Moreover, in all instances, the combined forecast exploiting both CIV1 and
RVH is superior to using the best single implied volatility predictor, CIV1, alone. Finally, the
forecast information provided by the VIXmeasure continues to be subsumed by the information
in CIV1.

5 Conclusion

This paper provides the first empirical study of corridor implied volatility, or CIV, measure in
the literature. We find that broad corridor CIV measures serve as good substitutes for model-
free implied volatility, or MFIV, with the advantage that CIV can be measured with better
precision due to the lack of liquid options quotes in the tails of the risk-neutral distribution
(RND). On the other hand, narrow corridor CIV measures are more closely related to the
concept of (at-the-money) Black-Scholes implied volatility (BSIV). As such, they seem less
sensitive to time variation in the market volatility risk premium which renders their time
series behavior relatively more stable and allows them to serve as a superior gauge for the
future volatility of the underlying asset returns, not only relative to MFIV but also BSIV.
Hence, our findings suggest that the best possible market-based implied volatility measure
for volatility prediction may take the form of a CIV measure. Even so, there are indications
that historical realized volatility contains additional information for future volatility. It is an
intriguing research question to determine how best to combine the implied and historically
observed volatility measures for forecast purposes.

One general implication is that the MFIV measure should be interpreted strictly for what
it seeks to represent, namely the market price of volatility exposure consistent with observed
option prices. As such, it is a theoretically superior construction to the BSIV measure and it
serves as a natural gauge for the pricing of broad asset categories with a strong exposure to
general market risk. In contrast, in terms of direct indicators for future volatility, it must be
recognized that MFIV combines volatility forecasting with pricing of the risk associated with
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volatility. Consequently, even if MFIV provides a pure market based measure of the future
return variation, the strong variation in the market pricing of volatility risk renders the linkage
to the volatility process of the underlying asset tenuous. Nonetheless, our finding that the
predictive content of the MFIV, and the VIX, is fully subsumed by the information conveyed
by a narrow corridor CIV measure, or the BSIV, is new to the literature and contrary to some
previous findings. However, our conclusion is based on a much longer time series and more
carefully constructed volatility measures than existing studies of the relative predictive ability
of VIX, or MFIV, and BSIV. The robustness of our finding is collaborated by the striking
monotone improvement in forecast performance of the CIV measures as the corridor width is
narrowed as well as the consistent results obtained across differently sorted subsamples.

In addition, we argue that the lack of liquid options in the tails of the RND induces
inevitable measurement errors in MFIV which may be mitigated by restricting attention to
a related CIV measure. Given how the VIX is actually constructed, this is in fact a fairly
accurate descriptive of current practice. As such, explicit acknowledgment of the need and
desirability of using a corridor measure in lieu of the full-fledged MFIVmay motivate a modified
implementation strategy which computes the measure on the basis of a predefined range of the
RND rather than via a more error prone random truncation procedure.

A constructive message of our study is that judiciously selected CIV measures can be
exploited in a theoretically coherent and empirically tractable manner to further refine the
information embedded in the derivatives markets. For example, combining complementary
CIV measures should enable us to detect variation in the pricing of equity volatility risk
across distinct future states of the world in a timely fashion. This will facilitate more detailed
studies of the interaction between the pricing of equity volatility and the conditions of related
financial markets. In particular, this may shed some new light on the well documented, but
poorly understood, linkages between the VIX index, the overall functioning and liquidity of
the financial system and the pricing in global equity, credit and debt markets.

Finally, as long as the requisite option markets are sufficiently active, these tools are ap-
plicable across any asset class and horizon, irrespective of whether an official volatility index
is being compiled and released or not. Hence, the notions of model-free and corridor implied
volatility are not tied to equity-index volatility pricing and forecasting over a monthly horizon,
but rather provide useful tools for quantifying and interpreting corresponding dynamic market
features across diverse asset categories and maturities.
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Appendix

A Derivation of Value of the Barrier Variance under Black-
Scholes

One way to derive (12) is to write

EQ0 [g(FT )] =
∫ ∞

0
g(K)h0(K)dK = −

∫ ∞

0
g′(K)H0(K)dK

=
∫ ∞

0

(
1

K
− 1

B

)
I0H0(K)dK =

∫ B

0

H0(K)

K
dK − P0(B)

B
,

where Ht(K) is the risk-neutral cumulative density function. For the Black-Scholes model,

H0(K) = N(z), z = z(K) := − ln
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K

σ
√
τ
+
1

2
σ
√
τ.

