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Abstract 
 

A prime objective set by credit rating agencies is to achieve stability of  their corporate bond 

ratings by a rating through-the-cycle methodology. However rating stability is at the expense of 

rating timeliness and default prediction performance. To mitigate this tension between stability 

and accuracy, agencies publish outlooks – rating Outlooks and rating Reviews (Watchlist) – in 

addition to corporate bond ratings. Outlooks provide an indication of the direction and timing of 

likely rating changes in the future. 

 

In this study we quantify the added value of outlooks to corporate bond ratings and investigate to 

what extent outlooks are able to compensate for the disadvantages of rating stability. Results 

show that outlooks do indeed partially close the gap between the agencies’ through-the-cycle 

perspective and the investor’s point-in-time perspective. After adjusting ratings by their outlooks 

default prediction performance does improve, but only slightly, especially for short prediction 

horizons. Default prediction performance and point-in-time characteristics of adjusted ratings 

could be enhanced even further if outlooks become more accurate measures of credit risk. 

 

We conclude that accuracy in credit risk information signaled by outlooks can be improved most 

likely by standardizing credit risk information in the outlook scale. Credit risk dispersion in the 

outlook scale could be enhanced by a factor two. Perhaps, as outlooks are not intended to quantify 

credit risk information explicitly, agencies have not standardized credit risk information in the 

outlook assignment process. We also considered the impact of the explicit timing objective of 

outlooks which to some degree overrides credit risk information signaled by outlooks. From a 

pure credit risk perspective the timing objective of outlooks shortens durations for rating 

Reviews, lengthens durations for rating Outlooks and partially circumvents the use of rating 

Outlooks as “intermediate” states between Stable Outlooks and rating Reviews. However this 

specific outlook migration policy has little effect on credit risk accuracy in outlooks. 
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1 Introduction 
 

In addition to their corporate issuer credit ratings, agencies provide rating Outlooks and rating 

Reviews (Watchlist). Outlooks signal the likely direction of a rating migration in one to two 

years’ time. In response to an event or an abrupt break in a trend, a corporate-issuer credit rating 

is placed on a Watchlist by Moody’s, on CreditWatch by Standard & Poor’s or on a rating Watch 

by Fitch. In these cases ratings are said to be under review and the outcome is disclosed typically 

within 90 days. In this paper, outlooks refer both to rating Outlooks and rating Reviews. Ratings 

refer to corporate issuer credit ratings. 

 

Outlooks have become an important source of credit risk information to investors in addition to 

corporate bond ratings. Ratings are the outcome of a through-the-cycle methodology which 

makes them relative stable, insensitive to temporary credit risk fluctuations and oriented towards 

the long-term. A drawback of this methodology is a lower timeliness compared to a one year 

point-in-time investor’s perspective, which most investors have. Investors monitor outlooks to 

compensate for this loss in timely credit risk information. According to a survey conducted by 

Moody’s in 2002, “Investors agree with the goal of more timely rating actions including shorter 

review periods. However they use and appreciate the rating Review and rating Outlook signaling 

process; they derive substantial information from them.” In their response to this survey Moody’s 

intended to improve rating timeliness by more frequent (internal) review of ratings and to retain 

the provision of outlooks. Without having to change their through-the-cycle methodology, 

agencies can fulfill the investors’ desire for more timely credit risk information by issuing 

outlooks in addition to ratings. 

 

Strictly according to their definition, outlooks are indications of the likely direction of a rating 

migration in the short or medium term. Agencies do not pretend to specify their expectations for 

size and probability of a potential rating migration. However, from historical data one can 

compute the average rating migration at the resolution of outlooks. The outcome of a Moody’s 

DOWN Review is on average a rating migration of -1.0 notch steps. Moody’s NEG, STA, POS 

Outlooks and UP Reviews result on average in a rating migration of -0.4, -0.1, +0.2 and +1.0 

notch steps. Keeman et al. (1998) record the informational value of rating Reviews by 

constructing rating migration matrices conditional to whether issuers are held on a rating review. 

 

Although outlooks are not meant to be a correction for ratings in the first place, one can use them 

as a secondary credit risk measure on top of the rating scale and adjust ratings by their outlooks. 

The adjustment of ratings is done by adding or subtracting one or two notch steps depending on 

the type and sign of outlooks. A study by Hamilton and Cantor (2004) reveals that adjustment of 

ratings significantly improves default prediction performance. The accuracy ratio increases by 4% 

for a one year prediction horizon. Another interesting aspect of adjusted ratings is the absence of 

serial correlation, which is profoundly present in ratings (see Altman and Kao, 1992). In a follow 

up study Hamilton and Cantor (2005) show that outlooks are able to explain differences between 
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actual ratings and ratings implied by CDS spreads. This finding indicates that adjusted ratings 

offer a more timely reflection of the investor’s short-term point-in-time perspective on credit risk. 

 

So far most studies on outlooks are event studies, testing whether changes in outlooks signal new 

information to the market. As outlooks are secondary to ratings these studies also test the 

information value of rating migrations. Recent surveys reveal that investors are not satisfied with 

the timeliness of ratings (Association for Financial Professionals (2002), Ellis (1998) and Baker 

and Mansi (2002)). So rating migrations might not disclose new information to the financial 

markets. Norden and Weber (2004) indeed find no response of stock and CDS markets to rating 

downgrades. Hull, Predescu and White (2004) confirm these results for the CDS market. 

However, studies with more dated stock market datasets - ending before 1998 - show a negative 

impact of rating downgrades on pricing (for a recent literature overview see Steiner and Heinke 

(2001)). 

 

For outlook announcements literature largely agrees on the negative impact of DOWN Review 

announcements on stock pricing and the absence of a significant response to NEG and POS 

Outlook announcements. However, for UP Review announcements results are mixed. For both 

UP and DOWN Review announcements Hand, Holthausen and Leftwich (1992) find significant 

excess bond returns, while more recently Steiner and Heinke (2001) and Hull et al. (2004) find 

only a significant response to DOWN Review announcements. 

 

In this paper we report the results of an empirical study on the added value of outlooks to 

corporate bond ratings. Key in our study is the estimation of credit scoring models for outlook 

prediction, rating prediction and default prediction and the simulation of ratings and outlooks by 

equivalent credit model ratings and outlooks. Insight in the added value of outlooks is obtained by 

comparing parameters of various credit scoring models, quantifying credit risk dispersion in the 

outlook scale by variations in credit scores, benchmarking actual outlook dynamics with 

simulated outlook dynamics and comparing properties of adjusted ratings vs. unadjusted ratings. 

 

First, in order to reveal the credit risk nature of outlooks we compare parameters of rating and 

outlook prediction models with parameters of default prediction models for various prediction 

horizons. In contrast to ratings, which are intended to be insensitive to temporary fluctuations in 

credit quality, outlooks appear to be sensitive to more volatile credit risk variables – even more 

sensitive than would be expected from a one-year point-in-time perspective, which most investors 

have. Outlooks, especially rating Reviews, are mainly driven by events and breaks in trends. 

 

Second, we quantify credit risk information signaled by outlooks. For this purpose we link the 

outlook scale with the (notch) rating scale. In terms of notch steps the creditworthiness of issuers 

with a DOWN Review is on average positioned 3 notch steps below the average creditworthiness 

of all issuers in a given rating class. For NEG, STA and POS Outlooks and UP Reviews these 

figures are respectively -1.5, 0.5, 1.5 and 2 notch steps. These figures are not consistent in time 
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and are conditional to a rating migration event in the near future or the near past. Moreover, the 

credit risk dispersion in the outlook scale is low compared to the credit risk dispersion in the 

outlook scale of simulated outlooks. Simulated outlooks are obtained by ranking credit scores of 

outlook prediction models and converting these scores to outlooks in such a way that the 

distributions of actual and simulated outlooks match. The lower credit risk dispersion in the 

actual outlook scale suggests that the accuracy of credit risk information signaled by outlook 

ratings could be improved. Credit risk dispersion in the outlook scale could be enhanced by a 

factor two. Perhaps, as outlooks are not intended to quantify credit risk information explicitly, 

agencies do not standardize credit risk information signaled by outlooks. 

 

Third, we investigate the agencies’ outlook migration policy. Therefore we compare dynamic 

properties of simulated outlooks with actual outlooks. In contrast to actual outlooks, the dynamics 

of simulated outlooks is not driven by an explicit timing objective and only reflects the dynamics 

of credit scores. In the benchmark we show that outlook migrations are heavily concentrated 

before and at the rating migration event – more than one would expect from a pure credit risk 

perspective. In addition the outlook migration policy shortens durations for rating Reviews, 

lengthens durations for rating Outlooks and partially circumvents the use of rating Outlooks as 

“intermediate” states between Stable Outlooks and rating Reviews. 

 

Fourth, we test the ability of outlooks to compensate for the disadvantages of rating stability and 

the ability to add more timely credit risk information to ratings. For this purpose we adjust ratings 

by their actual outlooks and their simulated outlooks. The adjustment is based on the linkage of 

the outlook scale to the (notch) rating scale. We test to what extent these adjusted ratings have a 

more point-in-time character and a better default prediction performance. Ratings adjusted by 

their actual outlooks have a better default prediction performance and their character is halfway 

between through-the-cycle and point-in-time. However, ratings adjusted by their (benchmark) 

simulated outlooks show a better default prediction performance and do have a point-in-time 

character. We suggest that a lack of credit risk standardization in the actual outlook scale confines 

the default prediction performance and the point-in-time characteristics of adjusted ratings. The 

outlook migration policy has much less impact. 

 

The study is carried out with Moody’s Outlook and Watchlist data. We are not aware of a reason 

why empirical results and conclusions presented here should not apply for outlooks of Standard & 

Poor’s and Fitch as these agencies have disclosed a similar policy on rating Outlooks and rating 

Reviews. Discussions and conclusions can therefore be generalized to all outlooks for ratings of 

Moody’s, Standard & Poor's and Fitch. 

 

This paper is organized as follows. Chapter 2 elaborates on outlook definitions provided by 

agencies. Chapter 3 describes the benchmark credit scoring models and the procedure to construct 

simulated ratings and outlooks. Chapter 4 examines the credit risk nature of outlooks in terms of 

through-the-cycle vs. point-in-time. Chapter 5 links the outlook scale to the (notch) rating scale. 
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Chapter 6 explores the agencies’ migration policy for outlooks. Chapters 7 and 8 report on default 

prediction performance and point-in-time characteristics of adjusted ratings. Chapter 9 draws 

conclusions. 

 
2 Agencies’ definition of outlooks – rating Outlooks and rating Reviews 
 

In their guide to ratings, rating process and rating practices, Moody’s describes the meaning of 

rating Outlooks and rating Reviews as follows: “A Moody’s rating Outlook is an opinion 

regarding the likely direction of a rating over the medium term, typically 18 to 36 months. […]   

An RUR (rating(s) under review) designation indicates that the issuer has one or more ratings 

under review for a possible change and thus overrides the outlook designation. […]  Moody’s 

uses the Watchlist to indicate that a rating is under review for possible change in the short term, 

usually within 90 days. […]  A credit is removed from Watchlist when the rating is upgraded, 

downgraded or confirmed” (Moody’s, 2004). 

 

In a similar way Standard & Poor’s explains the meaning of their rating Outlooks and rating 

Reviews on CreditWatch (2005): “A Standard & Poor’s rating Outlook assesses the potential 

direction of a long-term credit rating over the intermediate term (typically six months to two 

years). In determining a rating Outlook, consideration is given to any changes in economic 

and/or fundamental business conditions. […]  Credit Watch highlights the potential direction of a 

short- or long-term rating. It focuses on identifiable events and short-term trends that cause 

ratings to be placed under special surveillance by Standard & Poor’s analytical staff. These may 

include mergers, recapitalizations, voter referendums, regulatory action or anticipated operating 

developments. Ratings appear on CreditWatch when an event or a deviation from an expected 

trend occurs and additional information is necessary to evaluate the current rating. […]  Such 

rating Reviews are normally completed within 90 days, unless the outcome of a specific event is 

pending.” (Standard & Poor’s, 2005). 

 

Fitch rating Outlooks indicate the direction a rating is likely to move over a one- to two-year 

period. Fitch place their long-term credit ratings on a Rating Watch “to notify investors that there 

is a reasonable probability of a rating change and the likely direction of such change. These are 

designated as Rating Watch and are typically resolved over a relatively short period.” (Fitch, 

2005). 

 

Rating Outlooks and rating Reviews indicate different time horizons at which a rating migration 

might occur. Rating Outlooks signal likely rating migrations in the medium term. In their 

definitions agencies appear to have slightly different notions of what is meant by medium term. 

For example Moody’s notion of medium term is one year longer than that of Standard & Poor’s. 

However these horizons are only indications. A fine average is one to two years. For rating 

Reviews Standard & Poor’s and Moody’s are more explicit on the time horizon: 90 days; Fitch 

refers to a “relatively short period”. 
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Although not mentioned explicitly in the definitions, rating Outlooks and rating Reviews differ in 

the likelihood of a rating migration to occur. Descriptions to define rating migration probabilities 

signaled by rating Reviews are stronger than those for rating Outlooks. For example Fitch uses 

“likely” for rating Outlooks and “reasonable probability” for rating Reviews. Moody’s and 

Standard & Poor’s emphasize the urgency of the situation when a rating is placed under review. 

Historical data on Moody’s outlooks shows that two thirds of the rating Reviews have been 

followed by a rating migration with the indicated sign, while one third of the rating Outlooks 

have ultimately resulted in such a migration. In terms of expected rating migration probability 

and urgency, rating Reviews can be interpreted as stronger versions of rating Outlooks. 

 

Only Standard & Poor’s (2005) provides some insight into the criteria for rating Outlooks and 

rating Reviews. According to Standard & Poor’s, rating Reviews are triggered by events or 

sudden changes in expected trends that require a formal review procedure in the short term. 

