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Abstract

We analyze the volatility risk premium by applying a modified two-pass Fama-MacBeth procedure

to the returns of a large cross section of the returns of options on individual equities. Our results

provide strong evidence of a volatility risk premium that is increasing in the level of overall market

volatility. This risk premium provides compensation for risk stemming both from the characteristics of

the option contract and the riskiness of the underlying equity. We also show with a large scale Monte

Carlo simulation that measurement error in option prices and violations of arbitrage bounds induce

highly economically significant biases in the mean returns of options. In fact, our simulation results

demonstrate that biases can be up to several percentage points per day. These large biases can lead

researchers to faulty conclusions with respect to both the magnitude of the volatility risk premium and

the sign of expected option returns.
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1 Introduction

There is no doubt that stock market volatility changes over time, but whether or not volatility represents a

priced risk factor remains less certain. Theoretically, a stochastic volatility factor seems a prime candidate

for a nonzero risk premium because, in the framework of Merton’s (1973) ICAPM, it represents a variable

that drives the investment opportunity set. Empirically, support for a nonzero volatility risk premium is

varied, with some studies finding large values and some finding none. The primary goal of this paper is to

address this question using an empirical method and a data set that together should offer a much clearer

answer than has previous work.

Determining whether volatility is priced has important consequences for option pricing, interpreting

implied volatilities, and understanding investor preferences. Stochastic volatility models are the norm in

the option pricing literature, and numerous papers have demonstrated that a nonzero price of volatility risk

can improve model fit substantially. A volatility risk premium also means that implied volatilities, whether

they are from the Black-Scholes (1973) model or the model-free approach of Britten-Jones and Neuberger

(2000), cannot be interpreted as unbiased forecasts of future realized volatility. An assessment of the size

of the volatility risk premium is also useful in understanding the preferences of market participants and in

building better models of investor behavior. Finally, knowing whether a volatility risk premium exists has

important implications for understanding the purpose of options markets, namely the extent to which these

can be seen as markets for volatility risk.

In this paper we apply traditional two-pass Fama-MacBeth regressions to the returns of a large cross

section of options on individual equities. Analyzing equity options rather than index options, as virtually all

prior work has done, introduces an additional source of variation in volatility factor betas. Specifically, in

any analysis of index options, all variation in volatility betas must arise from variation in the characteristics

of the different option contracts, namely time-to-maturity, moneyness, and whether the option is a call or

a put. Because volatility factor betas are likely correlated with a number of other variables that could be

relevant in determining risk premia, it is possible that volatility betas are merely a proxy for some other

source of expected return that is also related to maturity and moneyness.

Looking at options on individual equities allows for an additional source of variation in volatility betas

that is independent from the characteristics of the option contract. Specifically, using multiple underlying

securities allow us to sort firms into groups that appear to have a greater degree of dependence between

their own return volatilities and the volatility of the market, and groups that do not. We can use this

sorting procedure to introduce additional dispersion into the betas of option portfolios. We can also use the

procedure to isolate the variation that is due solely to firm-level rather than contract-level variation.
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We believe that the use of the traditional Fama-MacBeth approach posesses some significant advantages

relative to recent work that emphasizes fully specified parametric and usually continuous-time models. The

most important of these advantages is related to the highly rigid structure placed on risk premia by most

parametric option pricing models. In a pure stochastic volatility model, for example, any abnormal return

on a strategy of buying zero delta straddles must be attributed to a nonzero price ov volatility risk – there

are simply no other channels within the model to generate this result. Furthermore, parametric models

put substantial structure on the relative riskiness of different option contracts. Even if the prices of risk

are correct, misspecification in risk exposures will generate misleading conclusions about the importance

of risk premia in explaining option pricing anomalies. Of course, good empirical work typically examines

these assumption in one manner or another, and we are not suggesting that the estimation of continuous-

time option pricing models be discontinued, only that a less parametric approach might provide a valuable

complement to the existing literature.

Unfortunately, we find that traditional “off the shelf” methods cannot be applied in the setting in which

we are interested. Option markets are characterized by large bid-ask spreads, and the noise that these

spreads inject into observations of fair market value causes several significant problems. First, noisy prices

may not conform to arbitrage bounds, usually because the observed option price is below its intrinsic value.

This makes it impossible to solve for an implied volatility, for example, which is typically the first step in

computing the delta used to hedge the option. Prior work has usually dealt with this issue by throwing out

observations that do not satisfy these bounds, but because most of the discarded observations are of option

prices that are too low rather than too high, this method introduces a censoring bias. Secondly, as Blume

and Stambaugh (1982) first pointed out, noisy prices induce an upward bias in average returns.

Our empirical work is guided by an extensive simulation study that focuses on what modifications of the

standard two-pass approach are necessary to achieve the correct test size and a high degree of power. Through

this process, we identify a successful alternative to the traditional approach of throwing out observations

that do not satisfy arbitrage bounds. We also implement a new method for bias adjustment that allows

us to reduce, if not eliminate completely, the bias identified by Blume and Stambaugh. Our simulation

results demonstrate that both biases can be severe, with each causing biases in average returns of up to

several percentage points per day. Although these simulation results might appear overly dramatic, we have

found virtually identical results when we look at actual data. At the same time, our analysis shows that

other common concerns about applying traditional methods to option returns appear to be overrated – there

appears to be little worry, for instance, that nonlinearity in the return-factor relation is driving our results.

When we apply our modified two-pass approach to the data, our results strongly support the view that

stochastic volatility represents a priced risk factor, but only conditionally as the unconditional mean cannot
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reliably be distinguished from zero. In particular, we find strong evidence that the volatility risk premium

varies positively with the level of implied volatilities from S&P 500 index options. This result is robust

to a variety of different portfolio construction methods and variations in our econometric approach. In

addition, we find strong evidence that these risk premia are not merely proxies for other variables that are

similarly correlated with option contract characteristics such as maturity and strike price, as the dispersion

in volatility betas that is driven by differences in underlying stocks is priced similarly to the dispersion

coming from option contract type.

In a brief application of our framework to equity index options, we demonstrate that the bias caused

by bid-ask bounce could be sufficient to reverse the observed relation between strike prices and average call

option returns. Like Coval and Shumway (2001), we find a positive relation between strike price and average

observed returns, a result that they note is consistent with the the higher CAPM betas of out-of-the-money

(OTM) call options. Our regression results indicate, however, that this effect could be entirely driven by the

bias arising from higher bid-ask spreads among OTM options. After correcting for this bias, we find that

the result reverses, suggesting that the CAPM does not provide an adequate explanation for the expected

returns of these assets. These findings lead us to believe that similar biases might help explain some of the

other puzzles that have been identified in the option pricing literature.

The prior literature on volatility risk premia is large, but almost all of it focuses on equity index options.

Early tests of risk premia focused on comparing future realized volatility with current Black-Scholes implied

volatilities, usually in a regression framework. Papers such as Fleming, Ostdiek, and Whaley (1995), Jackw-

erth and Rubinstein (1996), and Christensen and Prabhala (1998), show that realized volatilities tend to be

substantially lower than implied volatilities. Subsequent work on the estimation of structural models, most

based on the square root specification of Heston (1993), offer complementary evidence that confirmed that

the results are not artifacts of the misuse of the Black-Scholes formula. In particular, papers by Bates (2000),

Benzoni (2002), Chernov and Ghysels (2000), Jones (2003), and Pan (2002) all find large negative volatility

risk premium. A slightly dissenting voice is Broadie, Chernov, and Johannes (2005), who find no evidence

for a risk premium on diffusive volatility risk but possibly a risk premium on volatility jumps. Finally, the

presence of a risk premium is suggested by the returns-based analyses of Coval and Shumway (2001) and

Jones (2003), who find that expected returns on short delta-hedged options are often on the order of half a

percent per day, indicating the presence of a residual risk factor with a large risk premium.

Work analyzing individual equity options is relatively sparse. Bakshi and Kapadia (2003) present some

evidence, but the conclusions are weak most likely because their is only five years long and analyzes only 25

firms. Carr and Wu (2003) use a similarly limited, though slightly longer sample and find slightly stronger

evidence for a volatility risk premium, though they find it to be weaker in equity options than in index
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options. On the other hand, Driessen, Maenhout, and Vilkov (2006) compare average model-free implied

variances to average realized variances and find insignificant differences, which they cite as evidence that the

volatility risk premium does not in fact exist.

Finally, both Chen (2002) and Ang, Hodrick, Xing, and Zhang (2006) analyze whether volatility is a

priced factor in the cross-section of equity returns. While Chen’s (2002) GARCH-based approach results in

inconclusive results, Ang et al. use a factor constructed from index implied volatilities and find a significantly

negative risk premium.

Our paper proceeds as follows. In Section 2 we discuss the basic modeling framework used throughout

the paper. Section 3 introduces the econometric methods we rely on, while Section 4 includes a description

of our data set. Section 5 describes our Monte Carlo study and presents its results. Section 6 contains our

main empirical findings, and Section 7 concludes.

2 Theory

In this section we motivate our approach using a standard continuous-time stochastic volatility model. We

discuss the risk exposures faced both by naked and hedged option buyers, distinguishing standard delta

hedging from a more theoretically accurate approach for eliminating underlying risk using a measure we call

“total delta.” Risk premia are first introduced mechanically as risk prices corresponding to the Brownian

motions driving each firm, but we then link these risk prices to exposure to market-level risk.

2.1 A stochastic volatility model of equity prices

We start with the following general stochastic volatility model:

dSt

St
= µtdt + σtdB1,t (1)

dσt = θtdt + ωtρdB1,t + ωt

√
1− (ρ)2dB2,t

corr
(

dSt

St
, dσt

)
= ρ,

where St is the price of the stock at time t, σt is its volatility, and ρ is the instantaneous correlation between

the stock price and its volatility. The Brownian motions B1,t and B2,t are standard Brownian motions

under the physical probability measure.

The price of a derivative on the underlying stock is represented by f(St, σt, t). Under standard assump-
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tions, Appendix A shows that the instantaneous excess return of this derivative is

dft

ft
− rtdt =

(
St

ft

∂f

∂S
+

ωtρ

σt

1
ft

∂f

∂σ

)(
dSt

St
− rtdt + qtdt

)
+ωt

√
1− ρ2

1
ft

∂f

∂σ
(λ2,tdt + dB2,t) , (2)

where qt is the instantaneous dividend yield of stock i and rt is the instantaneous risk-free rate of interest.

Both qt and rt are possibly time-varying but deterministic. The expected excess return is therefore given by

the following “two-beta” representation:

E
[
dft

ft

]
− rtdt =

(
St

ft

∂f

∂S
+

ωtρ

σt

1
ft

∂f

∂σ

)
λ1,tσtdt +

1
ft

∂f

∂σ
λ2,tωt

√
1− ρ2dt (3)

Thus, the parameter λ1,t is the price of stock risk and λ2,t is the price of orthogonal volatility risk. The price

of stock risk is also by definition analogous to an instantaneous Sharpe ratio, that is λ1,t = (µt− rt + qt)/σt.

The expected excess return of the derivative in Equation (3) is composed of two parts, one related to the

exposure to stock price risk (λ1,t), the other related to the exposure to the volatility risk (λ2,t). The exposure

of derivatives to stock returns is also composed of two parts, one related to the direct relation between stock

prices and derivative prices (∂f/∂S), and the other related to the correlation between volatility and stock

returns (ρ).