The formula in (12) now obtains by noting that

∫ B

0

H0(B)

K
dK =

∫ y

0
N(z)σ

√
τdz = σ

√
τ (yN(y)− n(y)),

and

P0(K)

B
= N(y)− F0

B
N(y − σ

√
τ).

B Construction of Dataset

To construct our dataset, we follow several steps:

1. For both options and futures we use settlement prices. Settlement prices (as opposed
to closing prices) do not suffer from nonsynchronous/stale trading of options and the bid-ask
spreads. CME calculates settlement prices simultaneously for all options, based on their last
bid and ask prices. Since these prices are used to determine daily margin requirements, they are
carefully scrutinized by the exchange and closely watched by traders. As a result, settlement
prices are less likely to suffer from recording errors and they rarely violate basic no-arbitrage
restrictions. In contrast, closing prices are generally less reliable and less complete.

2. In the dataset, we match all puts and calls by trading date t, maturity T , and strike.
For each pair (t, T ), we drop very low (high) strikes for which put (call) price is less than 0.1.
To convert spot prices to forward prices, we approximate the risk-free rate rf over [t, T ] by the
rate of Tbills.

3. Because the CME options are American type, their prices PAt (K) and CAt (K) could
be slightly higher than prices of the corresponding European options Pt(K) and Ct(K). The
difference, however, is very small for short maturities that we focus on. This is particularly
true for OTM an ATM options.7

7As shown in Whaley (1986), the early exercise premium increases with the level of the risk-free rate,
volatility, time to maturity, and degree to which an option is in-the-money.
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To infer prices of European options Pt(K) and Ct(K), we proceed as follows. First, we
discard all ITM options. That is, we use put prices for K/Ft ≤ 1.00 and call prices for
K/Ft ≥ 1.00. Prices of OTM and ATM options are both more reliable and less affected by the
early exercise feature. Second, we correct American option prices PAt (K) and CAt (K) for the
value of the early exercise feature by using Barone-Adesi and Whaley (1987) approximation.8

Third, we compute prices of ITM options through the put-call parity relationship

Pt(K) + Ft = Ct(K) +K.

4. We check option prices for violations of the no-arbitrage restrictions. To preclude
arbitrage opportunities, call and put prices must be monotonic and convex functions of the
strike. In particular, the call pricing function Ct(K) must satisfy

(a) Ct(K) ≥ (Ft −K)+, (b) − 1 ≤ C′t(K) ≤ 0, (c) C′′t (K) ≥ 0.

The corresponding conditions for the put pricing function Pt(K) follow from put-call parity.
When restrictions (a)-(c) are violated, we enforce them by running the so-called Constrained

Convex Regression (CCR), see Bondarenko (2000). Intuitively, CCR searches for the smallest
(in the sense of least squares) perturbation of option prices that restores the no-arbitrage
restrictions. For most trading days, option settlement prices already satisfy the restrictions
(a)-(c). Still, CCR is a useful procedure because it allows one to identify possible recording
errors or typos.

5. For each pair (t, T ), we estimate RND using the Positive Convolution Approximation

(PCA) procedure of Bondarenko (2000, 2003). Armed with RND, we may obtain the put and
call pricing functions as well as the other fundamental objects used in our analysis.

8 It is important to point out that this correction is always substantially smaller than typical bid-ask spreads.
In particular, the correction generally does not exceed 0.2% of an option price.
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Table 1: Summary Statistics for Volatility

Panel A: Full sample 01/1990-12/2006

RVD RVH VIX BSIV CIV1 CIV2 CIV3 CIV4 MFIV

Mean 0.149 0.150 0.191 0.165 0.134 0.163 0.172 0.178 0.185
StDev 0.071 0.066 0.064 0.058 0.048 0.058 0.062 0.063 0.064

Skewness 1.500 1.428 0.983 1.017 1.009 1.042 1.064 1.069 1.080
Kurtosis 5.913 5.254 3.795 3.955 3.958 4.046 4.096 4.116 4.137

ρ1 0.991 0.997 0.983 0.981 0.981 0.980 0.980 0.980 0.980
ρ21 0.650 0.758 0.827 0.830 0.837 0.827 0.823 0.821 0.822
ρ63 0.497 0.519 0.652 0.678 0.694 0.670 0.660 0.654 0.652

Panel B: Subsample 01/1990-12/1999

RVD RVH VIX BSIV CIV1 CIV2 CIV3 CIV4 MFIV

Mean 0.138 0.139 0.185 0.157 0.126 0.155 0.164 0.170 0.177
StDev 0.063 0.057 0.059 0.051 0.041 0.052 0.055 0.057 0.058