Standard & Poor’s defines rating Outlooks as a response to changes in economic and fundamental 

business conditions. Our interpretation of these criteria for rating Outlooks is that agencies are 

aware of developing changes in the medium term, but do not judge them severe enough yet to 

consider a rating migration. 

 

3 Definition benchmark credit scoring models and credit model ratings/outlooks 
 

3.1 Outlook data and statistics 

 

Data on Moody's ratings is obtained from the July 2005 version of the Moody's DRS database, 

which includes all corporate issuer credit rating revisions and default events in the period January 

1971-May 2005. An extended version of the outlook dataset – which has been made available to 

us by Moody’s – includes all outlooks provided by Moody’s for their ratings in the period 

September 1991-February 2005. In 1991 Moody’s started to provide information on rating 

Reviews (DOWN, UP). In 1995 Moody’s began to publish rating Outlook information (positive 

Outlook POS, stable Outlook STA and negative Outlook NEG) as well. All five outlook 

categories have been available since 1995. Therefore our analysis covers the January 1995-

December 2004 period. NOA Outlooks (No Outlook Available) are also included in the database. 

For issuers with a NOA Outlook the provision of outlook information is (mostly temporarily) 

suspended by agencies. 

 

Not all issuers rated by Moody’s are included in our analysis. For benchmarking purposes, ratings 

and outlooks are linked with accounting and market data from COMPUSTAT. In order to ensure 

consistency in accountancy information we selected only non-financial US issuers, and issuers 

with sufficient accounting and market data available in COMPUSTAT. This selection of issuers 

reduces the number of issuer-monthly observations from 507,824 to 71,962, including the NOA 

Outlooks. When the NOA Outlooks are excluded, 52,595 observations are left. The large 
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reduction in observations changes the outlook distribution. Along the different selection steps, as 

outlined in table I, the fraction of DOWN Reviews and POS Outlooks increase by almost a factor 

of 2 and the fraction of NOA Outlooks is reduced by a factor of 1.5. As no dramatic changes 

appear in the outlook distribution, we believe the conclusions of this study will largely hold for 

non-US, private and financial issuers. 

 

In the first years after the introduction of outlooks by Moody’s the percentage of NEG, STA and 

POS Outlooks steadily increases (see table I). After 1998 the outlook distribution becomes 

relative stable up to 2003. In 2004 almost all NOA Outlooks seem to be converted to STA 

Outlooks. 

 

Outlook distributions vary among rating categories. Most issuers in the Caa category and below 

have a NEG Outlook. Aaa rated issuers have obviously no POS Outlooks and UP Reviews. 

Notable is the relative small fraction of DOWN Reviews and NEG Outlooks in the Aaa rating 

category. DOWN Reviews are more likely to appear in investment grade categories while POS 

Outlooks and UP Reviews are more present in speculative grade categories. 

 

3.2 Specification of credit scoring models 

 

As outlined in the introduction key in our study is the estimation of credit scoring models for 

default prediction, rating prediction and outlook prediction. 

 

All default prediction models are estimated by the following logit regression model in a panel 

data setting 
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CSi,t is the credit score of issuer i at time t, E(pi,t) is the expected probability of default of issuer i 

at time t, WK is net working capital, RE is retained earnings, TA is total assets, EBIT is earnings 

before interest and taxes, ME is the market value of equity, and BL is the book value of total 

liabilities. Size is the log-transformation of total liabilities normalized by the total value of the US 

equity market Mkt: ln(BL/Mkt). The abnormal stock return ARt is the stock return relative to 

equal weighted market return in the twelve months preceding t. SD(AR)t is the standard deviation 

in monthly abnormal returns in the twelve months preceding t. 
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The parameters of the logit regression model α and β are estimated by a standard maximum 

likelihood procedure. This estimation procedure seeks an optimal match between the actual 

outcome pi,t and the expected outcome of the model E(pi,t). pi,t = 0 when issuer i defaults before t + 

T and pi,t = 1 when issuer i survives beyond t + T. Default prediction models are estimated for 

various time horizons T. An SDP model is estimated for T = 6 months, a DP1 model for T = 12 

months and an LDP model for T = 6 years. Credit scores of these models are point-in-time 

measures of credit risk, giving weight to both the permanent and temporary credit risk 

component. SDP model gives maximum weight to the temporary credit risk component and the 

LDP model gives a substantial lower weight to the temporary credit risk component.  

 

The sensitivity to the temporary credit risk component can be even further suppressed when the 

default prediction focuses exclusively on default probability in a specific future period. In this 

way credit scores are forced to be relative insensitive to temporary fluctuations in credit risk and 

focus as much as possible on the permanent credit risk component. The binary variable pi,t is set 

to 0 only for issuers defaulting in a future period (t + T1, t + T1 + ∆T). Default events in the near 

future (t, t + T1) are disregarded by excluding observations of issuers defaulting in this period 

from the model estimation.1 A MDP model is estimated for T1 = 3 years and ∆T = 3 years. The 

parameter estimates of the MDP model do not change substantially when T1 is varied between 3 

and 6 years and ∆T is allowed to vary between one and three years. 

 

The rating prediction model (RP model) models the discrete rating scale N with an ordered logit 

regression model in a panel data setting. In this model, the credit score RPi,t is an unobservable 

variable 
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The RPi,t score is related to the rating R as follows 

 

RtiRti BRPBifRN ≤<= − ,1,       (3.4) 

 

where R is one of the rating categories, Ni,t is the actual rating of issuer i at time t, BR is the upper 

boundary for the RP score in rating category R, B0 = - ∞ and B18 = ∞. We consider the following 

18 rating categories N: Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, 

B2, B3, Caa and Ca. In order to have a reasonable number of observations in each rating 

category, the rating categories Caa3, Caa2 and Caa1 are combined into a single rating category 

Caa and the rating categories C and Ca are combined into Ca. In the ordered logit model, the 

probability that Ni,t equals R is specified by 
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)()()( ,1,, tiRtiRti RPBFRPBFRNP −−−== −     (3.5) 

 

where F is the cumulative logistic function. Parameters α, β, and BR are estimated with a 

maximum likelihood procedure. This estimation procedure seeks an optimal match between the 

actual rating yi,t and the expected outcome of the model P(Ni,t = R). 

 

The outlook prediction model (OP model) is estimated following the same ordered logit 

regression methodology. Instead of 18 rating categories N, five outlook categories O are 

modeled: NEG, STA and POS Outlooks and UP and DOWN Reviews. The outlook scale is a 

secondary scale on top of the rating scale. Outlooks are relative credit risk measures within a 

rating category N. The seven model variables X in equation 3.3 are therefore replaced by their 

differentials ∆X relative to their mean values XN,t of all issuers in rating category N at time t  
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SD(X)N,t is the cross-sectional standard deviation of model variable X for all issuers in rating 

category N at time t. Normalization of ∆X by SD(X) makes ∆X better comparable among 

different rating categories N. This allows a robust and single estimate of the outlook prediction 

model including outlooks of all issuers along the entire rating scale N. 

 

3.3 Parameter estimates credit scoring models 

 

Table II reports the estimated parameters α and βi of four default prediction models (SDP, DP1, 

LDP, MDP) and five versions of a rating prediction model. These models are estimated with a 

dataset covering the period April 1982-December 2004. The starting date is motivated by the fact 

that Moody’s started in April 1982 to refine their ratings by adding 1, 2 and 3 modifiers. At the 

end of each month Moody’s (corporate issuer credit) ratings are linked to stock price data and 

accounting data from COMPUSTAT. Accounting data is assumed to be publicly available three 

months after the end of the fiscal year. The resulting panel dataset includes the time series of 

2239 issuers with durations between 1 and 273 months and an average duration of 85 months. 

The total number of issuer-monthly observations is 189,248. Depending on the time horizon the 

estimation period for default prediction models is restricted to April 1982-December 2004 minus 

the prediction horizon, thereby avoiding an overweight of short-term defaults in the estimation. 

 

Table III reports the parameter estimates of various outlook prediction models. As outlined in 

section 3.1 52,595 issuer-monthly observations are available in the 1995-2004 period to estimate 

these models. 
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All credit scoring models employ the same model variables. This allows a fair comparison of the 

relative weights RWk of model variables k 
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bj is the parameter estimate for model variable j, and σj is the standard deviation of model variable 

j in the pooled sample of all observations. Table II and III show the RW values for all credit 

scoring models. 

 

3.4 Rating and outlook simulation 

 

Credit scores of default prediction models and rating prediction models are converted to credit 

model ratings equivalent to actual ratings. This enables to compare the dynamics of agency 

ratings unambiguously with the dynamics of credit scores. At the end of each month all 

companies are ranked by their credit score. On the basis of this ranking, credit model ratings, 

Aaa, Aa1, …. , B3, Caa and C/Ca, equivalent to agency ratings, are assigned to individual issuers. 

So at the end of each month the number of issuers in each agency rating class N equals the 

number of firms in the equivalent credit model rating class. 

 

The influence of agency rating migration policies is included in credit model ratings by adjusting 

credit scores following a particular policy model. We model the rating migration policy by two 

parameters: a threshold parameter and an adjustment parameter. The threshold parameter TH 

specifies the size of a credit risk interval [-TH,+TH], in which credit risk is allowed to fluctuate 

without triggering a rating migration. If a rating migration is triggered, ratings are not fully 

adjusted to the actual credit risk level. The adjustment fraction AF specifies the partial adjustment 

of ratings. Partial adjustment of ratings (i.e. the spreading of a target rating adjustment over time) 

generates drift in ratings. After modifying credit scores following this migration model the 

modified scores are converted to simulated ratings. Appendix A describes the details of the rating 

simulation procedure. 

 

Based on RP model scores, - reflecting the agencies’ through-the-cycle perspective - we have 

constructed simulated RP(TH, AF) ratings for a range of TH and AF values. A best match in 

rating migration probability and rating drift properties between simulated RP(TH,AF) ratings and 

actual ratings N is obtained for a threshold TH of 1.8 notch steps and an adjustment fraction AF 

of 0.7 on the downside and 0.6 on the upside. Actual ratings are best reproduced by 

RP(1.8,0.7/0.6) ratings. These implied migration policy parameters for Moody’s ratings equal to 

those derived for Standard & Poor’s ratings (see also Altman and Rijken, 2004). 2 
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For outlook simulation we follow exactly the same procedure, except we leave out the adjustment 

parameter AF because outlooks exhibit no drift. For OP model scores, on average, a best match 

between the dynamics of actual and simulated outlooks is obtained for a threshold TH of 1.5 – 2.0  

notch steps (see chapter 6). 

 

Appendix A discusses the influence of marginal high-frequency non-informative “noise” in credit 

scores on the dynamics of credit model ratings/outlooks. The most important conclusion is that 

the influence of this marginal “noise” in credit scores is suppressed by threshold levels of 0.5 

notch steps and above. These threshold levels avoid large numbers of reversal migrations in 

subsequent months. The implied TH levels for ratings and outlooks are safely above the “noise” 

level of 0.5 notch steps, so the marginal “noise” in credit scores is of no concern in the 

benchmark of actual rating/outlook dynamics with credit model rating/outlook dynamics. 

 
4 Credit risk nature of outlooks 
 

4.1 Through-the-cycle vs. Point-in-time perspective 

 

According to the survey of Moody’s in 2002, investors regard outlook information as an 

additional source of information to compensate for the inadequate timeliness of (corporate issuer 

credit) ratings. A well-accepted explanation for the perceived delays in rating migrations is the 

through-the-cycle methodology that agencies apply in their rating assessment. This methodology 

has two aspects: first, a focus on the permanent credit risk component of default risk and, second, 

a prudent migration policy. 

 

The first aspect of the through-the-cycle rating methodology is the disregard of short-term 

fluctuations in default risk. By filtering out the temporary credit risk component, ratings measure 

exclusively the permanent, long-term and structural credit risk component. According to Cantor 

and Mann (2003) the through-the-cycle methodology aims to avoid excessive rating reversals, 

while holding the timeliness of ratings at an acceptable level: "If over time new information 

reveals a potential change in an issuer's relative creditworthiness, Moody's considers whether or 

not to adjust the rating. It manages the tension between its dual objectives – accuracy and 

stability – by changing ratings only when it believes an issuer has experienced what is likely to be 

an enduring change in fundamental creditworthiness. For this reason, ratings are said to 'look 

through-the-cycle'." Standard and Poor’s (2003) is convinced that "…the value of its rating 

products is greatest when its ratings focus on the long term and do not fluctuate with near term 

performance." 

 

The second aspect of the through-the-cycle methodology is the enhancement of rating stability by 

a prudent migration policy. Only substantial changes in the permanent credit risk component 

result in rating migrations and, if triggered, ratings are partially adjusted to the actual level in the 

permanent credit risk component. Although not officially disclosed by agencies, practical 
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evidence of such a prudent migration policy exists. In their announcement on the reconsideration 

of their migration policy, in January 2002, Moody's provides some insight into their migration 

policy: "Under consideration are more aggressive ratings changes – such as downgrading a 

rating by several notches immediately in reaction to adverse news rather than slowly reducing 

the rating over a period of time – as well as shortening the rating review cycle to a period of 

weeks from the current period of months". 3 The spread of rating adjustments over time is the 

source of rating drift. The relative long review cycle and high threshold for rating adjustments are 

the sources of rating stability. 

 

How rating agencies put their through-the-cycle methodology exactly into practice is not clear. 

Treacy and Carey (2000) describe the through-the-cycle rating methodology as a rating 

assessment in a worst case scenario, at the bottom of a presumed credit risk cycle. Löffler (2004) 

explores the through-the-cycle effects on rating stability and default-prediction performance in a 

quantitative manner by modeling the separation of permanent and temporary credit risk 

components of default risk in a Kalman filter approach. As outlined in section 3.4 we have taken 

a different approach to gain insight into the agencies’ through-the-cycle methodology by 

benchmarking agency rating dynamics with credit model scores. We confirm the exclusive focus 

of ratings on the permanent credit risk component. We suggest that a rating migration is triggered 

if the actual credit risk, as indicated by the permanent credit risk component, exceeds a threshold 

of 1.8 notch steps relative to the average credit risk level in a rating category. If triggered, ratings 

are partially adjusted to the actual credit risk level, 60% at the upside and 70% at the downside. 