The expected excess returns of both call and put options in the model above can be either positive or neg-

ative. Under the assumption of deterministic volatility, Coval and Shumway (2001) show that the expected

excess returns of calls is positive while the expected excess returns of puts is negative. Mathematically, this

result of Coval and Shumway (2001) is a direct consequence of Equation (3), which under the assumption of

deterministic volatility is reduced to:

E

[
df

f

]
− rdt = σ

S

f

∂f

∂S
λ1,tdt (4)

The intuition for this result is that if volatility is deterministic, the expected excess return of a derivative

results from its exposure to stock price risk and the expected excess return of the underlying stock. Because

call (put) options are positively (negatively) exposed to stock prices and stock expected excess returns are

generally positive, the expected excess return of calls is positive and the expected excess return of puts is

negative. Under the assumption of stochastic volatility, on the other hand, this conclusion may not hold,

because both calls and puts are also exposed to volatility risk. Consequently, the expected excess return of

calls and puts depends on how their exposure to the volatility risk balances with their exposure to the stock
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price risk. For instance, assume that the correlation between stock returns and volatility changes is zero

(ρ = 0), the price of volatility risk is negative (λ1,t < 0) and the price of stock risk is positive (λ2,t > 0). In

this case, the expected excess return of call options could be negative given that the call option vega (ν =

∂f/∂σ) must be positive.

2.2 Regular delta versus “total” delta

To empirically distinguish between the effects of stock-price risk and volatility, we compute the return of

options hedged against the exposure to stock price risk. The hedged portfolios are composed by a long

position in a single option contract and a position on n stocks financed at the risk-free rate (rt), where n is

given by:

n = −(
∂f

∂S
+

∂f

∂σ

ωρ

σS
) = −(∆ + ν

ωρ

σS
) (5)

Appendix B shows that hedging one option contract with n shares of stock provides a complete hedge

against any exposure to the underlying stock price. Note that the number of shares reduces to minus the

delta of the options (∆ = ∂f/∂S) in the event that stock returns are uncorrelated with changes in volatility.

On the other hand, when volatility and stock returns are correlated it is necessary to change n to account for

the effects that common movements on stock prices and volatilities may have on options prices. We call the

hedging procedure with n shares of a total-delta hedge to distinguish from the usual delta-hedging procedure

in which the number of shares used to hedge a derivative is set equal to −∂f/∂S.

The expected excess return of the hedged portfolio does not depend on the price of stock price risk (λ1,t).

As shown in Appendix B, the excess return of a portfolio of a option delta-hedged option is:

dH

H
− rdt = ω

√
1− ρ2λ2,t

1
f

∂f

∂σ
dt +

1
f

∂f

∂σ
ω
√

1− ρ2dB2,t, (6)

where H represents the value of a portfolio composed of an option hedged with n stocks. Note that the

mean return of the total-delta hedged option depends on the price of volatility risk (λ2,t). This mean return

is the compensation required by investors to hold the risk related to volatility movements not common to

stock price movements.

2.3 Sources of risk premia

Assume that the market portfolio follows the following dynamics under the physical probability measure:

dSm
t

Sm
t

= µm
t dt + σm

t dBm
1,t (7)
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dσm
t = θm

t dt + ωm
t ρmdBm

1,t + ωm
t

√
1− (ρm)2dBm

2,t

corr
(

dSm
t

Sm
t

, dσm
t

)
= ρm

where Bm
1,t, Bm

2,t are uncorrelated Brownian motions. The Brownian motions affecting the individual stock

return and volatility can be rewritten as:

dBi
1,t = ξi

11dBm
1,t + ξi

12dBm
2,t + dZi

1,t

dBi
2,t = ξi

21dBm
1,t + ξi

22dBm
2,t + dZi

2,t, (8)

where Bi
1,t and Bi

1,t are the same Brownian motions in Equation (1). (The superscript i is added to avoid

confusion with the market-related Brownian motions.) The Brownian motions Zi
1,t and Zi

2,t have zero drift

and quadratic variation equal to 1−(ξi
11)

2−(ξi
12)

2 and 1−(ξi
21)

2−(ξi
22)

2, respectively. Furthermore, both Zi
1,t

and Zi
2,t are uncorrelated with Bm

1,t and Bm
2,t. Thus, ξi

11, ξi
12, ξi

21, and ξi
22 represent the correlations between

the Brownian motions driving the stock process and those driving the market process. These correlations

are assumed to be constant. In the decomposition above the individual stock returns and volatilities are

decomposed into components that are related to market returns and to changes in market volatility and into

components that are idiosyncratic. Assuming that the price of idiosyncratic risk is zero, we conclude that

the prices of stock and volatility risks are:

λi
1,t = ξi

11λ
m
1,t + ξi

12λ
m
2,t (9)

λi
2,t = ξi

21λ
m
1,t + ξi

22λ
m
2,t

where the price of market risk is λm
1,t = (µm

t − rt + qm
t )/σm

t , where qm
t is the instantaneous dividend yield

paid by the market portfolio.

The price of stock risk (λi
1,t) in the Equation (9) is analogous to the standard beta representation of

expected returns. To see this, note that multiplying λi
1,t in Equation (9) by σi

t, gives:

(µi
t − rt + qi

t) = βi
m,t(µ

m
t − rt + qm

t ) + βi
V ol,t(ω

m
t

√
1− (ρm)2λm

2,t)

βi,1
m,t =

σi
tξ

i
11

σm
t

(10)

βi,1
V ol,t =

σi
tξ

i
12

ωm
t

√
1− (ρm)2

The first term on the right hand side of the first equation above is analogous to the standard CAPM relation

between the expected excess return of a stock and the expected excess return of the market, as βi
m,t is the
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stock beta in this context. The second term is the premium required by investors to hold a stock whose

returns covary with the volatility of the entire market. The term βi,1
V ol,t is the loading of this stock to the

market volatility risk and (ωm
t

√
1− (ρm)2λm

2,t) is the premium required by investors for holding the market

volatility risk.

The price of volatility risk (λi
2,t) in the Equation (9) also implies a beta representation that is

ωi
t

√
1− (ρi)2λi

2,t = βi,2
m,t(µ

m
t − rt + qm

t ) + βi,2
V ol,t(ω

m
t

√
1− (ρm)2λm

2,t)

βi,2
m,t =

ωi
t

√
1− (ρi)2ξi

21

σm
t

(11)

βi,2
V ol,t =

ωi
t

√
1− (ρi)2ξi

22

ωm
t

√
1− (ρm)2

In this representation βi,2
m,t is the beta of a total-delta hedged portfolio with respect to the market and βi,2

V ol,t

is the beta of the individual stock total-delta hedged options portfolio with respect to the market volatility

factor.

Equation (11) is the center of the Fama-MacBeth procedure in Section 3.3. In the first step of our

Fama-MacBeth procedure, we estimate βi,2
m,t from the relation between the returns of a portfolio of total-

delta-hedged options on the individual stock i and the market portfolio returns , we estimate βi,2
V ol,t from

the relation between the returns of a portfolio of total-delta-hedged options on the individual stock i and

the returns of a portfolio of total-delta-hedged options written on the market portfolio. In the second step

of our Fama-MacBeth procedure, the risk premium of volatility risk (ωm
t

√
1− (ρm)2λm

2,t) inferred from the

cross-section of options is estimated.

3 Econometric approach

We begin this section by providing an empirical strategy for implementing the “total delta” hedge described

in the previous section. We then discuss the process we use for forming portfolios that maximize dispersion

in volatility betas. Finally, we discuss the implementation of the Fama-Macbeth procedure and how we

address three potential sources of bias.

3.1 Computing hedge ratios

In general, our hedging strategies rely on implied volatilities and “Greeks” from the Black-Scholes model.

This approach, while approximate, is standard practice in industry and has been shown in academic research

to be quite accurate. Hull and Suo (2002), in particular, go so far as to claim that “the pricing and hedging
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of a new or an existing plain vanilla instrument is largely model independent.” An important qualifier to

this statement is that hedge ratio inputs, such as deltas, must be computed using the implied volatilities of

the option being hedged. We follow this practice below.

Most of the inputs required to compute hedge ratios can be inferred from options prices using the Black-

Scholes formula. For instance, to hedge a long position in one option, we must take a position of n shares

financed at the risk-free rate, where the hedge ratio n is given by equation (5). Consequently, the hedging

procedure requires knowledge of deltas (∂f/∂S), vegas (∂f/∂σ), and the term ωρ/σ We take the delta and

the vega to be equal to their Black-Scholes values (computed using the option’s own implied volatility). The

last term, however, cannot be directly observed and must instead be estimated using time series regression.

To estimate ωρ/σ, we assume that ω is a constant for each firm. This is an implication of Heston’s

(1993) model of stochastic volatility. We also assume that ρ is constant, and we take σ to equal the implied

volatility on the option. Our task is then to estimate the constant ωρ. From Equation (47) in Appendix A,

we can write the return on hedged option, where the hedge ratio is computed using the standard definition

of delta, as
df

f
− Sσ

f

∂f

∂S
dB1,t = drift +

ωρ

f

∂f

∂σ
dB1,t +

ω
√

1− ρ2

f

∂f

∂σ
dB2,t (12)

Since dSt/St = µi
tdt + σtdBi

1,t, we can rewrite this equation as

df

f
− S

f

∂f

∂S

dSt

St
= drift +

ωρ

σf

∂f

∂σ

dSt

St
+

ω
√

1− ρ2

f

∂f

∂σ
dB2,t (13)

This implies that we can estimate the quantity ωρ as the slope coefficient from the regression

yt = a + b
dSt

St
+ εt, (14)

where yt is the average, across all options in a given day for a given stock, of the quantity

(
df

f
− S

f

∂f

∂S

dSt

St

)
/

(
1

fσ

∂f

∂σ

)
. (15)

Note that the expression above is written in terms of infinitesimal increments, while our data are observed

discretely. We therefore use a discrete approximation to the continuous time model to compute this quantity.

That is, the quantity above is estimated in a given day t with the approximation

(
ft − ft−1

ft−1
− St−1

ft−1
∆t−1

St − St−1

St−1

)
/

(
1

ft−1σt−1
νt−1

)
, (16)
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where σt−1 is the at-the-money volatility of the stock.

3.2 Estimating risk factor sensitivities

Given a strategy to estimate all the variables required to calculate n, we can now compute the excess

return on “total delta-heged” options. This return should, if constructed accurately, be independent of any

movements in the underlying security, even those that arise through a nonzero correlation between the stock

price and volatility processes. It therefore isolates the component of option returns that is unambiguously

related to volatility, and it is the primary subject of our analysis.

Letting Hij denote the value of a hedged position in option contract j on security i, we can use the

decomposition of B2 in equation (8) and the form of the price of risk in equation (9) to rewrite (6) as

dHij

Hij
− rdt =

1
f ij

∂f ij

∂σi
ωi
√

1− (ρi)2 × (17)[
ξi
21

(
λm

1 dt + dBm
1,t

)
+ ξi

22

(
λm

2 dt + dBm
2,t

)
+ dZi

2,t

]
This representation is useful because it isolates the two possible sources of systematic risk in hedged option

returns. One (ξi
21) is the sensitivity to a component of stock market returns that is independent of the

returns on equity i. The other (ξi
22) is the sensitivity of equity i’s volatility process to market volatility.