Skewness 1.878 1.629 1.134 1.117 1.025 1.171 1.230 1.258 1.284
Kurtosis 8.983 7.132 4.526 4.830 4.590 5.048 5.182 5.277 5.327

ρ1 0.988 0.996 0.979 0.974 0.974 0.973 0.974 0.975 0.975
ρ21 0.586 0.736 0.806 0.799 0.805 0.796 0.792 0.790 0.794
ρ63 0.413 0.467 0.635 0.651 0.667 0.643 0.633 0.626 0.627

Panel C: Subsample 01/2000-12/2006

RVD RVH VIX BSIV CIV1 CIV2 CIV3 CIV4 MFIV

Mean 0.163 0.164 0.199 0.177 0.145 0.175 0.183 0.189 0.196
StDev 0.079 0.075 0.070 0.065 0.054 0.065 0.068 0.069 0.070

Skewness 1.091 1.107 0.760 0.775 0.774 0.793 0.804 0.799 0.803
Kurtosis 3.824 3.698 3.063 3.033 3.029 3.080 3.114 3.103 3.116

ρ1 0.993 0.997 0.986 0.985 0.986 0.985 0.984 0.984 0.984
ρ21 0.696 0.761 0.844 0.847 0.850 0.846 0.844 0.844 0.843
ρ63 0.550 0.527 0.658 0.680 0.691 0.675 0.667 0.664 0.658

Notes: This table reports summary statistics for volatility measures RVD, RVH, VIX, BSIV, CIV1, CIV2,

CIV3, CIV4, and MFIV. Statistics are reported for the full sample and two subsamples and include mean,

standard deviation, skewness, kurtosis, and serial auto-correlation coefficients with lags of 1, 21, and 63

trading days. In all tables and figures, the volatility measures are annualized and given in decimal form.
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Table 2: Volatility Correlations

RVD RVH VIX BSIV CIV1 CIV2 CIV3 CIV4 MFIV

RVD 1.000 0.955 0.855 0.857 0.854 0.857 0.858 0.859 0.859
RVH 0.955 1.000 0.898 0.899 0.896 0.899 0.899 0.899 0.899
VIX 0.855 0.898 1.000 0.988 0.981 0.990 0.992 0.993 0.993

BSIV 0.857 0.899 0.988 1.000 0.998 1.000 0.998 0.997 0.995
CIV1 0.854 0.896 0.981 0.998 1.000 0.997 0.994 0.991 0.988
CIV2 0.857 0.899 0.990 1.000 0.997 1.000 0.999 0.998 0.996
CIV3 0.858 0.899 0.992 0.998 0.994 0.999 1.000 1.000 0.998
CIV4 0.859 0.899 0.993 0.997 0.991 0.998 1.000 1.000 0.999
MFIV 0.859 0.899 0.993 0.995 0.988 0.996 0.998 0.999 1.000

Notes: This table reports the correlations for various volatility measures RVD, RVH, VIX, BSIV, CIV1,

CIV2, CIV3, CIV4, and MFIV. The sample period is 01/1990—12/2006.
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Table 3: Volatility Regressions

In-Sample Estimation Out-of-Sample RMSE

α β1 β2 R2 All days Low Medium High

RVD 0.05 0.62 46.75 31.91 16.47 26.81 44.15
( 5.49) ( 8.15)

RVH 0.04 0.74 54.05 30.23 13.91 25.62 42.12
( 3.65) ( 8.92)

VIX 0.00 0.75 60.25 27.98 10.52 26.45 38.08
( 0.08) ( 9.90)

BSIV 0.00 0.87 60.83 26.53 10.74 25.70 35.62
( 0.36) ( 10.79)

CIV1 0.00 1.09 60.79 26.11 10.78 25.39 34.97
( 0.22) ( 11.01)

CIV2 0.01 0.86 60.88 26.76 10.73 25.90 35.95
( 0.55) ( 10.79)

CIV3 0.01 0.80 60.59 27.15 10.72 26.21 36.56
( 0.71) ( 10.46)

CIV4 0.01 0.78 60.28 27.39 10.72 26.41 36.91
( 0.70) ( 10.34)

MFIV 0.01 0.76 60.34 27.58 10.83 26.58 37.18
( 0.45) ( 10.31)

RVD + RVH 0.04 -0.08 0.82 54.13 30.28 13.88 25.72 42.17
( 3.40) ( -0.39) ( 3.25)

RVH + VIX 0.01 0.19 0.59 60.91 27.42 10.53 25.70 37.40
( 0.43) ( 2.19) ( 6.46)