 

Rather than the through-the-cycle methodology, bankers have a point-in-time perspective on 

corporate credit risk with a time horizon of between one and seven years (see Basle Committee, 

2000). Most bankers have a one-year point-in-time perspective on credit risk. It is reasonable to 

assume that this perspective applies to most other investors as well. The point-in-time perspective 

looks at the current credit risk situation without attempting to suppress the temporary credit risk 

component. It weights both the temporary and permanent credit risk component. The relative 

weight of these two components depends on the horizon in the point-in-time perspective. For a 

one year horizon the temporary credit risk component has a larger weight than it does for a longer 

horizon. 

 

4.2 Parameter estimates of default and rating prediction models 

 

According to the parameter estimates of default prediction models (see table II) market equity 

information has a large share in the explanation of short-term defaults. The ME/BL variable 

dominates the SDP model with a RW value of 37.2 %. Short-term dynamics of abnormal stock 

returns measured by AR and SD(AR) have a relative weight of respectively 16.5% and 10.6%. 

Although equity information is dominant, accounting information and Size add substantially to 

the explanation of the default incidence. 
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Prediction horizon has a significant impact on the relative weight of the model variables. 

Especially for RW values of the RE/TA, ME/BL, and Size variable, a clear shift is observed from 

the SDP, DP1, LDP to the MDP model, in that order of sequence. Not surprisingly, the short-term 

oriented SDP model depends heavily on the more volatile variables, like ME/BL and the trend 

variable AR, while the MDP model is more driven by less volatile variables like RE/TA and Size. 

The MDP model is relative insensitive to the most volatile variables EBIT/TA, SD(AR) and AR, 

which is consistent with the objective of this model to suppress the temporary credit risk 

component as much as possible. 

 

Of all default prediction models the RW values of the MDP model most closely matches the RW 

values of the rating prediction model RP. The MDP model focuses as much as possible on the 

permanent credit risk component while the RP model reflects the agencies’ through-the-cycle 

perspective. However, these two perspectives do not fully overlap. As opposed to the MDP 

perspective the agencies’ through-the-cycle perspective puts less weight on WK/TA and ME/LIB 

but more on Size. 

 

RP model parameters have been re-estimated for various parts of the rating scale. For issuers 

rated B1 and above the RP model parameters are robust. For example, the RW values for 

investment graded issuers are about equal to RW values of B1, Ba3, Ba2, and Ba1 speculative 

graded issuers (see table II). At the bottom end of the rating scale - for issuers with ratings below 

B1 the RW values differ. In this range the RW value of Size is much lower and the RW value of 

EBIT/TA is higher, comparable to the SDP model. Similar RW values are observed for issuers 

approaching a default event. Apparently, ratings of distressed issuers have a point-in-time 

perspective instead of a through-the-cycle perspective. In order to model the agencies through-

the-cycle perspective as close as possible the agency rating prediction model is re-estimated 

excluding issuers rated below B1 (TTC model). 

 

Robustness checks have been carried out to test for sector influence, time period and default  

event definition. Parameter estimates do not differ substantially between two periods, 1982-1994 

and 1995-2004. We compared the impact of three default event definitions on the default 

prediction model estimation: bankruptcy filing, Moody’s default event definition and Standard & 

Poor’s definition. Default prediction model parameters appear to be only moderately sensitive to 

the definition of a default event. 4 

 

4.3 Parameter estimates of outlook prediction models 

 

RW values of the OP model (see table III) closely match the RW values of the SDP model (see 

table II). 5 This finding implies that the outlook scale is on average a measure of short-term point-

in-time credit risk. A more diverse picture shows up when the outlook prediction model is 

estimated for four subscales, each of them including STA Outlooks with either NEG Outlooks, 

POS Outlooks, DOWN Reviews or UP Reviews. Parameter estimates vary considerably between 
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these four outlook subscales, so the outlook scale appears not to have a uniform credit risk nature. 

At the downside outlooks depend more on volatile variables SD(AR) and ME/LIB, while at the 

upside outlooks are related to less volatile variables Size and RE/TA (with a negative sign). 

 

In the OP model estimation, rating Reviews have a relatively low weight because of their low 

share in the outlook distribution and more outlooks appear at the downside than at the upside of 

the outlook scale (see table I). To control for this unequal outlook distribution a weighted ordered 

regression model (OPW model) is estimated which gives equal weight to all five outlook 

categories in the model estimation. Between the OP and OPW model RW values differ by 7.5% 

at most. 

 

4.4 Weighting the permanent and temporary credit risk components in credit scoring models 

 

In a first stage, credit scoring models are estimated with seven model variables. In a second stage 

they are re-estimated with only two model variables XP and XT, proxies for the permanent and 

temporary credit risk component. The permanent credit risk component XP is proxied by TTC 

scores. The TTC model represents the agencies’ through-the-cycle perspective (see section 4.2). 

In contrast to TTC scores, SDP scores are sensitive to temporary fluctuations in credit risk 

because of their short six month prediction horizon. SDP scores are strongly correlated with TTC 

scores (correlation coefficient of 0.49). SDP scores follow both the permanent and temporary 

credit risk component. To obtain a pure proxy for the temporary credit risk component XT, TTC 

scores are subtracted from SDP scores. 6 

 

Default and rating prediction models are re-estimated using XP and XT. Outlook prediction 

models are re-estimated after converting XP and XT to their differentials following equation 3.6. 

Results are presented in table IV. In the SDP model 41.4% of the variations in credit risk are 

explained by the temporary credit risk component XT. Increasing the horizon in the default 

prediction models from six months to six years reduces the weight to XT from 41.4% to 29.4%. 

Focusing exclusively on default prediction in a future period (MDP model) suppresses the weight 

to XT  further down to 22.6%. The weight of XT in the TTC model – the agencies’ through-the-

cycle perspective for issuers rated B1 and above - is by definition 0%. At the low end of the 

rating scale – below B1, XT has a 31.9% weight in the rating scale, comparable to the point-in-

time LDP model. The difference in weight to XT between the MDP model and the TTC model 

reflects the difference between two long-term views on credit risk. 

 

The outlook scale is on average more sensitive to the temporary credit risk component than the 

SDP model is. The weight of XT varies between the four outlook subscales. The DOWN Review 

– driven by events according to the Standard & Poor’s definition – is most sensitive to temporary 

fluctuations in credit risk (see table IV). Down Reviews and NEG Outlooks are even more 

sensitive to the temporary credit risk component than would be expected from a one-year point-

in-time perspective as proxied by the SDP model. The upside of the outlook scale is more 
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moderately sensitive to short-term credit risk fluctuations. The nature of POS outlooks matches 

the SDP perspective while the nature of UP Reviews matches the LDP perspective. Apparently, 

DOWN Reviews are driven mainly by suddenly changing circumstances (events) while UP 

Reviews – at the other side of the spectrum - are more driven by more moderate changes in 

economic and fundamental business conditions. This is probably not a matter choice in setting the 

outlook migration policy but due to an asymmetry in credit risk dynamics which is far more 

volatile at the downside than at the upside. 

 

Comparing pseudo R2 values between first stage credit scoring models (table III) and second 

stage credit scoring models (table IV) gives insight into the extent to which information is lost by 

replacing the seven model variables by XP and XT. Pseudo R2 indicates the goodness of fit by the 

(ordered) logit regression model. As expected the pseudo R2 of the default prediction models and 

agency rating prediction models are hardly affected. For the O-DOWN model R2 is lowered by 

about 15%. For the O-NEG, O-POS and O-UP models the reduction in pseudo R2 is larger, 

respectively 27%, 26% and 51%. From this large reduction in pseudo R2 we conclude that 

outlooks are also driven by other risk factors, not captured by SDP and TTC scores. Interestingly, 

the pseudo R2 of the OP model – which models the common factors for all five outlooks - is 

reduced only by 8%. This implies that the common factors in the entire outlook scale are largely 

captured by XP and XT. 

 

5 Linking the outlook scale to the rating scale 
 

Credit risk variations among issuers within a rating category N can be measured by variations in 

credit scores ∆CS 

 

t,N

t,Nt,i

t,i,N

CSCS
CS

γ
−

=∆        (5.1) 

 

CSN,t is the average credit score for all issuers in rating category N at time t. ∆CS is converted to 

a notch rating scale by γN,t. This scaling factor γN,t is obtained as follows: For default and rating 

prediction model scores the scaling factor γN,t reflects the slope between the numerical rating 

scale N and the average credit scores CS in rating categories N. The numerical rating scale runs 

from Ca/C = 1, Caa = 2, B3 = 3, B2 = 4, up to Aaa = 18. This numerical rating scale is an 

arbitrary but quite intuitive choice that is commonly found in the mapping of bank internal-rating 

models to agency ratings. Roughly three groups of rating categories can be distinguished with a 

close to linear relationship between CS and N: N ∈ [1 .. 4], N ∈ [5 .. 10] and N ∈ [11 .. 18]. For 

each of these groups and for each month γN,t is derived. For outlook prediction model scores, the 

scaling factor γN,t equals the change in OP-score when transforming the differential variables 

∆XN,i,t in the outlook prediction model by replacing XN,t by XN+1,t or XN-1,t (see equation 3.6). The 

α and β parameters of the outlook prediction model are kept fixed. Note that this scaling factor 
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γN,t does not convert credit scores to a rating scale in a sense that it removes the temporary credit 

risk component. The scaling factor converts credit scores to a notch rating scale and defines a 

common ground to compare variations in credit scores of various prediction models. 

 

Table V reports the average ∆CS values for five outlook categories. By definition the average 

∆CS values for all outlooks is zero. Based on ∆OP scores, the credit risk of issuers with DOWN 

Reviews is centered 2.7 notch steps lower than is indicated by their rating class N. Issuers with 

NEG, STA, POS Outlooks and UP Reviews are centered at respectively -1.4, +0.4, +1.7 and +1.8. 

Average ∆OP scores do not differ much between POS Outlooks and UP Reviews. This is caused 

by the relative low number of observations with POS Outlooks and UP Reviews in the OP model 

estimation. When all outlooks are equally weighted in the estimation procedure, the different 

nature of the outlook scale at the upside gets more weight. So for ∆OPW scores a more clear 

distinction appears between POS Outlooks and UP Reviews: 1.7 vs. 2.8 notch steps. As indicated 

by ∆OPW scores, rating Outlooks diverge 1.5 notch steps from the centre and rating Reviews 

diverge 3 notch steps from the centre. These numbers are consistent with the adjustments 

Hamilton and Cantor (2004) apply in their search for an optimal adjustment of ratings by their 

outlooks. 

 

Credit risk variation in the outlook scale as indicated by the ∆OP and ∆OPW scores is best 

captured by ∆SDP scores and ∆DP1 scores. This empirical finding emphasizes once more the 

short-term point-in-time character of outlooks. Point-in-time measures with longer time horizons 

(∆LDP scores) and through-the-cycle measures (∆RP scores) detect less credit risk dispersion in 

the outlook scale. 

 

Credit risk information signaled by the outlook scale is not constant in time. In periods with no 

upcoming or recent rating migration event only little credit risk dispersion shows up in the 

outlook scale. Also, little credit risk dispersion shows up between DOWN Reviews and NEG 

Outlooks just before and just after a rating downgrade (see Table V). Similar findings hold for 

STA Outlooks, POS Outlooks and UP Reviews just before and just after a rating upgrade. Credit 

risk information of -1.6 notch steps and 2.5 notch steps signaled by STA outlooks just before 

respectively a rating downgrade and upgrade suggests that not all outlooks are set appropriately. 

In contrast, the credit risk information signaled by simulated OP(0) outlooks is constant in time 

and unconditional to rating migration events. Furthermore, the credit risk dispersion in the OP(0) 

outlook scale is much larger than the actual outlook scale. 

 

The time inconsistencies and relative low credit risk dispersion in the actual outlook scale are 

most likely due to a lack of credit risk standardization in the assignment of outlooks. This result is 

not surprising in view of the purpose of outlooks. First, as outlooks are intended to signal likely 

upcoming rating migrations, outlooks are set more accurately when rating analysts are 

considering rating migrations and extra alert after rating migrations. Second, as outlooks are not 

intended to quantify credit risk information explicitly, agencies do not standardize credit risk 
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information signaled by outlooks. Instead, changes in outlooks are triggered by sudden events, 

breaks and shifts in trends, not by measuring short-term point-in-time credit risk along a 

standardized scale. 

 
6 Agency migration policy for outlooks 
 

The prime objective of outlooks is to signal upcoming rating migrations. This timing information 

is disclosed by the timing of outlook migrations following a specific outlook migration policy. 

Insight into the agencies’ outlook migration policy is obtained by benchmarking the dynamics of 

actual outlooks with the dynamics of simulated OP(TH) outlooks. In contrast to actual outlooks, 

simulated outlooks have no explicit timing objective and their dynamics are only driven by a 

variation in credit risk within a rating category N – as measured by OP scores. This benchmark 

aims to investigate to what extent the explicit timing objective of outlooks overrides credit risk 

information. 

 

6.1 Outlook distribution conditional to a rating migration event 

 

Table VI reports the distribution of actual outlooks and simulated OP(0) outlooks conditional to a 

rating downgrade event or a rating upgrade event. Just before a rating downgrade at t = -1, 

DOWN Reviews occur a factor of 3 more frequently than NEG and STA Outlooks do. In the 

months before a rating downgrade a large part of the actual STA and NEG Outlooks are changed 

to DOWN Reviews – excessively large from a pure credit risk perspective as indicated by 

simulated outlooks. Moreover, just before a rating downgrade the credit risk level as indicated by 

∆OP and ∆OPW scores hardly distinguish between NEG Outlooks and DOWN Reviews (see 

table V). So prior to a rating migration event, NEG Outlooks and DOWN Reviews mostly differ 

in timing information on an upcoming rating downgrade rather than differ in credit risk 

information. Credit risk information is (partly) overridden by the timing objective when putting 

ratings on a DOWN Review to signal a likely upcoming rating migration. 