Note, however, that these sensitivities are only transferred to hedged option returns to the extent the

option is sensitive to volatility movements in general. This sensitivity, which we call the normalized vega,

is equal to (1/f ij × ∂f ij/∂σi). If we divide both sides of the equation by this amount, we get a term that

should be identical across all options on the same underlying stock:

Πij ≡
(

dHij

Hij
− rdt

)
/

(
1

f ij

∂f ij

∂σi

)
(18)

= ωi
√

1− (ρi)2
[
ξi
21

(
λm

1 dt + dBm
1,t

)
+ ξi

22

(
λm

2 dt + dBm
2,t

)
+ dZi

2,t

]
Because the Πij should be identical for all options j on a given stock i, for a given date, we will look

at averages across options on the same stock, which we denote as Πi. Note that Πi can be interpreted as

a return on a zero investment strategy involving a number of hedged option positions. It is also the excess

capital gain resulting from holding a portfolio with vega (∂f/∂σ) equal to one. To see this note that by

construction our hedged portfolios have the same value as the option prices themselves (i.e. H = f), and

hence an option with vega equal to one would have capital gains over time dt equal to Πi. Because of this

interpretation we call this average the one-vega P&L.

The same derivations also apply to the options on the S&P 500 index, which we view as a proxy of the
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market portfolio, except that by definition of Bm
2 we have

Πmj ≡
(

dHmj

Hmj
− rdt

)
/

(
1

fmj

∂fmj

∂σm

)
= ωm

√
1− (ρm)2

(
λm

2 dt + dBm
2,t

)
(19)

Define Πm as the average of these values across all options for a given date. We call this average the market

one-vega P&L. Equation (19) implies that the average value Πmj is an estimate of the volatility risk premium

ωm
√

1− (ρm)2λm
2 dt.

A consequence of the definitions of the market one-vega P&L and of the stock one-vega P&L is that we

can use a time-series regression of a given stock one-vega on the market return and on the market one-vega

to estimate βi,2
m,t and βi,2

m,t in Equation (11). To see this, note that we can write the stock one-vega as

Πi = βi,2
m,t

(
dSm

Sm
− rdt + qdt

)
+ βi,2

V ol,tΠ
m + ωi

√
1− (ρi)2dZi

2,t (20)

In this representation βi,2
m,t is the beta of a delta-hedged portfolio with respect to the market and βi,2

V ol,t is

the beta of the individual stock delta-hedged options portfolio with respect to the market volatility factor.

A concern is that neither beta is likely to be constant. For instance, βi,2
m,t will vary inversely with market

volatility unless the quantity ωi
√

1− (ρi)2ξi
21 happens to be proportional to it. The assumption of the

constancy of βi,2
V ol,t is also unsupported, although it will be the case in the parameterization of the Heston

(1993) model that we consider the Monte Carlo experiments in Section 5. In general, we view the estimation

of these betas via time series regression as simply an approximate way to rank stocks according to the degree

of their systematic volatility risk.

3.3 Fama-MacBeth regression

We use Fama-MacBeth regressions to understand the effect of volatility risk on expected returns of options.

We are interested in understanding whether the magnitude of the price of volatility risk implied by individual

stock options and in understanding whether the premium for volatility risk in individual stock options stems

from the relation between individual stock volatilities and overall market volatility. To do so, we examine

portfolios of options formed on the basis of maturity, moneyness, and estimates of βi,2
V ol,t. We sort on βi,2

V ol,t

rather than βi,2
m,t because we expect the former to contribute more to the variation in expected returns given

the large risk premia that appear to exist in equity index option prices. We estimate βi,2
V ol,t using the time

series regression described in Section 3.2 with data from the six months preceding the portfolio formation

date. Regressions are re-estimated and portfolios are rebalanced daily.

Portfolios are equally weighted across options, and portfolio returns are computed as averages of hedged
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option excess returns, dHij/Hij − rtdt. From Section 3.2, we can see that this return can be rewritten as

1
f ij

∂f ij

∂σi

[
βi,2

m,t

(
dSm

Sm
− rdt

)
+ βi,2

V ol,tΠ
m + ωi

√
1− (ρi)2dZi

2,t

]
(21)

The portfolio return can therefore be written as

1
N

∑
ij

[
dHij

Hij
− rdt

]
=

1
N

∑
ij

[
1

f ij

∂f ij

∂σi
βi,2

m,t

](
dSm

Sm
− rdt

)
(22)

+
1
N

∑
ij

[
1

f ij

∂f ij

∂σi
βi,2

V ol,t

]
Πm +

1
N

∑
ij

[
1

f ij

∂f ij

∂σi
ωi
√

1− (ρi)2dZi
2,t

]
where the last term is an error that is uncorrelated with aggregate risk factors.

As in the single-firm analysis above, the expectation of this return is linear in two betas, namely

1
N

∑
ij

[
1

f ij

∂f ij

∂σi
βi,2

m,t

]
and

1
N

∑
ij

[
1

f ij

∂f ij

∂σi
βi,2

V ol,t

]
(23)

Also similar to the single-firm analysis is the fact that neither beta is likely to be constant. This is not only

due to the variation in firm-level βi,2
m,t and βi,2

V ol,t, but also because time variation in the composition of each

of the portfolios will cause some variation in normalized vegas. It seems likely, however, that some of this

variation will be eliminated by averaging across the large number of contracts in each portfolio.

Our approach is therefore to estimate these portfolio betas from the full sample of triple-sorted portfolio

returns and to use this single set of betas in a second stage Fama-MacBeth regression.

3.4 Implementation issues

3.4.1 Discretization issues

As noted above, the regressions are written in terms of infinitesimal increments, while our data are observed

discretely. We are therefore required to use a discrete approximation to the continuous time model, and for

tractability the approximation we use is linear, i.e. dXt ≈ Xt−Xt−1 and dXt/Xt ≈ Xt/Xt−1−1. A natural

concern is that the linear approximation is inadequate. Branger and Schlag (2004), for instance, argue that

even in a Black-Scholes economy the expected return on a delta-hedged portfolio will be nonzero if the hedge

is rebalanced with moderate frequency.

This bias arises from the fact that the pricing kernel in the Black-Scholes (or any other option pricing)

model is nonlinear. As a simple illustration, suppose the pricing kernel were equal to a + bRm + c(Rm)2. A

delta-hedged return should be orthogonal to the linear term, but the convexity of option payouts makes it

13



likely to be correlated with (Rm)2. Even in a Black-Scholes world, this should result in a nonzero expected

excess return.

We address this issue first by exclusively using daily data, for which the nonlinearities should be relatively

small. We then examine, in our Monte Carlo study in Section 5, whether the option’s gamma, which should

proxy for the convexity of the option’s payout, has any explanatory power for average returns. We then

repeat this procedure in actual data. In both settings, we find the resulting bias to be miniscule.

3.4.2 Measurement errors

A bigger potential issue is the presence of measurement errors in option stock prices. As is standard, we

proxy for “true” option prices by using the average of the bid and ask prices. Unfortunately, the difference

between bid and ask prices of some option contracts can be very large, and if we assume that the “true”

value of the option is merely within these quotes then errors in our midpoint estimate of the true price may

be very large as well.

As Blume and Stambaugh (1982) point out, any error in the observed price will cause an upward bias in

observed average returns. For instance, if ft is the true option price and the observed price is equal to

f̂t = ft(1 + δf ), (24)

then Blume and Stambaugh demonstrate that expected returns computed from observed prices are given by

E

[
f̂t+1

f̂t

− 1

]
≈ E

[
ft+1

ft
− 1
]

+ Var(δf ). (25)

Matters are more complicated when one considers the bias in the return on a delta-hedged portfolio. In

particular, if we are hedging an option contract by selling ∆ shares financed at the risk-free rate, then the

observed hedged return is equal to

(
f̂t+1

f̂t

− 1

)
− ∆(Ŝt, σ)Ŝt

f̂t

R̂t+1 =

(
f̂t+1

f̂t

− 1

)
− βS(Ŝt, f̂t, σ)R̂t+1 (26)

where Ŝt is the observed price of a share of the underlying stock, R̂t+1 is the observed excess return of the

stock and βS = ∆(Ŝt, σ)Ŝt/f̂t is the beta of the option with respect to the underlying stock.

Note that the observed hedge ratio βS(Ŝt, f̂t, σ) is not generally equal to its true value. This is because

any error in either the option or stock price will result in an error to the delta computed for the option

and/or the prices used to normalize that delta.
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In practice, we find that the bias in

βS(Ŝt, f̂t)R̂t+1 (27)

induced by errors in the option price is relatively small, and would be zero exactly in the case that stock

returns had zero mean. Errors in the stock price have a much greater effect, in part because they bias the

observed stock return, but also because they induce a nonzero covariance between the observed stock return

and ∆(Ŝt, σ). To understand where this covariance arises, consider the possibility that the observed stock

price is above the true stock price (Ŝt > St). This will cause a call option to appear more in-the-money than

it actually is, which causes an upward bias in the option delta, which in turn implies that more shares of

stock are short sold to delta-hedge when the observed stock price is above the actual stock price and, as a

result, the delta-hedged return becomes positively biased.

To deal with this bias, we derive a close approximation for it along the same lines as Blume and Stambaugh

(1982). In the discussion immediately below, we assume that stock price errors affect ∆(Ŝt, σ) only directly

through their effect on the moneyness of the option. More realistically, stock price errors have an additional

effect that arises through the errors in implied volatilities that they induce, i.e. σ = σ(Ŝt). We derive the

bias in this more realistic setting in Appendix E and present the result later in this section. Our derivations

here are sufficient, however, to establish the intuition behind all of our more complex bias computations.

Assume that stock prices are observed with some error, so that Ŝt = St (1 + δs), where δs has a mean of

zero. Observation error may also be present in the stock price at time t + 1, but as it has no effect on the

bias, we will ignore it here.

Under these conditions, the bias is approximately equal to half of the second derivative of the return

component, evaluated at Ŝt = St, multiplied by the variance of the measurement error.1 This is

1
2

∂2

∂S2
t

(
βS(St)

(
St+1

St
− 1
))

Var(Stδs)

=
(

1
2
β′′S(St)S2

t

(
St+1

St
− 1
)
− β′S(St)St+1 + βS(St)

St+1

St

)
Var(δs)

This is the bias conditional on St+1. The unconditional bias is

=
(

1
2
β′′S(St)S2

t µ− β′S(St)St(1 + µ) + βS(St)(1 + µ)
)

Var(δs),

where µ is the mean return on the underlying stock.

Note that in most cases µ is small, which suggests that we can approximate the bias by setting µ to zero,
1Without loss of generality, we assume in this derivation that the stock dividend yield and the riskless rate are zero.
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which results in

[−β′S(St)St + βS(St)]Var(δs) (28)

Note that the term βS(St)Var(δs) is exactly the bias that would follow from Blume and Stambaugh (1982)

in the case in which βS(St) were fixed. The term −β′S(St)StVar(δs) therefore must be included to account

for the nonzero covariance between βS(St) and the stock return that results from errors in the time-t stock

price. This term is not small and cannot be ignored. Finally, to compute the bias we must find the first

derivative of βS , which for regular delta-hedged returns is2

β′S(St) =
Γ(St)St + ∆(St)

ft
(30)

The above result is valid only when implied volatility is known. If volatility is not observed and must be

inverted from option and stock prices via the function

σ(Ŝt, f̂t),

then an additional dependence on the stock price error is introduced, causing β′S to take a different form.

In particular, if we take the total derivative of

βS(St) =
∆(St, σ(St))St

ft
, (31)

then we obtain

β′S(St) =
Γ(St, σ(St))St

ft
+

∆(St, σ)
ft

d1

σ
√

τ
(32)

The form of the bias in (28) is the same as before.