RVH + CIV1 0.01 0.20 0.84 61.62 26.08 10.81 24.87 35.19
( 0.60) ( 2.04) ( 8.26)

VIX + CIV1 0.00 0.30 0.67 61.15 26.47 10.51 25.54 35.64
( 0.05) ( 1.01) ( 1.93)

Notes: The results refer to predictive and encompassing regressions for future monthly realized volatility, as

measured by RVH. The explanatory (predictor) variables for each regression are listed in the left column. The

estimation period is 01/1990—12/1999 and the out-of-sample forecast period is 01/2000—12/2006. Data are

obtained for every trading day, so there is substantial overlap between successive observations on realized

volatility. Heteroskedasticity and autocorrelation consistent t-statistics are reported below the regression

coefficients.
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Table 4: Log-Volatility Regressions

In-Sample Estimation Out-of-Sample RMSE

α β1 β2 R2 All days Low Medium High

RVD -0.69 0.65 53.34 12.70 9.39 11.59 16.08
( -6.77) ( 13.97)

RVH -0.44 0.78 61.48 11.60 8.19 10.71 14.84
( -4.09) ( 15.62)

VIX -0.31 1.00 65.25 10.93 6.95 10.86 13.80
( -2.79) ( 16.39)

BSIV -0.18 0.98 66.79 10.34 6.82 10.56 12.66
( -1.71) ( 17.71)

CIV1 0.04 0.98 67.21 10.17 6.79 10.44 12.37
( 0.30) ( 17.93)

CIV2 -0.19 0.97 66.80 10.42 6.84 10.65 12.79
( -1.79) ( 17.73)

CIV3 -0.26 0.96 66.29 10.58 6.87 10.78 13.05
( -2.48) ( 17.39)

CIV4 -0.29 0.96 65.81 10.68 6.91 10.88 13.20
( -2.75) ( 17.14)

MFIV -0.29 0.98 65.64 10.76 6.90 11.00 13.30
( -2.76) ( 17.10)

RVD + RVH -0.44 -0.02 0.81 61.48 11.61 8.19 10.72 14.85
( -4.02) ( -0.21) ( 6.14)

RVH + VIX -0.28 0.29 0.67 66.78 10.52 6.86 10.37 13.25
( -2.59) ( 4.18) ( 7.18)

RVH + CIV1 -0.02 0.23 0.73 68.13 10.07 6.79 10.17 12.35
( -0.21) ( 3.42) ( 9.67)

VIX + CIV1 0.00 0.12 0.86 67.23 10.19 6.75 10.43 12.44
( 0.03) ( 0.49) ( 4.12)

Notes: The results refer to predictive and encompassing regressions for future monthly log realized volatility,

as measured by log RVH. The explanatory (predictor) variables for each regression are the log of the variable

listed in the left column. The estimation period is 01/1990—12/1999 and the out-of-sample forecast period is

01/2000—12/2006. Data are obtained for every trading day, so there is substantial overlap between successive

observations on realized log volatility. Heteroskedasticity and autocorrelation consistent t-statistics are

reported below the regression coefficients.
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Table 5: Variance Regressions

In-Sample Estimation Out-of-Sample RMSE

α β1 β2 R2 All days Low Medium High

RVD 0.01 0.51 37.51 68.27 24.04 52.52 97.04
( 5.12) ( 5.14)

RVH 0.01 0.66 43.07 65.98 19.17 51.81 93.88
( 3.70) ( 5.31)

VIX 0.00 0.60 50.82 59.21 11.27 53.28 82.44
( 0.08) ( 5.66)

BSIV 0.00 0.80 50.18 56.95 12.00 52.14 78.89
( 0.38) ( 6.25)

CIV1 0.00 1.26 49.18 56.36 12.10 51.61 78.05
( 0.27) ( 6.35)

CIV2 0.00 0.80 50.45 57.39 12.07 52.50 79.52
( 0.57) ( 6.28)

CIV3 0.00 0.70 50.74 58.06 12.07 52.99 80.50
( 0.69) ( 6.08)

CIV4 0.00 0.65 50.81 58.42 12.03 53.25 81.04
( 0.69) ( 6.06)

MFIV 0.00 0.62 51.43 58.66 12.20 53.39 81.39
( 0.50) ( 6.10)

RVD + RVH 0.01 -0.01 0.67 43.05 65.99 19.13 51.84 93.89
( 3.26) ( -0.04) ( 1.64)

RVH + VIX 0.00 0.13 0.50 51.20 58.92 11.42 52.51 82.21
( 0.32) ( 1.21) ( 4.44)