 

A strong increase in rating Reviews before a rating migration also appears at the upside. Just 

before a rating upgrade the fraction of UP Reviews raises sharply – again much larger than would 

be expected from a pure credit risk perspective. In contrast to actual outlooks the distribution of 

simulated outlooks does not change significantly conditionally to a rating upgrade, except for a 

reduction in UP Reviews by half just after the rating upgrade. The precise timing of rating 

upgrades is difficult to establish from a pure credit quality perspective. At the upside changes in 

credit quality happen less abrupt. Therefore rating upgrades are not clearly preceded by 

significant changes in credit risk, which hampers a good timing match between upward dynamics 

of OP scores and upgrades of actual outlooks. 

 

6.2 Outlook migration matrix 
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Table VII presents the unconditional outlook migration matrix on a monthly basis. “Exit” 

observations – observations at the end of an issuer time series in the database – are not included 

in the construction of the matrix because a database exit is not initiated by agencies and no credit 

scores are available to benchmark these exit migrations. No bias is introduced as the distribution 

of outlooks for these “exit” observations is comparable to the outlook distribution for all 

observations. 7 

 

At first NOA Outlooks (no outlook available) are treated as a separate outlook category in the 

computation of the outlook migration matrix. The migration probabilities for DOWN and UP 

Reviews are 23.2% and 16.1%, which implies an average duration of 4.3 months and 6.2 months. 

These duration figures are somewhat higher than reported by Cantor and Hamilton (2004) as we 

do not include “exit” observations. The migration probabilities for NEG, STA, POS and NOA 

Outlooks are roughly a factor of 4 lower. The duration for these outlooks is about 20 months. 

 

In order to simulate outlooks – including NOA Outlooks – by ranking of credit scores, NOA 

Outlooks need to be positioned on the outlook scale. We assume NOA Outlooks to be comparable 

to STA outlooks. We justify this assumption as follows.  

1. Most migrations to NOA Outlooks happen at a rating migration event. Almost all of these 

migrations take place from DOWN and UP Reviews. After a rating migration event, DOWN 

and UP Reviews are no longer of any use to signal upcoming rating events. Apart from NOA 

Outlooks the most likely outlook after a rating migration event is a STA Outlook. 

2. In 2004 Moody’s converted almost all NOA Outlooks (27% of total outlooks) to STA 

Outlooks in their dataset. Apparently Moody’s regard NOA Outlooks to be comparable to 

STA Outlooks. 

3. Migration probabilities for NOA and STA Outlooks are comparable. The both have a 

probability of about 0.5% to migrate to POS Outlooks and UP Reviews and a probability of 

about 1% to migrate to NEG Outlooks and DOWN Reviews. 

For these reasons we convert all NOA Outlooks to STA outlooks. The outlook simulation 

procedure is repeated to match simulated outlooks with the new outlook distribution. 

 

6.3 Agency migration policy for outlooks 

 

Table VII compares the migration matrices of actual and simulated outlooks. Compared to the 

dynamics of simulated OP(1.5) outlooks - a pure and consistent credit risk perspective -, the 

dynamics of actual outlooks deviates in a number of ways: 

1. Migration probabilities are relative high for DOWN(UP) Reviews and relative low for 

NEG(POS) Outlooks. In other words durations for DOWN and UP Reviews are about 4 – 5 

months while durations for NEG and POS Outlooks are about 20 months. These durations are 

consistent with the time horizons of expected rating changes set in the outlook definitions by 

the agencies.  
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For simulated outlooks, from a pure credit risk perspective, when outlooks are only aimed to 

signal credit risk information and DOWN (UP) Reviews are positioned at the extreme side of 

NEG (POS) Outlooks, the durations of Reviews and Outlooks do not differ much and are 

about 7 – 8 months. The timing objective for actual outlooks clearly influences the duration 

of outlooks. 

2. The frequency a rating is put on a DOWN Review is twice as high compared to the frequency 

a rating is put on a NEG Outlook. A large number of two-step migrations between STA 

Outlooks and DOWN Reviews circumvent intermediate NEG Outlooks, thereby reducing the 

number of one-step migrations. Similar findings apply to the upside of the outlook scale.  

For simulated outlooks two-step migrations occur a factor 3 – 4 less, which illustrates the 

effect of timing objective for actual outlooks. 

 

From a pure credit risk perspective the timing objective of outlooks shortens durations for rating 

Reviews, lengthens durations for rating Outlooks and partially circumvents the use of rating 

Outlooks as “intermediate” states between Stable Outlooks and rating Reviews. These deviations 

are consistent with the official agencies’ policy for Reviews (see chapter 2). 

 

The outlook migration policy has not changed much in the period 1995 - 2004. The migration 

probabilities of actual DOWN Reviews vary between 20 and 25%, while migration probabilities 

of NEG, POS and STA Outlooks vary between 2% and 5%. Extraordinary changes in migration 

probabilities are only observed for UP Reviews. Since 2002 the duration of UP Reviews is 

reduced by a factor of two compared to the average level of 7 months in the years 1996-2001. 

Apparently Moody’s brought the durations of UP Reviews more in line with DOWN Reviews. 

This significant change in migration policy demonstrates that the timing of rating upgrades is not 

as clear as the timing of rating downgrades. Upgrade dynamics is more moderate than upward 

dynamics. 

 

6.4 The implied threshold for the outlook migration policy  

 

The implied threshold of the agencies outlook migration policy is derived by searching for a best 

match between the dynamics of simulated outlooks OP(TH) and actual outlooks. In order to avoid 

the interference of the overriding timing objective as much as possible, we constructed outlook 

migration matrices for a restricted outlook scale with three outlook categories: a merged 

DOWN/NEG category, STA outlooks and a merged UP/POS category. This restriction controls 

for the circumvention of NEG and POS categories by two step migrations between STA Outlooks 

and DOWN Reviews. 

 

For all observations, unconditionally to a rating migration event, a best fit in migration 

probabilities between actual outlooks and simulated OP(TH) outlooks is obtained for a threshold 

TH of 1.5 notch steps (see table VII, panel C), which seems slightly lower the 1.8 notch threshold 

in the rating migration model. However, this implied 1.5 notch threshold can be considered less 
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prudent since ratings are only sensitive to the permanent credit risk component and outlooks are 

sensitive to the temporary credit risk component as well. The standard deviation of OP scores in 

the time series of individual issuers is a factor of two higher than that of RP scores. So the 

outlook migration policy can be considered at least a factor of two less prudent than the rating 

migration policy. 

 

The prudence of the outlook migration policy varies conditionally to a rating migration event. Six 

months after a rating migration event a best match between actual outlooks and simulated 

OP(TH) outlooks is obtained for a threshold TH of 3.0 notch steps. In periods with no rating 

migration event in the near past and near future the outlook migration policy is slightly less 

restrictive, with an implied threshold level TH of 2.5 notch steps. Six months before a rating 

migration event takes place, NEG/DOWN and POS/UP categories hardly move and the implied 

TH level is at least 3.5 notch steps. In contrast, STA Outlooks are less stable before a migration 

event with an implied TH level of 0.5 notch steps. 

 

7 Default prediction performance of adjusted ratings 
 

7.1 Definition of adjusted ratings 

 

On top of through-the-cycle credit risk information signaled by ratings, outlooks provide point-in-

time credit risk information and in addition, especially DOWN and UP Reviews, provide timing 

information on upcoming rating migrations. Rating information and outlook information is 

combined by adding outlooks O to (notch) ratings N, resulting in adjusted ratings. For this 

purpose the outlook scale is converted to a notch scale based on the ∆CS values as reported in 

table V. Following the (unconditional) credit risk dispersion in the actual outlook scale, measured 

by ∆OP scores, ratings with a DOWN Review are adjusted by subtracting 2.5 notch steps (a 

numerical scale of for ratings N is assumed: Ca/C = 1, Caa = 2, up to Aaa = 18). Ratings with a 

NEG Outlook, a STA Outlook, a POS Outlook and an UP Review are adjusted respectively by -

1.5 notch steps, +0.5 notch steps, +1.5 notch steps and +2.0 notch steps. We round the 

adjustments to 0.5 notch steps. Unless stated otherwise, ratings are adjusted following this 

adjustment scheme. 

 

7.2 Default prediction performance of adjusted ratings 

 

Default prediction performance of ratings is expected to improve when point-in-time credit risk 

information and timing information on upcoming rating migrations are added. Default prediction 

performance of unadjusted ratings and adjusted ratings is measured by an accuracy ratio for 

different prediction horizons T (for details ACR computation see appendix B). The accuracy ratio 

measures the overall default prediction performance of a rating scale, weighting type I and type II 

errors equally in distinguishing defaulters and non-defaulters. It varies between 0% (random 

scale) and 100% (perfect prediction scale). We define ∆ACR as the difference in ACR value 
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between an adjusted rating scale R and the unadjusted rating scale N. The standard error in ACR 

is 1.5% for a 6 month prediction horizon and 2% for a 3 year horizon. The standard error in 

∆ACR is a factor of two lower (see appendix B). 

 

Table VIII reports the ACR values of unadjusted and ∆ACR values of adjusted ratings for various 

default prediction horizons, ranging from 6 months to 3 years. For the unadjusted rating scale N 

ACR is 69.1% and 57.2% for a prediction horizon of respectively one year and three years. 

Adjusting ratings by their actual outlooks increases ACR by 3.7% and 1.5%. The lower 

improvement for longer time horizons is consistent with the point-in-time credit risk nature of the 

outlook scale. Hamilton and Cantor (2004) report similar figures in their study covering the 1999-

2003 period: respectively 4.3% and 2.0%. 

 

When adjusting actual ratings by their simulated OP(0) outlooks the ACR jumps by +9.1% and 

+5.7% for a prediction horizon of respectively one year and three years. This increase in ACR can 

be largely ascribed to the downside of the outlook scale. When adjustments are only made for 

simulated NEG Outlooks and DOWN Reviews ACR improves by 8.3%, while adjustments at the 

upside improve ACR by only 2.1%. It might be that at the downside changes in credit quality 

happen more abruptly and faster and are therefore easier to detect. 

 

For simulated outlooks ∆ACR values are moderately sensitive to the adjustment scheme (see 

table VIII). Adjustment scheme 1 and 4 are based on the (unconditional) credit risk dispersion in 

respectively the actual outlook scale and simulated outlook scale (see table V). As opposed to the 

moderate adjustment scheme 1, adjustment scheme 4 stretches the outlooks scale to -6.5 notch 

steps for DOWN Reviews and +7.5 notch steps for UP reviews. Adjustment scheme 3  - in 

between adjustment scheme 1 and 4 - with adjustments ranging from - 4.5 notch steps for DOWN 

Reviews to + 4.5 notch steps for UP Reviews offers most improvement in default prediction 

performance: ∆ACR = 10.2% for a prediction horizon of 12 months. Apparently the credit risk 

dispersion within a rating class is substantial and exceeds standard deviations beyond 3 notch 

steps, which is at least a factor two larger than indicated by actual outlooks. 

 

Large variations in rating adjustments have only moderate impact on ∆ACR values. Apparently 

outlooks have most value at the bottom of the rating scale. Regardless whether the adjustment 

scheme is moderate or extreme, all troubled issuers – with low ratings and outlooks at the 

downside - are pushed to the bottom of the adjusted rating scale. The robustness of default 

prediction performance to various adjustment schemes is also demonstrated by Hamilton and 

Cantor (2004). 

 

7.3 Explaining the differences in default performance between actual and simulated outlooks 

 

For simulated outlooks the ∆ACR values are a factor 2 – 4 larger than for actual outlooks. Most 

obvious explanation is the lack of credit risk standardization in the assignment of outlooks. 
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Chapter 5 documents the relative low credit risk dispersion in the actual outlook scale. Also credit 

risk information signaled by actual outlooks is not constant in time and conditional to the rating 

migration event. In contrast, credit risk information signaled by simulated outlooks is more 

dispersed and does not depend on rating migration events. Simulated outlooks are only based on 

the ranking of credit scores each month. Therefore, as pure and consistent measures of credit risk, 

simulated outlooks perform better than actual outlooks. Direct empirical evidence for the better 

credit quality of simulated outlooks is found in the outlook migration matrix. As indicated by 

simulated outlooks 89% of the defaulted issuers had a NEG Outlook and a DOWN Review just 

before default (see Table VII). For actual outlooks this percentage is 62%. The simulated outlook 

scale is more effective in separating defaulters from non-defaulters. 

 

A few alternatives are considered to explain the difference in ∆ACR values between actual and 

simulated outlooks. 

1. The timing objective overrides credit risk information of the outlook scale. It shortens 

durations for rating Reviews, lengthens durations for rating Outlooks and partially 

circumvents the use of the “intermediate states” of rating Outlooks. In order to control for 

these migration policy effects we merged the DOWN and NEG outlooks categories, and the 

POS and UP outlook categories. After the removal of “intermediate states” the dynamics of 

actual outlooks closely matches the dynamics of simulated outlooks and the migration policy 

effects are largely suppressed. The distribution of outlook durations for the two merged 

categories and STA outlook category largely overlaps between actual and simulated outlooks. 

An exception is the larger number of DOWN/NEG outlooks with short durations up to 4 

months for actual outlooks, but the number of outlooks with short durations has already been 

reduced substantially by a factor 2 by the merger of DOWN and NEG outlooks categories. 