This is the bias of a equally-weighted portfolio of delta-hedged options. Our results, however, are primarily

based on hedging with the total delta, as defined in equation (5), which results in an option beta of

βT (St) =

(
∆(St) + ν(St, σ(St)) ωρ

σ(St)St

)
St

ft
(33)

= βS(St) +
ν(St, σ(St))ωρ

σ(St)ft

2Note that previous calculations treated the option price as a function of S, but this is not appropriate if we don’t think
that the option price is affected by stock price measurement error. The old result was:

β′
S(St) =

Γ(St)Stf(St) + ∆(St)f(St)−∆(St)2St

f(St)2
(29)
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The form of the bias, as in (28), is unchanged, except that β′S(St) is replaced by β′T (St), which we show in

the appendix is given by

β′T (St) = β′S(St) +
ωρ

σ(St)2ft

(
ν(St, σ)σ(St)

St

(
1− d1

σ
√

τ

)
+ ∆(St, σ(St)) (1− d1d2)

)
(34)

Rather than trying to adjust for this bias, Blume and Stambaugh’s suggestion was to examine value-

weighted instead of equally-weighted returns. While option prices can be observed readily, the zero net

supply of each option contract makes the concept of market value ill defined. In some cases, we attempt

to capture some of the benefits of Blume and Stambaugh’s insight by weighting options according to the

relative option price, or the price of the option divided by the price of the underlying stock. In this case our

portfolio return is an equal weighted average of

w(Ŝt)

(
f̂t+1

f̂t

− 1

)
− w(Ŝt)β(Ŝ)

(
St+1

Ŝt

− 1
)

(35)

where

w(Ŝt) ∝
f̂t

Ŝt

≡ kf̂t

Ŝt

and the “weights” sum to N (not 1), the number of assets in the portfolio. We will assume that the

constant of proportionality k is known exactly, which would approximately be the case in a large portfolio

if measurement errors are independent.

The first component,

w(Ŝt)

(
f̂t+1

f̂t

− 1

)
=

kf̂t

Ŝt

(
f̂t+1

f̂t

− 1

)
=

k

Ŝt

(
f̂t+1 − f̂t

)

is very close to unbiased (exact if the true ft is a martingale). The second component in the difference,

w(Ŝt)β(Ŝt)
(

St+1

Ŝt

− 1
)

,

has a bias that is approximately equal to

[
−kf̂tβ

′(St) + 2
kf̂t

St
β(St)

]
Var(δs),

where β(St) is defined as above (either as βS or βT ). Thus, the Blume and Stambaugh suggestion of

weighting by value succeeds at eliminating bias in the option return component, but bias adjustment is still

necessary as a result of the delta hedge.
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We do not observe Var(δs) or Var(δf ), and therefore use proxies for both in the Fama-MacBeth regres-

sions. We assume that Var(δf ) is proportional to the square of the relative option spread (the spread divided

by the midpoint), and therefore use the mean of the square of the relative options spreads in the portfolio

as a dependent variable in the second-pass Fama-MacBeth regression. In the simulations, we assume that

Var(δs) is proportional to the square of the effective stock spread. Consequently, we use the mean across

all options in a portfolio of [−β′S(St)St + βS(St)] multiplied by the squared stock spread as a dependent

variable in the second-pass Fama-MacBeth regression. In the actual data, we assume that Var(δs) is given

by a linear function of the squared effective spread. We therefore use both the mean of [−β′S(St)St +βS(St)]

and the mean of [−β′S(St)St + βS(St)] multiplied by the squared stock spread as dependent variables in

the Fama-MacBeth regressions performed on the actual data. We show by means of the Monte Carlo study

described in Section 5 that adding the bias adjustments above properly cleans the effects of bid-ask spreads

in the estimation of the volatility-risk premium.

3.4.3 Censoring

A third major potential concern in the implementation of the Fama-MacBeth procedure is related to the

fact that implied volatilities cannot be computed for options whose prices violate arbitrage bounds. Without

an implied volatility, it is impossible to compute the hedge ratios necessary for the computation of hedged

returns. Consequently, these options cannot, without some additional assumptions, be used in our Fama-

MacBeth procedures.

The usual procedure adopted in the literature is to discard options that violate arbitrage bounds.3

However, our Monte Carlo simulation results below show that discarding options without implied volatility

can result in serious biases. The reason is that arbitrage bounds tend to be violated when measurement

error in prices is positive, but not when it is negative. By systematically excluding positive pricing errors

when hedged option positions are put on, average measured returns will be biased upwards.

To get around this issue we include options even when they violate arbitrage bounds. We do so by

computing the hedge ratios using the implied volatility from another option on the same firm. For a put

(call) that is missing an implied volatility, our first choice is to use the call (put) with the same maturity

and moneyness. If that value is unavailabe, then we use the implied volatility on the same contract from the

previous day (or before then if necessary). This implied volatility is then used to calculate the delta and the

vega of the problematic contract.
3See for instance Santa-Clara and Saretto (2005).
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4 Data and summary statistics

The options data are from the Ivy database. The Ivy options database provides end-of-day bid and ask

quotes, open interest, trading volume, implied volatility, and option hedge ratios for the US equity and index

options market. We use options data from January 4, 1996, through December 31, 2005. The implied volatil-

ity and option hedge ratios are calculated with the Black and Scholes (1973) model for European options, or

the Cox, Ross, and Rubinstein (1979) binomial tree for American options. All options on individual stocks

are American. The dataset also includes a volatility-surface file that contains the interpolated volatility

surface for each security on each day using a kernel-smoothing algorithm. The volatility surface provides

the implied volatility for each standardized option with various times-to-maturity and deltas. The only

variable used from the volatility surface file is the thirty-day implied volatility with delta equal to 0.5. This

interpolated implied volatility is used to calculate the moneyness of options4.

Stock prices and returns are from the CRSP database. Our sample includes all listed stocks with options

over sample period. We merge our CRSP stock dataset and option dataset by matching securities’ CUSIPs.

Because our main analysis also considers the transaction costs in the stock market, we utilize the stock

transaction database from TAQ. We measure the transaction cost of a stock in a given day as half of the

daily effective spread. To estimate the daily effective spread we use Lee and Ready (1991) algorithm to

match each transaction in the TAQ database to its corresponding quote, the effective bid-ask spread is then

calculated as the ratio of the quoted bid-ask spread and the transaction price. Daily estimates are obtained

as simple averages throughout the day. The procedure filters used in the TAQ database are the same as

those described in Duarte and Young (2007).

We delete a series of observations to eliminate possible data errors. Appendix C describes the data

cleaning procedures. The resulting dataset has 5, 156 different stocks, more than 99 million daily call option

observations and more than 82 million daily put option observations over the period between 1996 and 2005.

Around 17 percent of these observations do not have implied volatility computed by Ivy’s database because

Ivy does not compute implied volatilities of options with vega smaller than 0.5 or with mid-point of the

bid-ask price smaller than the option’s intrinsic value. In addition, Ivy does not display implied volatilities

when the algorithm to calculate implied volatilities fails. After using the procedure described in Section 3.4

to compute the implied volatilities and hedge ratios of these options, less than two percent of the options in

the final database do not have computed implied volatility.

Table 1 presents the cross-sectional distribution of a series of variables of interest. The implied volatility

(σ) in this table is the 30-day implied volatility of the options with delta equal to 50%. This implied volatility

4We define moneyness as ln(K/S)/(σ
√

T ) where K is the option exercise price, σ is the stock volatility and T is the
time-to-maturity.
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is between 20 and 104 percent for the majority of stocks. The distribution of estimates of the correlation

between daily returns and changes in implied volatility (ρ) is in general negative with a median value of

−26 percent. The distribution of estimates of the annualized volatility of volatility (ω) based on the daily

standard deviation of the changes in implied volatility indicates that the median value of ω is around 84

percent. The cross-sectional distribution of the betas of the total-delta-hedged options with respect to the

market and with respect to the market volatility is also presented. The beta of the total-delta-hedged

options with respect to the market is in general negative with a median value of −0.06, the beta with respect

to the volatility of the market is in general positive with a median value of 0.23.

The results in Table 1 also indicate that the total-delta-hedge method has essentially the same per-

formance as does the standard delta method. The first row of the second panel in Table 1 displays the

distribution of the standard deviation of the daily returns of delta-hedge method estimated for an entire

year for each individual stock. These standard deviations are quite large with a mean value of 17%. These

large standard deviations of daily delta-hedged returns are caused by the fact that the standard deviation

of daily returns of out-of-the-money options is quite large, and because the bid-ask spreads of these options

is so large in relation to their prices that a significant part of the price variation of these options is related

to microstructure noise. The second row of the second panel in Table 1 displays the distribution of the

difference between the standard deviation of the daily returns of the delta-hedge method and the standard

deviation of the daily returns of the total-delta-hedged returns. These differences are in general negative

with a median value of minus five basis points, indicating that the total-delta hedging method has slightly

better performance than the traditional delta-hedge method.

The mean returns of calls and puts displayed in Table 2 indicate that the possible biases caused by

censoring options without implied volatility and by large bid-ask spreads of options are large. Table 2

presents the mean and t-statistics of daily returns, absolute bid-ask spreads and relative bid-ask spreads of

calls and puts across different times-to-maturity and moneyness. The mean returns of options in the first

panel of Table 2 are based on the usual procedure of eliminating all options without implied volatility. The

second panel of Table 2 presents the mean returns of calls and puts using all the options in the database

including those without implied volatility. Note that the mean returns of calls without censoring are in

general positive, indicating that the censoring of options without implied volatility can lead to the inaccurate

conclusion that the expected returns of in-the-money calls are negative. The second panel of Table 2 also

indicates that the mean return of the out-of-the-money puts is positive, however the large bid-ask spreads

of out-of-the-money puts displayed in the third panel of Table 2 suggests that the positive mean returns of

out-of-the-money puts may result from Blume and Stambaugh’s biases described in Section 3.4. The Monte

Carlo simulations below confirm that the signs of the mean returns of both calls and puts can be explained
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by censoring and Blume and Stambaugh’s biases.

Recall that the market one-vega P&L defined in Section 3.2 is estimated by the mean return of a portfolio

of options mimicking the return of a long position on an option with vega equal to one, financed at the risk-

free rate. Figure 1 plots the time series of the market one-vega P&L along with the time series of level of

the S&P 500 index. The market one-vega P&L is usually negative with a mean value in the period of −4.6

basis points. As previously mentioned, the mean value of the market one vega is also an estimate of the

volatility risk premium. Therefore the time series of the market one vega implies that the volatility risk

premium is negative and economically significant with a value of −4.6 basis points per day, or minus eleven

percent per year.

Figure 1 also reveals that the market one-vega P&L has positive spikes as high as 15 percent on some days.

Some of the positive spikes in the market one-vega P&L are consistent with periods when the market was

under distress, such as during the Long Term Capital Management debacle in October 1998 and September

2001. Overall, we interpret the time series of the market one-vega P&L as being consistent with the idea

that long positions in delta-hedged S&P 500 options provide an insurance against market distresses.

5 Monte Carlo analysis

We use a Monte Carlo Analysis to show that our design of the Fama-MacBeth regressions results in reasonable

estimates of the volatility risk premium. We simulate 300 ten-year time series of daily prices of puts, calls

and stocks. The simulated calls and puts have time-to-maturity between ten and 65 days and moneyness

between minus three and three. These options are written on 1,000 different stocks. For each simulation

path, we estimate a Fama-MacBeth procedure as described in Section 3.3. We also calculate average

returns of portfolios of options with different moneyness and times-to-maturity. Because the simulations are

computationally intensive, we distribute them across more than one hundred PCs.