RVH + CIV1 0.00 0.23 0.92 50.63 57.08 12.35 50.80 79.57
( 0.69) ( 1.80) ( 5.41)

VIX + CIV1 0.00 0.50 0.21 50.87 58.33 11.29 52.82 81.08
( 0.06) ( 1.50) ( 0.39)

Notes: The results refer to predictive and encompassing regressions for future monthly realized return

variation, as measured by the squared value of RVH. The explanatory (predictor) variables for each regression

are the squared values of the variables listed in the left column. The estimation period is 01/1990—12/1999

and the out-of-sample forecast period is 01/2000—12/2006. Data are obtained for every trading day, so there

is substantial overlap between successive observations on realized return variation. Heteroskedasticity and

autocorrelation consistent t-statistics are reported below the regression coefficients.
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Table 6: Volatility Regressions

In-Sample Estimation Out-of-Sample RMSE

α β1 β2 R2 All days Low Medium High

RVD 0.05 0.71 54.70 26.00 30.04 21.83 19.83
( 5.46) ( 13.85)

RVH 0.04 0.77 57.94 23.86 27.99 19.23 18.24
( 3.88) ( 11.99)

VIX -0.01 0.89 67.96 23.46 27.05 19.73 17.98
( -1.62) ( 15.07)

BSIV -0.01 0.96 68.39 22.16 26.26 18.07 16.18
( -0.91) ( 15.19)

CIV1 -0.01 1.16 68.52 21.93 26.21 17.61 15.87
( -0.66) ( 15.07)

CIV2 -0.01 0.97 68.15 22.24 26.33 18.20 16.24
( -0.74) ( 15.16)

CIV3 -0.01 0.92 67.93 22.57 26.66 18.56 16.47
( -0.71) ( 15.18)

CIV4 -0.01 0.90 67.74 22.79 26.82 18.86 16.72
( -0.79) ( 15.14)

MFIV -0.01 0.89 67.42 22.82 26.79 18.92 16.85
( -1.28) ( 14.97)

RVD + RVH 0.04 0.09 0.68 57.98 23.94 28.09 19.37 18.23
( 3.92) ( 0.36) ( 2.57)

RVH + VIX -0.01 0.11 0.79 68.18 23.05 26.78 19.30 17.35
( -1.27) ( 0.88) ( 5.90)

RVH + CIV1 -0.00 0.11 1.03 68.74 21.74 26.01 17.52 15.62
( -0.45) ( 0.81) ( 5.34)

VIX + CIV1 -0.01 0.23 0.87 68.58 22.00 26.10 17.86 16.08
( -0.88) ( 0.47) ( 1.37)

Notes: The results refer to predictive and encompassing regressions for future monthly realized volatility, as

measured by RVH. The explanatory (predictor) variables for each regression are listed in the left column. The

estimation period is 01/2000—12/2006 and the out-of-sample forecast period is 01/1990—12/1999. Data are

obtained for every trading day, so there is substantial overlap between successive observations on realized

volatility. Heteroskedasticity and autocorrelation consistent t-statistics are reported below the regression

coefficients.
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Figure 1: The top panel plots the normalized barrier variance U0(p) for the Black-Scholes model, when
σ = 0.165 and τ = 21 trading days. The bottom panel plots the normalized barrier variance U0(p) for
S&P 500 on 04/19/2000, when τ = 21 trading days. On that day, S&P 500 = 1427.47, VIX = 27.02.
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Figure 2: This figure illustrates S&P 500 option data for 04/19/2000 when τ = 21 trading days.
The left panels show the Black-Scholes implied volatility IVt(k) and the normalized OTM option price
Mt(k)/Ft = min(Pt(k), Ct(k))/Ft for different values of moneyness k = K/Ft. The solid line indicates
option prices corresponding to the estimated RND. The right panels show the estimated RND ht(k)
and the cumulative risk-neutral density function H0(k). The dashed line indicates the median of the
RND. On that day, S&P 500 = 1427.47, VIX = 27.02.
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Figure 3: The top panel plots the level of S&P 500 index (log scale). The second panel plots daily
returns on S&P 500 index. The bottom panel plots VIX (the thick line) and realized volatility RVH
(the thin line). The realized volatility RVH is computed using high-frequency returns over 21 trading
days. VIX and RVH are annualized and given in decimal form. The vertical dashed line separates the
estimation and forecast periods.
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Figure 4: The top panel plots the corridor variances CIV1-CIV4 scaled by MFIV. The bottom panel
plots the corridor variances CIV1-CIV4 and MFIV scaled by BSIV.
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