For this restricted outlook scale ratings are adjusted as follows: DOWN/NEG: -1.5, STA: + 

0.5, POS/UP: +1.5. The restriction to three outlook categories hardly changes ∆ACR values 

for both actual and simulated outlooks (see table VIII). From this analysis we conclude that 

the outlook migration policy does not severely override credit risk information in the outlook 

scale. 

2. Dynamics and timely adjustment of actual outlooks are restricted by a migration threshold 

TH. The implied threshold is on average 1.5 not steps (see section 6.4). However, the impact 

of a threshold TH on ∆ACR is low. For simulated OP(3.0) outlooks ∆ACR values decreases 

by only a half percentage point. 

3. At the downside actual outlooks are more sensitive to the temporary credit risk component 

than simulated outlooks are. The weight to the temporary credit risk component in the O-

DOWN model is higher than it is in the OP model, which represents a best average for all 

five outlook categories (see table IV). An (over)sensitivity to temporary credit risk 

fluctuations could worsen default prediction performance, especially for longer time 

horizons. However, ∆ACR values only marginally decrease when outlooks are simulated 

based on O-DOWN model scores instead of OP model scores. 
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These explanations can only explain 1.5% of the 5.5% gap in ∆ACR values between actual and 

simulated outlooks. The remainder of this gap is highly likely due to a lack of credit risk 

standardization in the assignment of outlooks. 

 

8 Point-in-time characteristics of adjusted ratings 
 

To what extent does the lack of credit risk standardization in the outlook scale hamper the ability 

of outlooks to bridge the agencies’ through-the-cycle perspective and the investor’s one-year 

point-in-time perspective? Or to what extent do adjusted ratings have point-in-time 

characteristics? To answer these questions we compare rating properties of adjusted ratings with 

credit model ratings based on RP(TH) and LDP(TH) scores. For these ratings, table IX presents 

the rating migration probabilities, rating drift properties and sensitivity to the temporary and 

permanent credit risk component. 

 

Adjustment of ratings N by their actual outlooks has a significant impact on rating dynamics. 

Outlooks add point-in-time credit risk information to the through-the-cycle ratings. As a result 

migration probabilities increase from 1.8% to 3.0% for downgrades and from 0.7% to 1.9% for 

upgrades. Rating drift disappears and even reversal effects show up at the downside. The weight 

to XT increases from 10.2% to 18.7% for all issuers and from 0% to 15.2% for issuers rated B1 

and above. 8 A 30% weight to XT relates to the point-in-time LDP model (see table IV), so a level 

of 15% can be interpreted as halfway across the bridge between the agencies’ through-the-cycle 

perspective and a long-term point-in-time perspective. 

 

In contrast to actual outlooks, simulated outlooks are capable to adjust ratings to point-in-time 

measures, although the implied prediction horizon is long, about 6 years. Adjusting ratings N by 

their simulated OP(1.5) outlooks, resulting in N-OP(1.5) ratings, increases the weight to XT from 

10.2% to 27.3%. Dynamic properties and default prediction performance of N-OP(1.5) ratings are 

most in line with LDP(1) and LDP(1.5) ratings. The implied threshold level of 1.25 notch steps is 

a compromise between the implied threshold for ratings (1.8 notch steps) and the implied 

threshold for outlooks (1.5 notch steps). 9 

 

9 Conclusions 
 

Corporate bond ratings become sensitive to short-term fluctuations in credit risk when they are 

adjusted by their outlooks. As a result default prediction improves – especially for short 

prediction horizons. However, adjusted ratings reflect a more moderate version of a through-the-

cycle perspective. 

 

Credit risk standardization in the outlook scale could improve the default prediction performance 

of adjusted ratings even further and could enable to bridge the gap between the agencies’ 

through-the-cycle perspective and the investor’s point-in-time perspective. Potentially, adjusted 
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ratings have a long-term point-in-time perspective when agencies standardize credit risk 

information in the outlook scale. 

 

We suggest changing the outlook assignment process as follows. Set short-term point-in-time 

credit risk standards for NEG, STA and POS Outlooks. Review these outlooks at least on a 

quarterly basis. Preserve the timing objective by migrations to DOWN and UP Reviews when 

rating migrations are considered on the short term. These suggestions are by no means a 

fundamental revision of current practice. It is an adequate response to the critique that investors 

have on rating timeliness. Depending on their rating stability preferences, investors can use either 

ratings without any additional outlook information when they prefer rating stability or ratings in 

combination with outlook information when they prefer rating timelines and maximum accuracy. 

To serve the last group best, accuracy and timing should be of equal importance in the assignment 

of outlooks and meet the same quality standards as agencies apply to ratings. 
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Appendix A Definition of credit model ratings including a migration policy 
 

The computation of credit model ratings following a particular migration policy involves two-

steps. In the first step credit model scores, CM-scores, are modified to CMM scores, reflecting a 

particular migration policy. In the second step, the modified CMM scores are converted to credit 

model ratings CM(TH,AF). 

 

The migration policy model has two parameters: a threshold parameter and an adjustment 

parameter. The threshold parameter TH specifies the size of a credit risk interval [-TH,+TH], in 

which credit risk is allowed to fluctuate without triggering a rating migration.10 If a rating 

migration is triggered, ratings are not fully adjusted to the actual credit risk level. The adjustment 

fraction AF specifies the partial adjustment of ratings. 

 

Step 1: Modification of CM scores 

 

For each observation, the CM score is converted to a modified score CMM in such a way that it 

reflects a specific migration policy, characterized by a threshold TH and an adjustment fraction 

AF. When following the time-series of the CMt scores for a particular issuer, modified CMM
t 

scores are computed. At the beginning of the time-series of each issuer, CMM0 is set equal to 

CM0. The CMM
t score is held constant as long as the CMt score stays within the threshold interval 

(CMM
t-1 - γ×TH, CMM

t-1 + γ×TH): 
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where t ∈ (0,tmax) and tmax is the period of unbroken stay of a particular issuer in the dataset. TH is 

expressed in notch steps, the scaling factor γN,t converts CM scores to a notch scale. As soon as 

the CMt score exceeds the threshold interval, the CMM
t score is adjusted. If AF = 1, the CMM

t 

score is fully adjusted to the current CM score. If AF < 1, the CMM
t score is partially adjusted to 

the current CM score as follows: 
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Step 2: Conversion of CMM scores to CM(TH,AF) ratings 

 

CMM scores are converted to CM(TH,AF) ratings, equivalent to ratings, as follows. At the end of 

each month all issuers are ranked by their CMM score. On the basis of this ranking, eighteen 

credit score ratings, Aaa/Aa1, Aa2, Aa3,…., B3, Caa/Ca, equivalent to agency ratings, are 

assigned to individual issuers. So at the end of each month the number of issuers in each rating 

category N equals the number of issuers in the equivalent CM rating category. Eighteen rating 

categories are defined on a "notch" scale level. Rating categories are separated from their 

neighbors by one notch step. 

 

The time-series of CMM scores is an irregular pattern of upward and downward jumps. The time 

period between these jumps varies between 1 and tmax years. An unambiguous conversion of these 

jumps to CM(TH,AF) migrations is crucial to reflect correctly the influence of the migration 

policy on rating dynamics. This unambiguous conversion is checked and safeguarded as follows. 

The minimum size of the jump in CMM scores is γ×AF×TH, which is sufficient to convert nearly 

all jumps in the modified CMM score to CM(TH,AF) migrations. The conversion procedure, 

however, does not prevent a CM(TH,AF) migration from happening, when no jump occurs in the 

CMM score. To prevent these non-intended migrations, CM(TH,AF) ratings are replaced by 

lagged ratings, when the CMM
t score equals its one-year lagged CMM

t-1 score. As a consequence, 

the distribution of the CM(TH,AF) ratings is slightly altered. The number of observations in each 

rating category, before and after this correction, differs by 10% at most. This change in rating 

distribution only marginally affects the comparability of CM(TH,AF) ratings with ratings. 

 

Dynamic properties of credit model ratings as a function of threshold parameter TH 

 

In the absence of a threshold TH, marginal high-frequency (1-2 months) “noise” in credit scores 

triggers a large number of CM(0,AF) migrations, almost all followed by reversals in subsequent 

months. To investigate the influence of this noise on rating dynamics, reversal probabilities are 

derived for RP(TH) ratings as a function of TH (AF = 1) and period P. Reversal probabilities are 

computed for a period P after the upgrade or downgrade events.  

 

In order to focus as much as possible on reversals due to high-frequency noise in credit scores, 

this examination is carried out with RP ratings. RP scores are insensitive to the temporary credit 

risk component since they represent the agencies’ through-the-cycle perspective. As a result, 

rating reversals caused by temporary changes in credit risk are suppressed. This allows a clearer 

cut between the marginal high-frequency noise in credit scores and the more moderate and 

significant dynamics in the permanent credit risk component. 

 

Table A presents the reversal probabilities of RP(TH) ratings as a function of TH and time period 

P. For RP(0) ratings the reversal probability in the month following a downgrade(upgrade) is 

10.3%(13.3%), on a monthly basis. In this case rating dynamics is dominated by (marginal) high-



 30 

frequency noise in credit scores. The number rating reversals decreases linearly by the length of 

period P if the number of reversals is dominated by high-frequency noise in credit scores. This is 

indeed the case for TH = 0. This linear relationship disappears when the TH level is raised to 0.4 

notch steps. For TH = 0.6 and above reversal probabilities are comparable for different periods P, 

which means that the influence of high-frequency noise in credit scores is suppressed and rating 

dynamics have a flatter frequency spectrum. 

 

The reduction of rating dynamics by an increase in threshold level has little impact on the 

informational value of credit model ratings, measured by the default prediction performance. For 

example, the accuracy ratio ACR for RP(TH) ratings decreases by 3.3% when the threshold level 

is increased from zero to 2.2 notch steps (one year prediction horizon).
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Appendix B Measurement of default prediction performance 
 

A well-accepted methodology to measure the overall default prediction performance of a rating 

scale, weighting type I and type II errors equally in distinguishing defaulters and non-defaulters, 

is to construct a "cumulative accuracy profile" curve. This CAP curve is obtained by plotting, for 

each rating category R, the proportion of default observations in the same and lower rating 

category FD(R) (Y-axis), against the proportion of all survival and default observations in the 

same and lower rating category FA(R) (X-axis). 
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where FA(0,T) = 0. NC,i is the total number of observations in rating category C at time t.  SC,T,i,t 

indicates whether an issuer i rated in category C at time t survives at least until t + T (in other 

words, is the particular observation at least present in the database until t + T). DC,T,i,t indicates 

whether an issuer i rated in category C at time t defaults within the period (t, t+T). NDS(T) is the 

total number of default observations (DC,T,i,t = 1) and survival observations (SC,T,i,t = 1) with a time 

horizon T in the dataset.  

 

A similar definition holds for FD(R,T) summing up only the number of default observations. 

 

)(
),( 1

2002

1982 1
,,,

,

TN

D

TRF
D

R

C

T

t

N

i
tiTC

D

tC

∑ ∑ ∑
=

−

= ==       (B2) 

 

where FD(0,T) = 0 and ND(T) is the total number of default observations with a time horizon T in 

the dataset. 

 

The higher the proportion of default events happening in the lower categories – in other words the 

higher the surface below the CAP curve – the better the rating scale performs. The accuracy ratio 

ACR measures the surface below the CAP curve relative to the surface below the CAP curve for 

a random rating scale (=½). Based on cumulative default rates ACR is given by 
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ACR varies between 0% (random scale) and 100% (perfect prediction scale). The standard error 

in ACR is 1.5%, 2% respectively for time horizons T of one year and 3 years. 11 When comparing 

ACR values of two different scales the standard errors are a factor two lower. 12 
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Table I Outlook statistics 
 
Data on Moody's outlooks is obtained from an extended version of the Moody's DRS database. It includes 
all outlooks provided by Moody’s for their ratings in the period September 1991-February 2005. This study 
covers the January 1995-December 2004 period. 
For benchmarking purposes, outlooks are linked with accounting and market data from COMPUSTAT. In 
order to ensure consistency in accountancy information only non-financial US issuers are selected of which 
sufficient accounting and market data is available in COMPUSTAT. This selection reduces the number of 
issuer-monthly observations from 507,824 to 71,962, still including the NOA Outlooks. When the NOA 
Outlooks are excluded, 52,595 observations are left. The table presents the outlook distribution following a 
few selection steps. For the final selected 71,962 observations the outlook distribution is broken down to 
annual periods and major rating categories. 
 
 number of 

monthly 
observations 

no outlook 
available 

watch 
down 

DOWN 

negative 
outlook 
NEG 

stable 
outlook 

STA 

positive 
outlook 

POS 

watch 
up 
UP 

dataset selection, 1995-2004 

all Moody’s rated issuers 507,824 40.1% 3.6% 12.7% 35.4% 6.1% 2.1% 
+ US issuers 329,866 44.2% 3.7% 12.0% 32.1% 5.9% 2.1% 
+ US listed issuers 112,475 33.0% 5.0% 14.4% 35.9% 8.7% 2.9% 
+ accounting info available 87,146 32.2% 5.2% 15.3% 35.6% 9.2% 2.5% 
+ excluding financial sector 71,962 26.9% 6.0% 15.9% 38.5% 10.0% 2.8% 

non-financial US listed issuers with COMPUSTAT accounting information available 

1995 2,188 69.5% 10.5% 4.2% 5.2% 5.1% 5.6% 
1996 3,629 51.9% 9.0% 7.1% 12.3% 13.7% 6.1% 
1997 5,019 47.2% 5.9% 8.0% 18.6% 15.4% 4.8% 
1998 6,655 34.5% 6.0% 9.5% 33.4% 12.9% 3.8% 
1999 8,390 25.1% 5.6% 14.7% 41.6% 9.3% 3.8% 
2000 8,931 23.7% 5.8% 14.9% 42.9% 9.9% 2.8% 
2001 9,199 22.2% 6.4% 19.2% 40.3% 9.4% 2.5% 
2002 9,339 26.0% 6.8% 21.1% 35.8% 9.3% 1.0% 
2003 9,278 27.2% 5.2% 19.5% 38.8% 8.5% 0.9% 
2004 9,334 1.0% 4.0% 20.5% 64.2% 8.0% 2.2% 

non-financial US listed issuers with COMPUSTAT accounting information available, 1995 - 2004 