The underlying model in our Monte Carlo simulations is a model with stochastic volatility5. The

underlying model is a parameterization of the Heston’s model and it is described in Section 5.1. In one set

of Monte Carlo simulations, we assume that the price of volatility risk is equal to λm
2,t = −0.1. This negative

price of volatility risk is consistent with the result in Coval and Shumway (2001), that selling delta-hedged

options results in positive abnormal returns. In a second set of Monte Carlo simulations, we assume that

volatility is not priced λm
2,t = 0. This second set of Monte Carlo simulations is interesting because in the

Fama-MacBeth regression we test the hypothesis that λm
2,t = 0 and hence these second set of Monte Carlo

5A separate set of Monte Carlo simulations with the Black Scholes model is also executed. The results are essentially the
same as those reported herein and therefore are not diplayed.
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simulations are useful for analyzing how often our Fama-MacBeth regressions would find a volatility risk

premium when there is none.

Recall that the relationships between delta-hedged option returns and prices of risks are based on con-

tinuous hedging, while we work with daily hedging rebalance in our empirical applications. To quantify the

magnitude of the error caused by the fact that we do not continuously delta-hedge the options in our appli-

cation, we run the Fama-MacBeth regressions in the Monte Carlo simulations with an additional variable on

the right hand side: The “adjusted gamma” (the gamma of the option divided by its price multiplied by the

squared stock price.). The rationale for this procedure is that if the daily delta-hedge procedure is a poor

approximation for the continuous delta-hedging procedure then options with large adjusted gamma would

have higher expected returns. (For proof see Appendix D.)

To understand the effects of measurement errors in our empirical analysis, we generate two sets of

simulated prices: One set of simulations is based on prices without errors and a second set of simulations

is based on prices with errors. In the simulations with errors, each simulated option price is assumed to

equal the “true” value from the Heston model, plus some measurement error arising from nonzero bid-ask

spreads. Errors are also introduced into stock prices by perturbing the simulated price processes with serially

uncorrelated errors.

Because option bid-ask spreads are highly related to maturity and moneyness, we calibrate our simulation

to match the averages and standard deviations of the bid-ask spreads as a fraction of the bid-ask midpoint

that we observe for the different option categories in the data. Table 2 displays these values for a variety of

maturity and moneyness buckets. The overall pattern that emerges is that OTM options have far greater

spreads than ITM options, both for puts and for calls. In addition, both the level and variability of spreads

show a moderate tendency to decline with option maturity.

To simulate option bid-ask spreads, each stock is assigned a constant measure of the liquidity, ηi, of all

the options written on it. This value is drawn from a standard normal distribution and does not change

over time. The maturity and moneyness of each option contract is then used to interpolate the values in

the first panel of Table 3. The bid-ask spread of the contract is then computed as eM+Sηi . Note that both

M and S change through time with the maturity and moneyness of the contract, but ηi remains the same.

This induces cross-sectional variation in option spreads, even for similar contracts, while at the same time

making the spreads of a given contract somewhat persistent through time.

In our option price data, we observe bid-ask spreads but not transaction prices. We view the spread

as providing bounds on the true value of the option, which is assumed, on average, to equal the bid-ask

midpoint. Option price errors are therefore no greater than plus or minus half of the bid-ask spread. We
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capture these assumptions in the triangular error distribution6, as illustrated in Figure 2.

Table 2 shows that the relative bid-ask spreads of options can be as large as one hundred percent.

These large bid-ask spreads can cause biases in expected returns that cannot be properly captured by the

approximations derived in Section 3.4.2 because those approximations were based on a relatively simple

second-order expansion around a zero bid-ask spread. We therefore analyze a set of simulations in which

we filter out options with bid-ask spreads above 25% of the mid price. To avoid any spurious correlations

that this filtering may cause on our return calculations at time t, we base this filter on the spreads observed

at time t− 2. We hereafter call the procedure of deleting these optionsfiltering.

Error in hedged returns is also induced by mismeasurement of stock prices. Since our stock price data

consists solely of transaction prices, it is difficult to put bounds on these errors. We assume, therefore, that

stock price errors are normally distributed with a mean of zero and a standard deviation that is proportional

to the true price. The constant of proportionality is drawn at random for each stock from a uniform

distribution between 0.001 and 0.005. These values are close to the effective stock bid-ask spreads in the

data.
The effects of censoring options that violate non-arbitrage bounds is analyzed through two sets of Monte

Carlo simulations: In one set, options violating arbitrage bound or with vega smaller than 0.25 are not

considered in the empirical analysis7. We call the procedure of deleting these options censoring. In another

set of simulations, the implied volatility of options is calculated by replacing the implied-volatility of options

that violate non-arbitrage bounds as described in Section 3.4.

5.1 A parameterization of the Heston model with aggregate risk

The Heston model is a special case of the model discussed in the previous section. It is traditionally written

using a process for stochastic variance rather than volatility. Under the risk-neutral measure, price and

variance dynamics for a security i are

dSi
t

Si
t

= (rt − qi
t)dt +

√
V i

t dBi∗
1,t (36)

dV i
t = κi

V

(
V

i − V i
t

)
dt + ωi

V

√
V i

t

(
ρidBi∗

1,t +
√

1− (ρi)2dBi∗
2,t

)

where Bi∗
1,t and Bi∗

2,t are Brownian motions under the risk-neutral measure.

We use the same model for both the market index and for each individual equity, where the subscript

m denotes the market index. We assume that all covariances between the market index and the individual
6We also run simulations with uniformly distributed errors. The results are qualitatively similar to the ones with triangular

distributed errors.
7Recall that Ivy database does not calculate implied volatility of options with vega smaller than 0.25.
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securities are described by

dBi∗
j,t = ξi

jdBm∗
j,t + dZi∗

j,t (37)

for j ∈ {1, 2}, where all of the Z∗ processes are independent zero-drift Brownian motions with instantaneous

volatilities of
√

1− (ξi
j)2. That is, in the parameterization of the Heston model, we assume that ξi

12 = ξi
21 = 0

in Equation (9). These assumptions imply a single-factor model for equity returns. They also imply a single-

factor structure in the part of each firm’s volatility risk that is orthogonal to that firm’s stock price. While

this is not the most general covariance structure possible, it should capture most of the comovement in

returns and volatilities at least approximately.

Let Bm
1,t and Bm

2,t represent Brownian motions under the physical probability measure. We assume that

Bm
1,t and Bm

2,t are priced risks and that all of the Z processes are unpriced. Specifically, we assume that

dBm
j,t = dBm∗

j,t + λjdt (38)

for j ∈ {1, 2}. This specification of the prices of risk implies that instantaneous expected returns, under the

objective measure, are given by

E
[
dSi

t

Si
t

]
=
(

rt − qi
t + λ1ξ

i
1

√
V i

t

)
dt. (39)

The expected return of the market is obtained by setting ξi
1 = 1. The specification in Equation (38) also

implies that the drift of the variance process, under the objective measure, is

κi
V × V

i
+ [λ1ξ

i
1ρ

i + λ2ξ
i
2

√
1− (ρi)2]× ωi

V

√
V i

t − κi
V × V i

t (40)

The admissibility of the V i
t process under the true probability measure is discussed in Duarte (2004). To

generate a positive equity premium, it must be the case that λ1 > 0. The typically negative correlation

between returns and volatility shocks requires that ρi < 0. The price of volatility risk can be either positive

or negative; the results in Coval and Shumway (2001) and Bakshi and Kapadia (2003) suggest that λ2 < 0.

We hedge options based on their Black and Scholes hedge ratios even though option prices are generated

by the Heston model. The justification for this hedging procedure is twofold: First, in the Fama-MacBeth

regression with actual data, we will use hedge ratios that are computed by the Ivy options database. Second,

the use of Black and Scholes hedge ratios is much less computationally intensive than the use of Heston’s

hedge ratios.

The parameters used to simulate from the Heston model are described in Table 3. The parameters driving

24



the risk-neutral process for the market variance are taken from Jones’s (2003) estimates from the 1988-2000

sample period. The risk-premia parameter λ1 produces an equity premium of about 4% per year, while

the parameter λ2 is either taken to equal zero or −0.1. The parameters displayed in Table 3 result in a

volatility risk premium of −0.018. This risk premium implies that the returns of delta-hedged at-the-money

one-month straddles are around −60bp per day, which is close to the value reported by Coval and Shumway

(2001).

The parameters of the firm-level volatility processes are harder to estimate, and we know of no method

that can produce accurate (e.g. maximum likelihood) estimates from firm-level data without incurring

extreme computational costs. We therefore proceed more casually in selecting these parameters, starting

with the assumption that all firm-level parameters are random i.i.d. draws from uniform distributions. While

the specific distributions assumed are in Table 3, the parameters tend to give individual equities greater but

slightly less persistent volatility with less negative skewness than the market volatility. In the absence (to

our knowledge) of any empirical evidence on the cross-sectional distribution of the correlations between

market and stock variance processes, we assume this distribution to be the same as the distribution of the

correlations between market and stock price processes.

5.2 Simulation results

The simulations indicate that not controlling for measurement errors or for violations of arbitrage bounds can

seriously mislead researchers performing empirical work with options. Table 4 displays the mean simulated

returns of calls and puts when the price of volatility risk is negative. The first panel of this table displays the

mean returns of calls and puts when the simulated bid-ask spread of options is zero. Note that in-the-money

call options have positive mean returns and out-of-the-money call options have negative mean returns9. Put

options, on the other hand, have negative mean returns. The second panel of Table 4 displays the mean

simulated returns of calls and puts when bid-ask spreads are different from zero and options violating

arbitrage bounds are not thrown away. Note the dramatic difference between the mean returns displayed

in the first and second panel of this table. When bid-ask spreads are not zero, the mean returns of calls

are always positive, and in fact the simulated mean returns of deep-out-of-the-money calls are quite large.

Deep-out-of-the-money puts, on the other hand, have positive and large mean returns when measurement

error is introduced in the simulation. The positive and large returns of calls and puts are consistent with a

very large Blume and Stambaugh’s bias in the mean returns of options. The third panel of Table 4 displays

8To see this note that the volatility risk premium in Equation (11) is equal to ωm
√

1− (ρm)2λm
2 and by Ito’s lemma

ωm
t = 0.5× ωm

V .
9This result is consistent with those in Ni (2006) and are a consequence of a negative price of volatility risk.
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the mean returns of calls and puts when the options have a non-zero bid spread and censoring is applied.

Note that censoring in general decreases the mean returns of options. Again, the difference between the

results in the third panel and the results in the second panel is dramatic, indicating that the effects of

censoring options without implied volatility in the Ivy database are economically significant.

It is also interesting to note the similarity between the mean option return of the actual option sample

and the mean returns of the simulated sample. The third panel of Table 4 has a similar pattern of mean

returns as those displayed in the first panel of Table 2. Specifically, the results in these panels indicate that

censoring causes the mean returns of deep-in-the-money call options to be negative in both the actual and

simulated data. Also, the second panel of Table 2 is similar to the second panel of Table 4, which indicates

that the positive returns of deep-out-of-the-money options is driven by their large relative bid-ask spreads

in both the actual and simulated samples.

The results of the Fama-MacBeth regressions on the simulations without measurement errors indicate

that the discretization bias is small. The first panel of Table 5 displays the results of Fama-MacBeth

regressions in the simulations in which both stocks and options are observed without error. The results

of the first Fama-MacBeth regression in this panel indicate that our estimated volatility risk premium is

−0.005. This is closer to zero than the actual simulated volatility risk premium which is −0.01. The bias in

this estimation is not surprising, granting the classic errors in variables problem, which causes a shrinking

bias in the estimated risk premium. The third Fama-MacBeth regression in this panel also estimates the

coefficient on the option gamma (γ). This is done to analyze the effect of discretization in our estimation,

because, as previously mentioned, we would expect to see a statistically significant coefficient on gamma (γ)

if the discretization were causing a large bias in the estimation. Note however that the estimated coefficient

on gamma is not statistically significant in these Monte Carlo simulations. Indeed the average t-statistic of

this coefficient is only −0.21.