Caa 4,827 17.9% 4.4% 44.2% 23.6% 8.3% 1.6% 
B 20,281 16.8% 4.1% 18.2% 44.7% 13.5% 2.6% 
Ba 15,440 23.0% 6.1% 10.5% 40.7% 15.4% 4.4% 
Baa 17,889 33.3% 6.8% 13.7% 36.3% 7.0% 2.9% 
A 11,389 42.9% 8.2% 11.4% 32.6% 3.0% 1.8% 
Aa 1,757 34.9% 9.4% 10.0% 40.3% 4.3% 1.0% 
Aaa 379 22.2% 2.9% 5.5% 69.4% - - 
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Table II Parameter estimates of default prediction models and rating prediction models 
 
The table presents parameter estimates α and βi of four default prediction models for various prediction 
horizons: six months, one-year, six-years and a three year period starting three years in the future. 
Five versions of a rating prediction model are estimated for various groups of issuers as specified in the table. 
Standard errors in the logit regression estimation are a generalized version of the Huber and White standard 
errors, which relaxes the assumptions on the distribution of error terms and independence among 
observations of the same issuer. 13 z-statistics are given in brackets. Pseudo R2 is a measure for the 
goodness of the fit. The last rows of the table give the relative weight of the parameters (see equation 3.7). 
 

 default prediction models agency rating prediction model 

model SDP DP1 LDP MDP RP TTC RP spec1 RP spec2 RP def 

default prediction horizon issuers included in estimation 

 half year 
[0,0.5] 

one year 
[0,1] 

six year 
[0,6] 

future 
period 
[3,6] 

all issuers 
all issuers, 
except Ca, 
Caa,B3,B2 

B1, Ba3, 
Ba2, Ba1  
issuers 

Ca, Caa, 
B3, B2 
issuers 

issuers 
6 months 
before def 

estimation 
period 

82/4- 
04/6 

82/4- 
03/12 

82/4- 
98/12 

82/4- 
98/12 

82/4-  
04/12 

82/4-  
04/12 

82/4-  
04/12 

82/4- 
04/12 

82/4- 
04/12 

parameters regression 

α constant 
7.09 

(15.5) 
6.32 

(13.9) 
5.33 

(10.2) 
5.58 

(10.2) 
ordered  logit 1 

β1 WK/TA 
1.22 
(3.3) 

0.78 
(2.2) 

-0.98 
(2.6) 

-1.53 
(3.9) 

-1.01 
(4.5) 

-1.56 
(5.8) 

0.07 
(0.3) 

0.57 
(1.7) 

0.74 
(1.9) 

β2 RE/TA 
0.44 
(2.0) 

0.77 
(3.7) 

1.32 
(4.8) 

1.16 
(4.2) 

3.10 
(20.2) 

3.21 
(16.5) 

2.53 
(10.0) 

1.48 
(6.5) 

1.55 
(4.6) 

β3 EBIT/TA 
4.97 
(5.9) 

4.85 
(6.0) 

0.96 
(1.1) 

0.03 
(0.0) 

2.61 
(6.2) 

1.04 
(2.0) 

0.47 
(0.8) 

4.14 
(6.1) 

2.68 
(3.0) 

β4 ME/BL 
1.09 

(16.1) 
0.98 

(14.5) 
0.85 

(10.5) 
0.67 
(7.9) 

1.02 
(23.4) 

1.06 
(19.3) 

0.75 
(12.0) 

0.44 
(7.1) 

0.84 
(8.2) 

β5 Size 
0.24 
(5.2) 

0.27 
(5.7) 

0.38 
(6.8) 

0.33 
(5.8) 

1.03 
(25.9) 

1.10 
(22.7) 

0.85 
(17.1) 

0.09 
(1.6) 

0.33 
(4.6) 

β6 SD(AR) 
-4.38 
(6.1) 

-4.77 
(6.7) 

-5.81 
(7.8) 

-3.07 
(3.8) 

-7.83 
(16.7) 

-8.06 
(12.3) 

-4.39 
(7.2) 

-3.14 
(6.6) 

-5.96 
(7.6) 

β7 AR 
12.81 
(10.4) 

12.76 
(10.9) 

5.50 
(4.7) 

1.25 
(0.9) 

-4.53 
(8.7) 

-6.06 
(9.5) 

-4.36 
(6.1) 

-0.82 
(1.1) 

2.51 
(1.7) 

pseudo R2 0.446 0.415 0.263 0.141 0.240 0.220 0.131 0.104 0.161 
# obs. 184,050 178,164 114,535 107,445 189,248 161,663 66,861 27,585 2,130 
# default obs. 2108 4262 13,304 6,214 - - - - - 

relative weight model variables 

WK/TA 6.8% 4.4% -6.7% -13.4% -3.6% -5.7% 0.4% 5.4% 4.6% 
RE/TA 4.9% 8.6% 16.2% 18.4% 22.0% 21.6% 21.7% 21.9% 15.8% 
EBIT/TA 12.4% 12.2% 2.8% 0.1% 4.2% 3.1% 1.2% 19.8% 8.4% 
MV/LIB 37.2% 33.8% 31.6% 32.1% 22.4% 21.2% 25.2% 27.8% 28.4% 
Size 11.7% 12.8% 21.7% 24.5% 31.7% 34.0% 35.6% 5.6% 14.2% 
SD(AR) -10.6% -11.6% -13.7% -9.3% -12.2% -10.0% -9.6% -16.8% -22.9% 
AR 16.5% 16.6% 7.4% 2.2% -3.8% -4.4% -6.3% -2.8% 5.7% 
1 Due to space considerations the 15 boundary parameters BR in the ordered logit model are not shown. 
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Table III Parameter estimates of outlook prediction models 
 
The table presents parameter estimates α and βi of various outlook prediction models. All models, except 
the OPW model, are estimated by weighting the five outlook categories by their occurrence. The OPW 
model is estimated by equally weighting the five outlook categories. 
Standard errors in the (ordered) logit regression estimation are a generalized version of the Huber and 
White standard errors, which relaxes the assumptions on the distribution of error terms and independence 
among observations of the same issuer. z-statistics are given in brackets. Pseudo R2 is a measure for the 
goodness of the fit. The last rows of the table give the relative weight of the parameters (see equation 3.7). 
 

outlooks in 
regression 
analysis 

DOWN 
NEG 
STA 
POS 
UP 

DOWN 
 

STA 
 
 

 
NEG 
STA 

 
 

 
 

STA 
POS 

 

 
 

STA 
 

UP 

DOWN 
NEG 
STA 
POS 
UP 

model OP O-DOWN O-NEG O-POS O-UP OPW 
parameters regression 

α constant ordered logit1 2.11 
(36.3) 

0.931 
(16.7) 

-1.44 
(20.0) 

-2.97 
(36.3) ordered logit1 

β1 ∆WK/TA 
-0.004 
(0.1) 

0.187 
(3.3) 

-0.034 
(0.6) 

0.024 
(0.3) 

-0.332 
(4.4) 

-0.080 
(1.8) 

β2 ∆RE/TA 
-0.080 
(2.4) 

-0.082 
(1.5) 

0.063 
(1.2) 

-0.175 
(2.9) 

-0.207 
(3.6) 

-0.120 
(3.6) 

β3 ∆EBIT/TA 
0.180 
(5.1) 

0.255 
(4.1) 

0.108 
(2.0) 

0.192 
(3.1) 

0.043 
(0.6) 

0.152 
(3.5) 

β4 ∆ME/BL 
0.409 
(10.7) 

0.332 
(5.8) 

0.416 
(6.8) 

0.238 
(3.3) 

0.349 
(4.4) 

0.481 
(10.4) 

β5 ∆Size 
0.031 
(0.9) 

-0.158 
(3.0) 

-0.053 
(1.0) 

0.136 
(1.9) 

0.423 
(6.2) 

0.151 
(3.5) 

β6 ∆SD(AR) 
-0.127 
(5.4) 

-0.291 
(8.9) 

-0.079 
(2.4) 

-0.010 
(0.2) 

0.063 
(1.3) 

-0.129 
(3.9) 

β7 ∆AR 
0.172 
(6.6) 

0.336 
(7.6) 

0.031 
(0.8) 

0.028 
(0.7) 

0.302 
(4.8) 

0.350 
(9.1) 

pseudo R2 0.039 0.099 0.045 0.023 0.083 0.058 
# obs. 52,595 31,996 39,085 34,862 29,689 52,595 

relative weight model variables 
∆WK/TA -0.4% 10.1% -3.9% 2.7% -17.7% -4.9% 
∆RE/TA -7.8% -5.0% 7.9% -22.1% -12.2% -8.1% 
∆EBIT/TA 16.9% 14.6% 13.1% 23.2% 2.4% 9.8% 
∆MV/LIB 40.3% 20.1% 53.0% 30.3% 20.8% 32.8% 
∆Size 3.0% -9.2% -6.6% 16.7% 24.3% 9.9% 
∆SD(AR) -14.5% -20.3% -11.6% -1.5% 4.3% -10.2% 
∆AR 17.2% 20.6% 4.0% 3.6% 18.2% 24.2% 
1 Due to space considerations the boundary parameters BR in the ordered logit model are 
 not shown. These are available on request. 
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Table IV Sensitivity of credit scoring models to the permanent and temporary credit risk component in credit risk 
 
Credit scoring models are re-estimated with two model variables: proxies for the permanent and temporary credit risk component. The permanent credit risk component is proxied by 
TTC scores and the temporary credit risk component is proxied by the difference in SDP scores and TTC scores. TTC and SDP credit scoring models are estimated in a first stage 
estimation, see Table II. 
The table presents parameter estimates α and βi of various credit scoring prediction models. Standard errors in the logit regression estimation are a generalized version of the Huber and 
White standard errors, which relaxes the assumptions on the distribution of error terms and independence among observations of the same issuer. z-statistics are given in brackets. Pseudo 
R2 is a measure for the goodness of the fit. The last rows of the table give the relative weight of the parameters (see equation 3.7). 
 
 default prediction models agency rating prediction models  outlook prediction models 

model SDP LDP MDP TTC RP spec1  RP spec2 RP def model OP O-DOWN O-NEG O-POS O-UP 

 default prediction horizon issuers included in estimation  outlooks in regression analysis 
 

half  
year 

horizon 
[0,0.5] 

six  
year 

horizon 
[0,6] 

future 
period 
horizon 

[3,6] 

all issuers 
except 

Ca, Caa, 
B3 issuers 

B1, Ba3, 
Ba2 Ba1  
issuers 

Ca, Caa, 
B3 B2 
issuers 

Ca, Caa, 
B3 B2 
issuers 

 DOWN 
NEG 
STA 
POS 
UP 

DOWN 
 

STA 
 
 

 
NEG 
STA 

 
 

 
 

STA 
POS 

 

 
 

STA 
 

UP 

estimation  
period 

82/4- 
04/6 

82/4- 
98/12 

82/4- 
98/12 

82/4- 
98/12 

82/4- 
04/12 

82/4- 
04/12 

82/4- 
04/12 

estimation  
period 

95/1- 
04/12 

95/1- 
04/12 

95/1- 
04/12 

95/1- 
04/12 

95/1- 
04/12 

parameter estimates regression 

α constant 0 
(0.0) 

2.56 
(5.0) 

4.36 
(8.2) 

ordered logit 1 α constant o-logit 1 
2.069 
(37.0) 

0.942 
(17.4) 

-1.427 
(20.4) 

-2.806 
(34.8) 

β1 temporary 1 
(25.9) 

0.431 
(10.9) 

0.206 
(4.5) 

0 
(0.0) 

0.042 
(1.5) 

0.215 
(8.2) 

0.468 
(9.1) 

β1 ∆ temporary 0.637 
(18.5) 

0.969 
(16.6) 

0.514 
(9.2) 

0.301 
(4.8) 

0.310 
(3.9) 

β2 permanent 1 
(35.5) 

0.753 
(20.8) 

0.513 
(12.7) 

1 
(29.4) 

0.718 
(22.7) 

0.437 
(14.1) 

0.798 
(14.6) 

β2 ∆ permanent 0.637 
(14.9) 

0.563 
(9.0) 

0.475 
(8.1) 

0.380 
(5.2) 

0.696 
(7.7) 

pseudo R2 0.446 0.259 0.134 0.220 0.125 0.077 0.154 pseudo R2 0.036 0.085 0.033 0.017 0.041 
# observations 184,050 114,535 107,445 161,663 66,861 27,585 2,130 # observations 52,595 31,996 39,085 34,862 29,689 

relative weight model variables 
temporary 41.4% 29.4% 22.6% 0.0% 5.4% 31.9% 32.7% ∆ temporary 51.9% 65.7% 53.1% 42.0% 28.9% 
permanent 58.6% 70.6% 77.4% 100.0% 94.6% 68.1% 67.3% ∆ permanent 48.1% 34.3% 46.9% 58.0% 71.1% 
1 Due to space considerations the boundary parameters BR in the ordered logit model are not shown. These are available on request. 
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Table V Credit risk dispersion indicated by the actual and simulated outlook scale 
 
Credit risk variations within a rating category N are measured by variations in credit scores CSi,t compared 
to the average credit model score CSN,t for all issuers in a rating category N at time t: ∆CS = (CSi,t – CSN,t) / 
γN,t. ∆CS are converted to a notch rating scale by the scaling factor γN,t. For various credit scoring models 
the table presents the average ∆CS values unconditionally and conditionally to rating migration events as 
indicated in the table. ∆CS values are given for actual outlooks (panel A) and simulated outlooks (panel B). 
 

average ∆CS-score (in notch steps) 
outlook prediction 

models 
default prediction models and rating prediction 

model (RP) 

outlook number   
of obser-
vations 

∆OP   ∆OPW  ∆SDP ∆DP1 ∆LDP ∆RP 

Panel A: actual outlooks 
all observations 

DOWN 4,317 -2.7 -2.7 -2.8 -2.5 -1.4 -0.5 
NEG 11,406 -1.4 -1.5 -1.2 -1.1 -0.8 -0.6 
STA 27,679 0.4 0.2 0.5 0.5 0.2 0.1 
POS 7183 1.7 1.7 1.6 1.4 0.8 0.5 
UP 2010 1.8 2.8 1.9 1.7 1.4 0.9 
NOA 19,367 -0.4 0.0 -0.4 -0.3 0.1 0.3 
observations with no rating migration event ∆N in the past 12 months and future 12 months 

DOWN 1,149 -0.6 -0.3 -0.8 -0.7 -0.3 -0.2 
NEG 5,462 -0.4 -0.3 -0.6 -0.5 -0.4 -0.5 
STA 17,346 0.6 0.4 0.8 0.7 0.4 0.1 
POS 3,915 1.6 1.6 1.6 1.4 0.9 0.5 
UP 887 1.4 2.2 1.2 1.0 0.9 0.5 
NOA 9,607 0.1 0.5 0.1 0.2 0.3 0.4 

observations in a half yearly period before and after a downgrade event ∆N 
DOWN 2,663 -3.8 -4.1 -3.9 -3.5 -2.0 -0.7 
NEG 3,368 -3.2 -3.7 -2.4 -2.3 -1.5 -0.6 
STA 3,605 -1.6 -2.0 -1.6 -1.4 -0.9 -0.3 

observations in a half yearly period before and after an upgrade event ∆N 
STA 2,045 2.5 3.2 2.5 2.2 1.2 0.4 
POS 1,220 3.2 3.9 2.7 2.4 1.5 0.7 
UP 763 2.5 3.9 2.8 2.7 2.0 1.5 
Panel B: simulated OP(0) outlooks 

all observations 
DOWN 4,317 -6.2 -6.6 -6.4 -5.9 -3.6 -1.8 
NEG 11,406 -3.3 -3.5 -2.9 -2.7 -1.7 -0.9 
STA 27,679 0.6 0.5 0.6 0.6 0.4 0.2 
POS 7,183 4.6 4.9 4.4 3.9 2.3 1.0 
UP 2,010 7.5 7.9 7.6 6.7 3.5 1.5 
observations with no rating migration event ∆N in the past 12 months and future 12 months 

DOWN 1,335 -5.6 -5.6 -6.2 -5.6 -3.5 -2.1 
NEG 5,194 -3.0 -3.0 -3.1 -2.8 -1.7 -1.0 
STA 17,101 0.7 0.5 0.8 0.8 0.5 0.2 
POS 4,079 4.7 4.7 4.6 4.1 2.4 1.1 
UP 1,050 7.5 7.5 7.6 6.7 3.5 1.6 

observations in a half yearly period before and after a downgrade event ∆N 
DOWN 2,182 -6.7 -7.3 -6.7 -6.1 -3.7 -1.6 
NEG 3,706 -3.8 -4.3 -2.9 -2.7 -1.8 -0.7 
STA 3,909 -0.2 -0.4 -0.2 -0.2 0.0 0.2 

observations in a half yearly period before and after an upgrade event ∆N 
STA 2,086 1.2 2.0 1.0 1.0 0.8 0.4 
POS 1,365 4.6 5.4 4.2 3.8 2.2 0.9 
UP 528 7.6 8.6 8.1 7.2 3.8 1.7 
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Table VI Outlook distribution conditional to a rati ng migration event 
 
The table presents the distribution of actual outlooks and simulated OP(0) outlooks as a function of time 
relative to a rating migration event ∆N in period (-1,0). In the first column the average outlook distribution 
is given for observations with no ∆N happened in the past 12 months and future 12 months. 
 

 timing t relative to an agency migration in period (-1,0) outlook 
t > 11, 
t < -12 

t = -12 t = -6 t = -3 t = -1 t = 0 t = 2 t = 5 t = 11 

actual outlook distribution, conditional to a rating downgrade in (-1,0) 

DOWN 4.5% 3.9% 14.1% 38.3% 56.7% 18.9% 12.6% 8.3% 5.4% 
NEG 25.1% 23.2% 27.6% 22.9% 17.1% 42.3% 44.1% 42.5% 39.1% 
STA 58.1% 59.0% 48.3% 31.5% 20.9% 33.6% 36.9% 41.2% 44.5% 
POS 10.6% 12.0% 9.4% 6.6% 4.9% 4.5% 5.4% 6.8% 9.0% 
UP 1.7% 1.8% 0.6% 0.7% 0.4% 0.7% 1.0% 1.1% 2.0% 
DOWN+NEG 29.6% 27.1% 41.7% 61.2% 73.8% 61.2% 56.7% 50.8% 44.5% 
UP+POS 12.3% 13.8% 10.0% 7.3% 5.3% 5.2% 6.4% 7.9% 11.0% 

simulated OP(0) outlook distribution, conditional to a rating downgrade in (-1,0) 

DOWN 5.8% 9.4% 15.8% 25.8% 35.4% 18.2% 16.1% 12.7% 6.1% 
NEG 22.9% 22.5% 33.1% 33.1% 32.2% 41.0% 38.3% 36.6% 31.8% 
STA 57.2% 54.8% 44.1% 35.2% 28.0% 35.1% 40.4% 46.2% 56.0% 
POS 11.7% 11.5% 6.0% 5.2% 3.2% 5.0% 4.7% 4.1% 5.9% 
UP 2.5% 1.8% 0.9% 0.7% 1.2% 0.8% 0.5% 0.3% 0.2% 
DOWN+NEG 28.7% 31.9% 48.9% 58.9% 67.6% 59.2% 54.4% 49.3% 37.9% 
UP+POS 14.2% 13.3% 6.9% 5.9% 4.4% 5.8% 5.2% 4.4% 6.1% 

actual outlook distribution, conditional to a rating upgrade in (-1,0) 

DOWN 3.5% 1.2% 1.0% 1.3% 1.3% 1.0% 1.4% 1.7% 2.6% 
NEG 9.8% 11.4% 9.8% 7.1% 4.8% 4.6% 3.9% 5.0% 4.2% 
STA 62.7% 44.6% 40.6% 29.8% 23.0% 63.2% 63.8% 66.2% 61.9% 
POS 20.1% 33.7% 34.3% 29.8% 24.5% 27.4% 27.6% 24.1% 28.0% 
UP 3.9% 9.0% 14.3% 31.9% 46.4% 3.9% 3.3% 3.0% 3.2% 
DOWN+NEG 13.3% 12.6% 10.8% 8.4% 6.1% 5.6% 5.3% 6.7% 6.8% 
UP+POS 24.0% 42.7% 48.6% 61.7% 70.9% 31.3% 30.9% 27.1% 31.2% 

simulated OP(0) outlook distribution, conditional to a rating upgrade in (-1,0) 

DOWN 3.6% 1.8% 2.4% 2.1% 1.7% 3.4% 1.7% 3.3% 4.2% 
NEG 11.4% 10.8% 5.9% 7.1% 6.5% 4.8% 4.7% 6.0% 10.6% 
STA 61.8% 48.8% 52.4% 45.3% 45.8% 49.2% 50.0% 47.8% 48.1% 
POS 17.6% 30.7% 27.6% 29.1% 28.4% 32.7% 35.1% 34.1% 29.1% 
UP 5.6% 7.8% 11.5% 16.5% 17.6% 9.9% 8.6% 8.7% 7.9% 
DOWN+NEG 15.0% 12.6% 8.3% 9.2% 8.2% 8.2% 6.4% 9.3% 14.8% 
UP+POS 23.2% 38.5% 39.1% 45.6% 46.0% 42.6% 43.7% 42.8% 37.0% 
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Table VII Outlook migration matrix 
 
Panel A of the table presents the monthly outlook migration probabilities for six outlooks, including the 
NOA Outlooks (NOA = no outlook available). Panel B of the table presents the outlook migration matrix 
after converting all NOA Outlooks to STA Outlooks. This allows the migration matrix of actual outlooks to 
be compared with the migration matrix of simulated OP(1.5) outlooks. Panel C of the table presents the 
outlook migration matrix after merging the DOWN and NEG categories and merging the UP and POS 
categories. 
Observations with no succeeding observation available in the dataset – “exit” observations – are excluded 
from the computation of the outlook migration matrices. The numbers of default observations and “exit” 
observations – observations at the end of an issuer time series in the database – are given in last column. 
 
panel A: NOA Outlooks are treated separately in the migration matrix 

end outlook at t = 1, one month later  
 

initial 
outlook 
at t = 0 

# obs. 
DOWN NEG STA POS UP NOA 

default 
(% and number) 

# 
exit 

DOWN 4,235 76.8% 4.1% 4.0% 0.3% 0.3% 14.2% 0.40% 17 82 
NEG 11,181 2.0% 95.0% 1.5% 0.2% 0.3% 0.2% 0.89% 100 225 
STA 26,997 1.1% 0.9% 96.9% 0.5% 0.5% 0.1% 0.08% 21 682 
POS 7,065 0.6% 0.6% 2.0% 95.8% 0.8% 0.1% 0.03% 2 118 
UP 1,873 0.2% 0.2% 4.2% 1.4% 83.9% 10.1% 0.05% 1 137 

actual 
outlook 

NOA 19,200 1.4% 0.8% 1.4% 0.3% 0.5% 95.2% 0.26% 49 167 
  
panel B: NOA Outlooks are converted to STA outlooks 

end outlook at t = 1, one month later  initial 
outlook 
at t = 0 

# obs. 
DOWN NEG STA POS UP 

default 
(% and number) 

#  
exit 

DOWN 4,235 76.8% 4.1% 18.2% 0.3% 0.3% 0.40% 17 82 
NEG 11,181 2.0% 95.0% 1.6% 0.2% 0.3% 0.89% 100 225 
STA 46,197 1.2% 0.9% 96.9% 0.4% 0.5% 0.15% 70 849 
POS 7,065 0.6% 0.6% 2.2% 95.8% 0.8% 0.03% 2 118 

actual 
outlook 

UP 1,873 0.2% 0.2% 14.4% 1.4% 83.9% 0.05% 1 137 

DOWN 4,087 85.9% 9.0% 3.9% 0.0% 0.0% 1.08% 44 65 
NEG 10,495 3.3% 88.6% 6.9% 0.0% 0.0% 1.20% 126 216 
STA 46,906 0.4% 1.9% 96.5% 1.0% 0.1% 0.04% 20 917 
POS 7,028 0.1% 0.1% 8.6% 89.3% 2.0% 0.00% 0 155 

OP(1.5) 
outlook 

UP 2,035 0.0% 0.0% 5.2% 8.0% 86.9% 0.00% 0 58 
 
panel C: DOWN and NEG categories are merged, UP and POS categories are merged 

end outlook at t = 1, one month later  initial 
outlook 
at t = 0 

# obs. DOWN/ 
NEG 

STA 
POS/ 
UP 

default 
(% and number) 

#  
exit 

DOWN/NEG 15,416 92.6% 6.2% 0.4% 0.76% 117 307 
STA 46,197 2.1% 96.9% 0.9% 0.15% 70 849 

actual 
outlook 

POS/UP 8,938 1.0% 4.7% 94.2% 0.03% 3 255 

DOWN/NEG 14,582 92.8% 6.0% 0.0% 1.17% 170 281 
STA 46,906 2.3% 96.5% 1.2% 0.04% 20 917 

OP(1.5) 
outlook 

POS/UP 9,063 0.1% 7.8% 92.1% 0.00% 0 213 

DOWN/NEG 14,414 93.9% 4.9% 0.0% 1.17% 169 288 
STA 46,764 1.9% 97.1% 0.9% 0.04% 21 909 

OP(2.0) 
outlook 

POS/UP 9,373 0.1% 6.4% 93.5% 0.00% 0 214 



 40 

Table VIII Default prediction performance of adjusted ratings  
 
The table presents the default prediction performance of adjusted and unadjusted rating scales. Default 
prediction performance of a rating scale is measured by an accuracy ratio ACR (see Appendix B). ACR 
weights type I and type II errors equally in distinguishing defaulters and non-defaulters. It varies between 
0% (random scale) and 100% (perfect prediction scale).  
The table reports the ACR values for the unadjusted rating scale N, ACR(N), and the difference in ACR 
values between an adjusted rating scale R and the rating scale N, ∆ACR(R). ACR(N) and ∆ACR(R) values 
are given for various prediction horizons, ranging from 6 months to 36 months. Standard error in ACR(N) 
is 1.5% for a 6 month prediction horizon and 2% for a 3 year horizon. The standard error in ∆ACR(R) is a 
factor of two lower. 
∆ACR(R) values are computed for adjustments based on actual outlooks and simulated OP(TH) outlooks. 
The applied adjustment schemes are given in the table. Adjustment scheme 1neg and 1pos restrict the 
adjustment of ratings to respectively the downside of the outlook scale (DOWN: -2.5, NEG: -1.5, STA: 
+0.5, POS: + 0.5 and UP: + 0.5) and the upside of the outlook scale (DOWN: +0.5, NEG: +0.5, STA: +0.5, 
POS: + 1.5 and UP: + 2). 
 