The simulation of the Fama-MacBeth regressions indicate that we can properly estimate the volatility risk

premium providing that we properly control for measurement errors in the options and stock market. The

second panel of Table 5 displays the results of Fama-MacBeth regressions on simulations with measurement

errors and no filtering of options. The first Fama-MacBeth regression in this table clearly shows the effect of

measurement error on the estimation of the volatility risk premium, because the estimated volatility premium

in this regression is not only large but also has the wrong sign. Indeed, the estimate volatility risk premium

without controls for measurement errors is 3.6%. Controlling for options and stock price measurement

errors change this estimation substantially. For instance, in the fourth Fama-MacBeth regression described

in Table 5, the estimated volatility risk premium is −0.009, and recall that the simulated value is −0.01.

The third panel of Table 5 displays the results of the Fama-MacBeth regressions in the simulations, where
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there are measurement errors and filtering. The first regression in this panel indicates that filtering has a

substantial effect in reducing the effects of measurement errors in the estimation of risk premium. To see

this compare the volatility risk premium estimated in the second regression of the second panel (0.39) with

the volatility risk premium estimated in the first regression of the third panel (−0.003). Finally, the last

regression in the third panel of Table 5 indicates that filtering, along with introducing controls for option and

stock bid-ask spreads essentially cleans all of the biases related to measurement errors. In fact, the estimated

risk premium in this regression is the same as the one estimated in the case where there no measurement

errors in stocks and options (see the first panel of Table 5).

The Monte Carlo simulations also indicate that our Fama-MacBeth procedure can be effectively used to

test for the presence of a volatility risk premium if measurement errors are controlled through additional

right-hand side variables in the Fama-MacBeth regressions, and options with large bid-ask spreads are

filtered. Table 6 displays the results of Fama-MacBeth regressions when the volatility risk premium is zero.

The first regression in this table does not control for measurement errors and as a result, the estimated

volatility risk premium is positive and large. The second regression in Table 6 controls for measurement

errors through the inclusion of bid-ask spread related variables. In this case, the estimated volatility risk

premium is on average −0.004 with an average t-statistic of −2.42. These results therefore indicate that

controlling measurement errors only with bid-ask spread variables in the Fama-MacBeth regression would

result in a frequent rejection of the hypothesis that the volatility-risk premium is zero when the volatility risk

premium is in fact zero. (The probability of Type II error would be high.) The third regression in Table

6 controls for bid-ask spread biases through the inclusion of right-hand side variables and through filtering

of options with large bid-ask spreads. In this regression, the average estimated volatility risk premium is

zero with an average t-statistic of 0.06, indicating that filtering plays an important role in testing for the

presence of a volatility risk premium.

6 Empirical results

6.1 An application to S&P 500 returns

To illustrate the effects of the measurement errors in the actual data, we calculate the mean returns of S&P

500 options with various times-to-maturity and moneyness. These mean returns are displayed in the second

panel of Table 7. Note that the mean returns of call options on the S&P 500 are increasing with moneyness,

in fact the deep-out-of-the-money short-term calls have a mean return close to 830 basis points per day.

This result is consistent with Coval and Shumway (2001). To correct for the biases caused by measurement
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errors we run a Fama-MacBeth regression of S&P 500 option returns on the option spreads and use this

regression to estimate the biases caused by measurement errors. These estimated biases are displayed in

the third panel of Table 7 and they can be as high as 1413.8 basis points per day. The fourth panel of Table

7 displays the bias-adjusted mean returns of S&P 500. Note that this panel implies that the mean returns

of call options are in fact decreasing with moneyness, which is exactly what we found in our simulations (see

first panel of Table 4).

6.2 Constant risk premia

The first set of results on Fama-MacBeth regressions using actual data are displayed in Table 8. All the

regressions in this and subsequent tables do not use censoring but do filter options with bid-ask spreads

above 25%. For this table, portfolio returns are equal-weighted, and all results are based on OLS regression.

In addition to the two-factor specification discussed above, we also consider models that only include one

of the two factors. The first three columns in the table correspond to specifications that exclude variables

that control for measurement error-induced biases. Several findings here are notable. First, the estimated

volatility risk premium is positive and significant for specification 1, which does not include a market return

factor. When a market return beta is included, either in isolation or together with the volatility factor, it

appears with a negative sign and is statistically significant. These results either contradict basic intuition or

most of the previous literature examining equity index options.

Including bias control variables in specifications 4-6 results in a reversal of these findings. The price of

volatility risk becomes negative, though only with marginal significance, and the price of market risk becomes

insignificantly positive. The option spread control variable, which measures the average of the squared spread

across all options in each portfolio, is highly significant, suggesting that the Blume and Stambaugh (1982)

bias is an important component of measured average option returns. Biases related to measurement error in

stock prices do not appear to be important here.

Two goodness-of-fit measures are included in the table. The first is the cross-sectional “R-squared”,

defined as one minus the ratio of the variance of the model-implied average returns to the variance of the

actual average returns. The second (RMSE) is the square root of the average squared pricing error. Both

measures are clearly improved by the addition of a volatility beta, suggesting the importance of the volatility

factor in explaining realized returns. Somewhat unintuitively, the R-squared measure can go down (or the

RMSE go up) when additional variables are added to the Fama-MacBeth regression. Because we are outside

the simple linear regression framework, the expected result is not guaranteed. In some cases the cause is the

presence of outliers in the bias control variables.

28



To check the robustness of these results, we re-estimate the last specification in Table 8 with three

variations in methodology. First, we use relative price-weighted, rather than equal-weighted, portfolios.

Next, we use weighted least squares (WLS) rather than OLS in the Fama-MacBeth cross-sectional regressions.

Last, we combine both of these modifications. The results are presented in Table 9.

WLS regressions are appropriate in this case, at least as a robustness check, because of the substan-

tial cross-sectional heteroskedasticity in the portfolios we consider. Deep out-of-the-money portfolios, for

instance, are much more highly volatile than in-the-money portfolios. We therefore include WLS results by

weighting each observation in a cross-sectional regression by the inverse of its factor model error variance.

Unfortunately, Table 9 contains few clear patterns to report. The negative volatility risk premium

becomes more negative, and statistically significant, when using relative price-weighted portfolios, but the

sign reverses for both specifications estimated using WLS. Furthermore, the two goodness-of-fit statistics

(which are not themselves weighted) are much worse when prices of risk are computed using WLS regressions.

Figure 3 provides one possible explanation for these contradictory results. The figure is a scatter plot

that shows the relationship between estimated volatility betas and average returns, both computed using

the relative price-weighted portfolios. Points denoted “C” correspond to puts, while “P” refers to calls.

Grey letters indicate portfolios of in-the-money or at-the-money options, while black letters denote out-of-

the-money portfolios. The general pattern that emerges is that out-of-the-money options have low returns

and high volatility betas. At the same time, there is a group of in-the-money options whose betas appear

postively related to average returns.

In the OLS results, the variation in the observations in the bottom right part of the figure is dominant,

and a highly significant negative relation is obtained. In the WLS results, however, those observations are

downweighted due to their extreme volatility. Instead, the in-the-money options on the left side of the figure,

with very low volatilities, are much more heavily weighted. Since those options exhibit a positive relation

between volatility beta and average returns, the sign of the volatility risk premium becomes positive.

The last notable result from Table 9 concerns the controls for measurement error bias. We remarked

above that the Blume and Stambaugh bias would likely disappear were we to examing relative price-weighted

unhedged option returns. The second specification in the table shows that this result holds in practice as

well, as the significance of the squared option spread variable vanishes. In its place, however, is an increase

in the statistical significance of the biases that result from mismeasurement of the hedge ratio. Thus, bias

controls are necessary in all cases, though the controls that are important depend on how the returns are

weighted.
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6.3 Time-varying risk premia

Though the sign of the unconditional volatility risk premium is difficult to determine, it is possible that

nonzero conditional means are more easily detected. Figure 4 provides some visual evidence that this might

be the case. The figure plots the time series of realized volatility risk premia (λ̂Vol(t)) estimated from the

Fama-Macbeth cross-sectional regressions run on equal-weighted portfolios using OLS. Serial correlation is

clearly evident from the picture, as are a number of spikes corresponding to periods of major market turmoil,

such as the market crash of October 1997 or the attacks of 9/11/2001.

A more formal analysis of serial correlation is provided in Table 10. In the column of results in the top

panel of the table, λ̂Vol(t) is regressed on its own first lag. A significant positive autocorrelation estimate is

obtained, with a moderate R-squared of .027. The next three columns address whether the same predictor

can forecast realized market risk premia (λ̂M(t)) or realized factor returns. The evidence is weaker for these

variables.

Because a single lag of λ̂Vol(t) is undoubtedly noisy, the second panel of Table 10 instead uses a 22-day

moving average of the predictor. The left-hand-side variables are unchanged. The result is that volatility

risk premia seem to have some power to predict future realized market risk premia (λ̂M(t)) and excess market

returns, though evidence of the latter is not strong.

In this section we re-analyze the Fama-MacBeth regressions of the previous section too see if there are

any discernable patterns in ex ante risk premia. Rather than looking at unconditional means of the λ̂Vol(t),

we instead consider regressions of the form

λ̂Vol(t) = aVol + bVolZ(t− 1) + e(t), (41)

where Z(t) is some conditioning variable that is plausibly related to volatility (or market) risk premia. The

realized risk premia λ̂Vol(t) are the same cross-sectional regression estimates used in the previous subsection.

Though theory does not provide a strong guide as to what conditioning variable to choose, most para-

metric models of option prices (e.g. Heston (1993)) assume that the asset’s own volatility drives both the

price of volatility and market risk. In the absence of obvious alternatives, we follow this literature and use

the VIX index as a proxy for overall market volatility. The VIX is a measure of implied volatility for the

S&P 500 index corresponding to a return horizon of one month. It is a “model-free” implied volatility of the

type derived by Britten-Jones and Neuberger (2000), which relies on an many options with different strike

prices but not any parametric model.

Table 11 contains results of the regression in (41) with VIX as the conditioning variable Z. Results

assuming constant risk premia are repeated from previous tables. In addition to λ̂Vol(t), we also examine
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predictable variation in the market risk premia (λ̂M(t)) and the intercepts (λ̂0(t)) of the Fama-MacBeth

cross-sectional regressions.

The notation in the table follows from the fact that expected excess returns can now be represented

(ignoring bias terms) as

(a0 + b0VIX(t− 1)) + βVol (aVol + bVolVIX(t− 1)) + βM (aM + bMVIX(t− 1)) ,

Thus, the rows labeled βVol ×VIX(t− 1) correspond to the coefficient bVol.

The first specification in Table 11 repeats a result from Table 8 showing an estimated positive price

of volatility risk and a negative price of market risk when bias controls are excluded from the regression.

In specification 2, in which volatility risk premia are allowed to vary with the level of the VIX, we see a

significantly negative constant price of risk (−1.652× 10−3) and a significantly positive variable price of risk

(0.849 × 10−2). The same pattern obtains for specification 4, which includes our bias control variables. In

this specification, the market risk premium also appears to be positively related with the VIX.

As before, robustness is a concern, so we repeat this last specification using a number of different alter-

ations to our basic procedure. In Table 12, we run regressions using relative price-weighted portfolios and

weighted least squares regressions. We also consider portfolios that are sorted by implied volatility or the

ratio of implied to past realized 1-month volatility, both in addition to option maturity and moneyness. Fi-

nally, we repeat one of the specifications using regular delta-hedged, rather than total delta-hedged, returns.

Our results are very robust to all of these choices. The volatility risk premium is increasing in the level of

the VIX, and for all but one specification the market risk premium displays the same behavior.

6.4 Decomposing volatility betas

Our three-way portfolio sort picks up several different sources of variation in volatility betas. Sorting by

maturity and moneyness separates out options whose contract characteristics, such as vega, make them more

sensitive to volatility movements in general. These options should therefore be expected to vary more in

response to movements in market volatility.

In many studies, usually of S&P 500 index options, these contract-level differences are the sole source of

variation in betas. When these studies find that volatility risk is priced, a natural concern is that volatility

risk sensitivity is merely proxying for an option characteristic that is related to expected returns for a

completely different reason.

In our framework, variation in volatility betas also arises from differences in the covariances of the

underlying stock with the market return and volatility factors. Hence, we can identify variation in option
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betas that is unrelated to contract specifications like maturity and strike price.

If volatility risk is the true driver of expected option returns, at least conditionally, then each source of

variation in volatility betas should be equally important. If volatility betas are instead proxies for option

contract characteristics that are related to expected returns for some other reason, then only variation due

to contract type should appear to be priced, and variation due to differences across underlying assets should

appear unimportant.

We propose an easy way to address this question. After estimating market and volatility betas in time

series regressions, we average the volatility betas across all portfolios with the same maturity and moneyness

(keeping puts and calls separate). Thus, all variation that is due to the third sort variable, which measures

the covariance of the underlying stock’s volatility with the market, is eliminated. These average volatility

betas represent the “contract component” of the original betas. The “firm component” is then defined as

the difference between the original portfolio beta and the contract component just defined. It captures the

variation that is due to the nature of the underlying stocks.

Table 13 displays the results of Fama-MacBeth regressions in which volaility betas are decomposed into

these two components. In addition, some results using regular or “total” betas are repeated from Tables 8

and 11. Specifications 1 and 2 examine risk premia that are assumed to be constant, while 3 and 4 allow

risk premia to vary with the VIX index.

Examining the results in the second column, we see that the contract component of the volatility risk

premium is significantly negative, while the firm component is positive with borderline significance. Since

each of these terms should be identical to the “total” price of volatility risk in the first column, this result

contradicts a fundamental implication of our theory of options pricing.

The third and fourth columns, where we are allowing volatility and market risk premia to vary with the

VIX, present a very different picture. When the volatility beta is not decomposed, as we saw in Tables 11

and 12, it has a constant component that is significantly negative and a component related to the VIX that

is significantly positive. The final column of Table 13 shows that both results hold for the “contract” and

“firm” components of the volatility beta separately. Furthermore, the magnitudes of the “contract” and

“firm” effects are roughly similar. These results suggest that volatility risk is not merely a proxy for contract

characteristics.

7 Conclusion

This paper uses a large cross section of options on many different stocks to estimate the volatility risk

premium. Though we find no reliable evidence that the price of volatility risk is nonzero on average, we
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document strong evidence of a conditional risk premium that varies positively with the overall level of market

volatility. This result is robust to a variety of alternative portfolio construction methods, the use of WLS

versus OLS, and whether or not bias control variables are included in the regression.

We analyze the effects of measurement errors, violations of arbitrage bounds, and discretization on the

empirical work with options by means of a large Monte Carlo simulation exercise. Overall, our results

indicate that discretization effects are small if daily data are used. On the other hand, the bias induced by

censoring options that do not satisfy arbitrage bounds can be large, possibly resulting in biases in expected

returns as large as several percentage points per day and possibly seriously misleading researchers working

with options data. This bias arises when measurement errors cause the researcher to discard option prices

that are too high, but not prices that are too low. We propose a simple procedure to retain these data points

that has a large effect in simulations and in analysis of actual data.

Controlling for the bias in average returns due to measurement errors (bid-ask spreads) is perhaps even

more important and of a magnitude sufficient to reverse some inferences about average option returns made

in other studies. We show, for instance, that measurement error bias might be large enough to make out-

of-the-money call options on the S&P 500 index appear to have positive and large average returns, when in

fact the true returns may well be negative. Several different strategies that control for this bias are proposed

by extending the work of Blume and Stambaugh (1982).

Finally, our simulations show that the Fama-MacBeth approach, when applied to option returns, can

provide powerful and reliable inferences about the risk premia that drive the options market. A major

advantage of this framework, besides its simplicity, is that it imposes minimal parametric structure, unlike

most alternative approaches that rely on a complete specification of a stochastic volatility model for each

underlying stock. In particular, unlike other parametric methods, our approach does not automatically

generate a nonzero price of risk if average option returns are themselves nonzero – such an inference will

only be drawn given evidence of a relation between volatility betas and average returns.
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Appendix

A - Proof of Equation (3)

Ito’s lemma implies:
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where the subscripts and superscripts on S, µ, σ, ρ and ω were removed for simplification.

Now, let’s compute the excess returns of a derivative: Non-arbitrage implies that there is an equivalent

martingale measure under which the dynamics of the stock price and of the volatility are:

dS

S
= (r − q)dt + σdB∗i

1,t (43)

dσ = υdt + ωρdB∗i
1,t + ω

√
1− ρ2dB∗i

2,t

where B∗i
1,t and B∗i

2,t are Brownian motions. Non-arbitrage also implies that the price of any derivative

satisfies the PDE:
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Substituting the PDE above in the actual dynamics for f, we get:
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Define the following prices of risk:
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θ − υ = ωρλi
1,t + ω

√
1− ρ2λi

2,t

Substituting in Equations (45), we get:
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df

f
= {λi

1,tσ
S

f

∂f

∂S
+ ωρλi

1,t

1
f

∂f

∂σ
+ ω

√
1− ρ2λi

2,t

1
f

∂f

∂σ
+ r}dt (47)

+
1
f

(
∂f

∂S
Sσ +

∂f

∂σ
ωρ)dB1,t +

1
f

∂f

∂σ
ω
√

1− ρ2dB2,t

which implies that the expected excess return of the derivative is:

E[
df

f
]− rdt = [{σS

f

∂f

∂S
+ ωρ

1
f

∂f

∂σ
}λi

1,t + ω
√

1− ρ2
1
f

∂f

∂σ
λi

2,t]dt

B - Total-delta hedged portfolios

To hedge an option against stock price movements, one has to take a position on n stocks in a way such that

stock price movements do not have an effect on the price of the hedged portfolio. That is, we choose n that

isolates the value of the portfolio from movements in the Brownian motion B1,t. Equation (47) makes clear

that n is given by:

n = −(
∂f

∂S
+

∂f

∂σ

ωρ

σS
) (48)

Consequently, the excess instantaneous return of a delta-hedged option when the position on the stock

is financed at the risk-free rate is:

dH

H
− rdt =

df + ndS − n(r − q)Sdt

f
− rdt =

df

f
+ n

S

f

dS

S
− n

S

f
(r − q)− rdt (49)

where H is the value of the delta-hedged option portfolio. Substituting Equations (48) and (47) into Equation

(49), we get:
dH

H
− rdt = ω

√
1− ρ2λi

2,t

1
f

∂f

∂σ
dt +

1
f

∂f

∂σ
ω
√

1− ρ2dB2,t (50)

Ito’s lemma also implies that the covariance between derivative returns and stock returns is:

cov(
dS

S
,
df

f
) =

1
f
{σ2S

∂f

∂S
+ σω(σ)ρ

∂f

∂σ
}dt (51)

βS =
S

f

∂f

∂S
+ ω(σ)ρ

1
σf

∂f

∂σ

where βS is the beta of the derivative with respect to the stock.
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C - Options database cleaning procedures

We do not use any options with non-standard settlement rules. All the options that have bid-prices equal

to 998 or offer-prices equal to 999 are eliminated because Ivy used these as missing codes in some years.

All the observations with negative bid-ask spreads or bid-ask spreads greater than five are eliminated. All

calls or put options with delta smaller than minus one and greater than one are dropped from the database.

All options with negative implied volatility are also dropped. (Ivy database uses -99.99 as a missing code

in some observations.) At date t, we also eliminate all options with zero open interest at date t − 1. This

procedure helps to eliminate data errors that may be related to the lack of trading activity on some options.

Options with a mid point of the bid and the ask prices below 50 percent of the intrinsic value or above 100

dollars of the intrinsic value are also eliminated. We eliminate all duplicated observations of the same type

options with the same strike price and time to maturity on a given day. This guarantees that there is only

one call or put with a given strike and maturity on any given day.

7.1 D - Daily delta-hedged returns

Let Hτ,τ+h represent the value at time τ + h of a portfolio that was hedged at time τ . The portfolio is

composed by a long position on a derivative (fτ+h), and n shares of the stock financed at the risk free rate

(r). Assume that the underlying stock does not pay dividends. In this case Hτ,τ+h is:

Hτ,τ+h ≡ fτ+h + nSτ+h − erh(fτ + nSτ ) (52)

Assume that the Black and Scholes model is used for the purpose of computing hedge ratios. In this

case, n = −∂f/∂S = −∆τ . Substituting a Taylor approximation of fτ+h erh in the expression of Hτ,τ+h, we

get:

Hτ,τ+h ≈ fτ + Θτh + ∆τ (Sτ+h − Sτ ) +
1
2
Γτ (Sτ+h − Sτ )2 (53)

−Sτ+h∆τ − (fτ − Sτ∆τ )− rh (fτ − Sτ∆τ )

Hτ,τ+h ≈ Θτh +
1
2
ΓτS2

τ

(
Sτ+h

Sτ
− 1
)2

− rh (Cτ − Sτ∆τ ) (54)

Where Θτ = ∂f/∂t and Γτ = ∂2f/∂S2. The Black and Scholes PDE is the following relation between Θτ ,Γτ
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and ∆τ when the underlying security does not pay dividends:

Θτ + rSτ∆τ +
1
2
σ2S2

τΓτ = rCτ (55)

Substituting the PDE in the approximation for Hτ,τ+h and taking expectations we have:

E[Hτ,τ+h] ≈ 1
2
ΓτS2

τ{E[
(

Sτ+h

Sτ
− 1
)2

]− σ2h} (56)

Using Sτ+h

Sτ
− 1 ≈ µh

E[Hτ,τ+h] ≈ 1
2
ΓτS2

τµ2h2 (57)

Thus, the expected excess return on a delta-hedged option over period h is approximately

h2

2
µ2 S2

τΓτ

Cτ
(58)

Note that the expected return above depends on µ, which is difficult to proxy for. A simple strategy is

to assume that µ is unknown but constant cross-sectionally. This implies that the discretization bias in

delta-hedged returns is approximately proportional to

S2
τΓτ

Cτ
(59)

The bias in a portfolio is clearly no more than the weighted average of this bias. This holds when we are

considering a portfolio of delta-hedged positions across different stocks, strike, or maturities.