prediction horizon (months)  basis of outlook 
adjustment  

adjustment 
scheme 6 12 18 24 36 

adjustment scheme 1, DOWN: -2.5 , NEG: -1.5, STA, +0.5, POS: +1.5, UP:+2 
ACR(N) no adjustment - 76.8% 69.1% 65.3% 62.4% 57.2% 
∆ACR(R) actual outlook 1 4.1% 3.7% 2.2% 1.5% 1.5% 
ACR(N) actual outlook 1neg 3.7% 2.9% 1.2% 0.6% 0.7% 
∆ACR(R) actual outlook 1pos 1.3% 1.7% 1.8% 1.6% 1.4% 
∆ACR(R) OP(TH = 0) 1 8.7% 9.1% 8.0% 6.9% 5.7% 
∆ACR(R) OP(TH = 0) 1neg 8.1% 8.3% 7.1% 6.1% 5.0% 
∆ACR(R) OP(TH = 0) 1pos 1.8% 2.1% 2.1% 1.9% 1.7% 

adjustment scheme 2, DOWN/NEG: -1.5 , STA + 0.5, POS/UP:+1.5 
∆ACR(R) actual outlook 2 3.9% 3.5% 2.3% 1.7% 1.7% 
∆ACR(R) OP(TH = 0) 2 7.5% 8.0% 7.1% 6.2% 5.3% 
∆ACR(R) OP(TH = 3.0) 2 6.9% 7.5% 6.5% 5.4% 4.5% 

adjustment scheme 3, DOWN: -4.5 , NEG: -2.5, STA, +0.5, POS: +3, UP:+4.5 
∆ACR(R) actual outlook 3 3.4% 3.1% 1.0% -0.1% -0.5% 
∆ACR(R) OP(TH = 0) 3 9.7% 10.2% 8.4% 6.7% 4.9% 
∆ACR(R) OP(TH = 3.0) 3 8.5% 8.8% 6.6% 4.6% 3.1% 

adjustment scheme 4, DOWN: -6.5 , NEG: -3.5, STA, +0.5, POS: +4.5, UP:+7.5 
∆ACR(R) actual outlook 4 1.5% 1.1% -1.7% -3.1% -4.0% 
∆ACR(R) OP(TH = 0) 4 9.2% 9.5% 7.1% 4.9% 2.3% 
∆ACR(R) OP(TH = 3.0) 4 7.7% 7.4% 4.4% 1.8% -0.5% 
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Table IX Properties of adjusted ratings 
 
The table presents the properties of unadjusted ratings, ratings adjusted by their actual outlooks and simulated OP(TH) outlooks and credit model ratings RP(TH,AF) and 
LDP(TH). Adjustment by outlooks follows adjustment scheme 1 (DOWN: -2.5 , NEG: -1.5, STA: +0.5, POS: +1.5, UP:+2.0). Credit model ratings are computed following the 
procedure described in appendix A. Simulated RP(1.98,0.7/0.6) ratings are based on RP scores and a migration policy with a threshold TH of 1.8 notch steps and an adjustment 
fraction of 0.7 at the downside and 0.6 at the upside. RP(TH) and LDP(TH) ratings are based on respectively RP scores and LDP scores and a migration policy with threshold 
TH and an adjustment fraction of 1. 
The following properties are reported: rating stability, rating drift, sensitivity to temporary credit risk component and default prediction performance. Rating stability is 
measured in terms of migration probabilities per month. Rating drift is measured by the average migration two years after a rating migration event ∆R. Sensitivity to the 
temporary credit risk component is measured by the relative weight to the temporary credit risk variable in the logit regression analysis, as described in section 4.4. Default 
prediction performance is measured by the difference in ACR between an adjusted rating scale R and the unadjusted rating scale N, ∆ACR(R). The prediction horizon is one 
year. 
 

downgrade upgrade 
sensitivity to  

temporary credit risk component 
average migration 

conditional to a down-
grade in period (-1,0) 

average migration 
conditional to an up-
grade in period (-1,0) 

rating outlook 
adjustment  

monthly 
downgrade 
probability 

(-1,0) (0,24) 

monthly 
upgrade 

probability 
(-1,0) (0,24) 

all issuers 
all, except 

Ca, Caa B3, 
B2 issuers 

only 
Ca,Caa B3, 
B2 issuers 

∆ACR(R) 
one year 
horizon 

actual N no adjustment 1.8% -1.40 -0.33 0.7% 1.22 0.48 10.2% 0.0% 27.8% 69.1% 

RP(1.8,0.7/0.6) no adjustment 1.7% -1.40 -0.28 0.9% 1.26 0.45 1.5% 1.4% 0.2% -2.5% 
RP(1.8,1) no adjustment 1.7% -1.86 0.09 1.0% 1.69 0.11 3.4% 4.2% 1.0% -1.7% 
RP(0,1) no adjustment 16.1% -0.68 0.08 12.7% 0.66 -0.13 12.2% 12.9% 11.0% 1.8% 

actual N actual outlook 3.0% -1.93 0.41 1.9% 1.59 0.00 18.7% 15.2% 35.0% 3.7% 
actual N OP (TH=1.5) 5.1% -1.45 0.33 3.4% 1.40 -0.31 27.3% 27.0% 40.3% 9.1% 

LDP(TH=1) no adjustment 6.3% -1.41 0.38 5.5% 1.15 -0.35 29.3% 30.3% 28.9% 10.2% 
LDP(TH=1.5) no adjustment 4.0% -1.80 0.44 3.3% 1.46 -0.40 28.3% 29.5% 27.6% 9.1% 
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Table A Influence of the threshold parameter TH on rating dynamics of RP(TH) ratings 
 
The table presents the properties of credit model ratings RP(TH). Credit model ratings RP(TH) are computed following the procedure described in appendix A. RP(TH) ratings 
are based on respectively RP scores and a migration policy with threshold TH and an adjustment fraction of 1.The following properties are reported: reversal probabilities - on 
a monthly basis - for various periods P after a rating migration in (-1,0) and the default prediction performance by accuracy ratios ACR. 
 

RP(TH,AF = 1), various TH (notch steps) period P after a rating 
migration in (-1,0) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

N 
RP 

(1.8,0.7/0.6) 
reversal probability conditional to a downgrade in month (-1,0) 

one month  10.3% 3.3% 1.2% 0.7% 0.4% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 
six month  2.5% 2.0% 1.4% 1.0% 0.8% 0.6% 0.5% 0.4% 0.3% 0.3% 0.3% 0.2% 0.1% 0.1% 
one year  1.4% 1.3% 1.1% 1.0% 0.9% 0.8% 0.7% 0.6% 0.6% 0.5% 0.5% 0.5% 0.2% 0.3% 
two year  0.7% 0.7% 0.6% 0.6% 0.6% 0.6% 0.5% 0.5% 0.5% 0.5% 0.4% 0.4% 0.2% 0.3% 

reversal probability conditional to an upgrade in month (-1,0) 
one month  13.3% 5.3% 2.3% 1.4% 0.8% 0.6% 0.4% 0.4% 0.2% 0.2% 0.1% 0.0% 0.2% 0.1% 
six month  3.5% 3.0% 2.3% 1.7% 1.3% 1.0% 0.8% 0.7% 0.6% 0.5% 0.5% 0.4% 0.2% 0.2% 
one year  1.9% 1.8% 1.5% 1.2% 1.1% 0.9% 0.7% 0.6% 0.5% 0.5% 0.5% 0.4% 0.2% 0.3% 
two year  1.1% 1.0% 0.9% 0.8% 0.7% 0.7% 0.6% 0.5% 0.5% 0.4% 0.4% 0.4% 0.3% 0.3% 
 

RP(TH,AF = 1), various TH (notch steps) prediction time  
horizon 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

N 
RP 

(1.8,0.7/0.6) 
accuracy ratio ACR (%) 

one year 77.1% 77.0% 76.8% 76.7% 76.5% 76.3% 75.7% 75.8% 75.6% 74.8% 74.6% 73.8% 76.8% 74.0% 
three years 67.2% 67.2% 67.1% 66.9% 66.9% 66.7% 66.5% 66.5% 66.3% 65.7% 65.5% 64.9% 68.3% 65.3% 
six years 59.6% 59.6% 59.5% 59.5% 59.4% 59.3% 59.1% 59.0% 59.2% 58.7% 58.6% 58.2% 61.4% 58.4% 
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Endnotes 
                                                 
1  An alternative, including observations of issuers defaulting in period (t, t+T1) in the analysis by setting 

pi,t = 1 for these observations, does not change the model estimation significantly, since the number of 

defaulting observations is relatively small compared to the number of surviving observations. 
2  We have not revealed the parameters of the Fitch through-the-cycle methodology. 
3  see The Financial Times, 19 January 2002, "Moody's mulls changes to its ratings process". 
4  Default prediction models estimated with the Moody’s default dataset are fairly similar to those 

estimated with the Standard & Poor’s definition of default (see Altman and Rijken, 2004). Although 

the Moody’s default definition differs from the Standard & Poor’s default definition, the default 

prediction models estimated with Moody’s default events are as good as equal to default prediction 

models estimated with Standard & Poor’s default events. In contrast to Standard & Poor’s, Moody’s 

counts delayed payments made within a grace period and explicitly counts issuer files for bankruptcy 

(Chapter 11 and Chapter 7) and legal receivership. Furthermore, the rating prediction model estimated 

with Moody’s ratings is almost an exact replication of the rating prediction model estimated with 

Standard & Poor’s ratings. This is not surprising as Moody’s ratings differ only by 1 to 2 notch steps at 

most from those of Standard & Poor’s. 
5  Robustness tests show that outlook prediction model parameters do not change much along the entire 

rating scale N. Even in the extreme case of Caa category, RW values and model parameters are 

comparable to investment graded categories and other speculative graded categories. Other robustness 

tests shows that just before and just after a rating migration event the outlook scale relies more on 

short-term trends in stock prices at the expense of the ME/LIB variable. Similar differences are 

observed between time period 1995-1999 to 2000-2004. More recently the outlook scale depends less 

on equity trends and more on market leverage. 
6  In a first attempt to characterize the dynamic properties of XT and XP we decomposed these scores into 

a permanent component and a cyclical component. A significant cyclical component showed up for XT 

with a cycle of 3-4 years. However this cyclical component contains no credit risk information. It has 

no added value in explaining one-year default probabilities. 
7  In the distribution for “exit” observations STA Outlooks and UP Reviews are slightly outnumbered 

compared to the distribution for all observations by respectively 48.3% vs. 38.3% and 9.7% vs. 2.7%, 

while NOA Outlooks are underrepresented by 11.8% vs. 27.2%. 
8  Sensitivity of ratings to the temporary credit risk component is measured by the weight to the 

temporary credit risk component XT in the logit regression analysis as described in section 4.4. The 

weight to XT is by definition 0% for the unadjusted ratings of all issuers rated B1 and above. For 

highly distressed Ca, Caa, B3 and B2 rated issuers the rating scale has a 27.8% weight to XT which 

comparable to a long-term point-in-time measure (see table IV). Simulated RP(1.8,0.7/0.6) ratings are 

not sensitive to XT for the entire rating scale as they reproduce the agency rating dynamics. Relaxing 

the migration policy by threshold removal (TH = 0) and full adjustment (AF = 1) increases the 

sensitivity to XT from 1.5% to 12.2%. As part of the through-the-cycle methodology, the prudent rating 

migration policy substantially reduces the sensitivity to XT. 
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9  In order to compare threshold levels for different credit model ratings the threshold levels have to be 

rescaled to the volatility level of the underlying credit scores. The 1.8 notch steps threshold for ratings 

and the 1.5 threshold for OP(1.5) ratings translate into respectively an equivalent threshold of 2.1 and 

0.7 for LDP ratings. The average of 1.4 notch steps is close to the implied threshold TH of 1.25 notch 

steps. 
10  The minimum threshold level imposed by a discrete agency rating scale is 0.5 notch steps. 
11   The stochastic defaulting process can be modeled by the following exponential distribution function α 

× exp(-αFA). With this distribution function the CAP curve can be modeled by 1 - exp(-αFA) with FA< 

1. The surface below the CAP curve is 1 - 1/α, when approximating exp(-α) ≈ 0. In that case ACR is 1 

- 2/α. In a sampling experiment with n defaulting events the expected average FA for the exponential 

distribution is 1/α and the variance in FA VAR(FA) is 1/(n α2). In that case the standard error in ACP is 

2/(α√n). For a time horizon of three years, a best fit with the actual CAP curve is obtained for α = 10, 

so the standard error is 0.020 (n = 162). For a one year horizon the standard error is 0.015. 
12  The standard errors in ∆ACR are 0.75 percent for T = one year, 1.0 percent for T = three years, and 

1.25 percent for T = six years. The standard errors in comparing differences between accuracy ratios of 

agency ratings and credit-model ratings, σ(∆ACR), are lower than the standard error of ACR itself 

because the underlying stochastic defaulting process (same dataset and same defaulting events) is the 

same for all rating scales. Because the CAP curves of agency ratings and CM ratings are comparable, 

variation in this stochastic process are expected to have a comparable impact on the ACRs of these 

ratings. However, a standard error σ(∆ACR) still exists. An approximation of σ(∆ACR) for the pooled 

sample was obtained from a time-series analysis of the ACR and ∆ACR. The standard deviation in 

annual times series of the ACR for agency ratings and CM ratings is roughly 2 percent higher than the 

standard deviation in annual time series of ∆ACR for these ratings. So, based on the pooled sample’s 

standard errors for ACR, the pooled sample standard error for σ(∆ACR) is approximately 0.75 percent 

for a time horizon of one year and goes up to 1.25 percent for a time horizon of six years. 
13  The standard errors in the logit regression estimation are a generalized version of the Huber and White 

standard errors. In a standard logit model setting, the error terms, εi, are assumed to be identically and 

independently distributed [var(εi) = σ2, cov(εi, εj ) = 0 if i ≠ j]. In reality, these conditions are violated. 

To obtain the correct statistics, Huber–White standard errors are used to relax the assumption of 

homoscedasticity. A generalization of Huber–White standard errors (Rogers 1993) also relaxes the 

assumption of independence among all observations. Instead, only independence between observations 

of different companies is assumed. “Pseudo R2” is a measure of the goodness of the fit. 