E - Derivations of measurement error biases

Accounting for unknown implied volatility

The above result is valid only when implied volatility is known since ∆(St, σ(St)) then has an additional

dependence on the stock price. When implied volatility is unknown, β′S takes a different form. In particular,

if

βS(St) =
∆(St, σ(St))St

ft
(60)

then

β′S(St) =
d∆(St, σ(St))

dSt

St

ft
+

∆(St, σ(St))
ft

(61)

=
(

∂∆(St, σ(St))
∂St

+
∂∆(St, σ(St))

∂σ

dσ(St)
dSt

)
St

ft
+

∆(St, σ(St))
ft
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Note that ∂∆/∂σ is the vanna of the option, which is equal to

ν(St, σ)
St

(
1− d1

σ
√

τ

)
.

To find dσ/dSt, note that σ solves f̂ = f(St, σ). By the implicit function theorem,

dσ

dSt
= −

∂f
∂St

∂f
∂σ

= −∆(St, σ)
ν(St, σ)

Putting everything together, we have

β′S(St) =
(

Γ(St, σ(St))−
ν(St, σ)

St

(
1− d1

σ
√

τ

)
∆(St, σ)
ν(St, σ)

)
St

ft
+

∆(St, σ(St))
ft

=
Γ(St, σ(St))St

ft
− ∆(St, σ)

ft

(
1− d1

σ
√

τ

)
+

∆(St, σ(St))
ft

=
Γ(St, σ(St))St

ft
+

∆(St, σ)
ft

d1

σ
√

τ
(62)

Biases in total delta-hedged returns

Now consider the case in which the total delta is used for hedging, so that

βT (St) =

(
∆(St) + ν(St, σ(St)) ωρ

σ(St)St

)
St

ft
(63)

= βS(St) +
ν(St, σ(St))ωρ

σ(St)ft

We therefore have

β′T (St) = β′S(St) +
ωρ

ft

d

dSt

(
ν(St, σ(St))

σ(St)

)
(64)

= β′S(St) +
ωρ

ft

(
dν(St,σ(St))

dSt
σ(St)− dσ(St)

dSt
ν(St, σ(St))

σ(St)2

)

= β′S(St) +
ωρ

ft


(

∂ν(St,σ(St))
∂St

+ ∂ν(St,σ(St))
∂σ

dσ(St)
dSt

)
σ(St)− dσ(St)

dSt
ν(St, σ(St))

σ(St)2


Noting that dν(St, σ(St))/dSt is another representation of the the option’s vanna, and that dν(St, σ(St))/dσ

38



is the option’s volga, which is equal to ν(St, σ)d1d2/σ, we have

β′T (St) = β′S(St) +
ωρ

ft


(

ν(St,σ)
St

(
1− d1

σ
√

τ

)
− ν(St, σ(St))d1d2

σ
∆(St,σ)
ν(St,σ)

)
σ(St) + ∆(St,σ)

ν(St,σ) ν(St, σ(St))

σ(St)2



= β′S(St) +
ωρ

ft


(

ν(St,σ)
St

(
1− d1

σ
√

τ

)
−∆(St, σ(St))d1d2

σ

)
σ(St) + ∆(St, σ)

σ(St)2



= β′S(St) +
ωρ

σ(St)2ft

(
ν(St, σ)σ(St)

St

(
1− d1

σ
√

τ

)
+ ∆(St, σ(St)) (1− d1d2)

)
Biases in relative price-weighted returns

In some cases we examine portfolios weighted according to the relative option price, or the price of the

option divided by the price of the underlying stock. In this case our portfolio return is an equal weighted

average of

w(Ŝt)

(
f̂t+1

f̂t

− 1

)
− w(Ŝt)β(Ŝ)

(
St+1

Ŝt

− 1
)

(65)

where

w(Ŝt) ∝
f̂t

Ŝt

and the weights sum to N , the number of assets in the portfolio. We will assume that the constant of

proportionality k is known exactly, which would approximately be the case in a large portfolio if measurement

errors are independent.

The first component,

w(Ŝt)

(
f̂t+1

f̂t

− 1

)

=
kf̂t

Ŝt

(
f̂t+1

f̂t

− 1

)
=

k

Ŝt

(
f̂t+1 − f̂t

)
(66)

is probably close to unbiased. The second component in the difference,

w(Ŝt)β(Ŝt)
(

St+1

Ŝt

− 1
)

=
kf̂t

Ŝt

β(Ŝt)
(

St+1

Ŝt

− 1
)

= β(Ŝt)

(
kf̂tSt+1

Ŝ2
t

− kf̂t

Ŝt

)
(67)

≡ β(Ŝt)h(Ŝt)

We again determine the bias by taking half the second derivative and multiplying by the measurement
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error variance:
1
2

d2

dS2
t

[β(St)h(St)] Var(Stδ)

=
1
2

d

dSt

[
β′(St)h(St) + β(St)h′(St)

]
Var(Stδ)

=
1
2
[
β′′(St)h(St) + β′(St)h′(St) + β′(St)h′(St) + β(St)h′′(St)

]
Var(Stδ)

=
1
2
[
β′′(St)h(St)S2

t + 2β′(St)h′(St)S2
t + β(St)h′′(St)S2

t

]
Var(δ)

Now note that

h(St)S2
t =

(
kf̂tSt+1

S2
t

− kf̂t

St

)
S2

t = kf̂tSt+1 − kf̂tSt

h′(St)S2
t =

(
−2

kf̂tSt+1

S3
t

+
kf̂t

S2
t

)
S2

t = −2
kf̂tSt+1

St
+ kf̂t

h′′(St)S2
t =

(
6
kf̂tSt+1

S4
t

− 2
kf̂t

S3
t

)
S2

t = 6
kf̂tSt+1

S2
t

− 2
kf̂t

St

Taking expectations over St+1, assuming it is a martingale, we have

E
[
h(St)S2

t

]
= 0

E
[
h′(St)S2

t

]
= −kf̂t

E
[
h′′(St)S2

t

]
= 4

kf̂t

St

The bias is therefore [
−kf̂tβ

′(St) + 2
kf̂t

St
β(St)

]
Var(δ)
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Mean
Standard 
Deviation

1st 
Percentile

25th 
Percentile

50th 
Percentile

75th 
Percentile

99th 
Percentile

σ 0.51 0.28 0.20 0.31 0.45 0.65 1.04
ρ -0.25 0.15 -0.47 -0.34 -0.26 -0.17 -0.03
ω 1.04 0.90 0.30 0.52 0.84 1.27 2.40
βm -0.08 0.70 -0.77 -0.24 -0.06 0.10 0.55
βvol 0.34 1.86 -0.71 -0.03 0.23 0.58 1.63

Daily delta-hedged returns

Mean
Standard 
Deviation

1st 
Percentile

25th 
Percentile

50th 
Percentile

75th 
Percentile

99th 
Percentile

Delta-
Hedge 2200 3061 1112 1450 1734 2145 4104

Total-
D lt

Table 1 - Summary statistics. The first panel of this table contains the distributions of some 
variables of interest.  The implied volatility (σ) is from the volatility surface file of the options 
database and it is the implied volatility of a hypothetical option with time-to-maturity equal to 30 
days and delta equal to 0.5.  The correlation between stock returns and changes in the implied 
volatility is represented by ρ. The annualized volatility of volatility (ω) is estimated from the daily 
changes in at-the-money volatility.  The betas with respect to market (βM) and the market volatility 
factor (βVOL) are the pre-ranking betas used to form portfolios for the Fama-MacBeth regressions.   

Delta  
minus 
Delta-
Hedged 30 822 -187 -44 -5 25 187



Mean daily option returns censoring options without implied volatility
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM -30 (-44.48) -29 (-88.52) -51 (-74.30) Deep OTM 20 (4.05) 83 (25.56) 31 (7.57)

-1 (-2.16) -2 (-11.32) -7 (-36.28) 345 (103.36) 162 (120.57) 61 (43.11)
25 (36.48) 18 (86.68) 8 (49.61) 77 (32.97) 33 (46.49) 17 (30.47)

ATM 46 (58.21) 39 (169.24) 26 (175.34) ATM -12 (-14.04) -3 (-9.97) 2 (14.50)
213 (99.42) 110 (154.14) 66 (124.12) -10 (-11.42) -11 (-42.32) -2 (-10.37)

557 (195.08) 312 (262.41) 183 (151.90) -22 (-37.41) -17 (-85.13) -5 (-32.38)
Deep OTM 271 (65.29) 326 (133.81) 262 (92.60) Deep ITM -34 (-51.72) -25 (-104.89) -8 (-36.67)

Mean daily option returns not censoring options without implied volatility
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 13 (33.86) 0 (-0.22) -15 (-39.61) Deep OTM 307 (47.50) 203 (62.87) 130 (33.71)

Table 2 - Double sorts with the actual data. This table displays mean daily returns as well as mean 
absolute and relative bid-ask spreads of options with different moneyness and maturities.  Mean returns 
are in basis points.  Moneyness is measured in terms of the number of standard deviations the option is 
from being at-the-money and ranges from –3 to +3.  There are three time-to-maturity groups.  Short-
term options expire within 10-30 days, medium term options expire within 31-120 days, and long-term 
options expire within 121-260 days. T-statistics are in parentheses. 

21 (51.83) 9 (56.47) 0 (-2.31) 406 (128.00) 181 (130.77) 70 (49.38)
34 (48.21) 20 (94.69) 9 (56.11) 98 (39.44) 34 (45.91) 16 (26.02)

ATM 49 (59.53) 38 (161.52) 25 (166.41) ATM -9 (-9.49) -4 (-13.36) 1 (8.92)
236 (100.32) 111 (144.78) 64 (121.01) -1 (-1.71) -9 (-33.66) -1 (-6.29)
664 (237.60) 334 (276.84) 186 (151.71) -1 (-1.62) -9 (-48.49) -2 (-12.26)

Deep OTM 574 (147.79) 427 (183.30) 308 (109.94) Deep ITM -5 (-12.32) -9 (-53.05) -1 (-6.25)

Mean option relative bid-ask spreads not censoring options without implied volatility
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 0.06 0.04 0.03 Deep OTM 1.72 1.60 1.36

0.08 0.05 0.04 1.11 0.91 0.64
0.11 0.07 0.06 0.48 0.32 0.23

ATM 0.2 0.13 0.10 ATM 0.21 0.14 0.10
0.49 0.3 0.20 0.11 0.08 0.06
1.12 0.78 0.52 0.08 0.06 0.04

Deep OTM 1.75 1.54 1.21 Deep ITM 0.06 0.05 0.03

Mean option absolute bid-ask spreads not censoring options without implied volatility
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 0.45 0.47 0.44 Deep OTM 0.18 0.17 0.15

0.39 0.46 0.45 0.19 0.18 0.17
0.33 0.41 0.44 0.20 0.21 0.21

ATM 0.25 0.30 0.34 ATM 0.25 0.28 0.31
0.19 0.21 0.22 0.31 0.36 0.39
0.18 0.19 0.18 0.36 0.41 0.41

Deep OTM 0.18 0.18 0.16 Deep ITM 0.40 0.44 0.42



Mean of log spread (M)
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM -3.69 -3.89 -3.93 Deep OTM -0.45 -0.49 -0.43

-3.32 -3.56 -3.48 -1.16 -1.34 -1.17
-2.77 -3.12 -2.96 -1.89 -2.23 -2.03

ATM -2.23 -2.59 -2.47 ATM -2.44 -2.76 -2.60
-1.55 -1.92 -1.79 -3.01 -3.31 -3.18
-0.59 -0.77 -0.49 -3.61 -3.81 -3.77

Deep OTM 0.19 0.25 0.37 Deep ITM -4.03 -4.25 -4.35

Standard deviation of log spread (S)
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 0.90 0.91 0.92 Deep ITM 1.04 1.09 1.09

0.88 0.88 0.85 1.23 1.22 1.16

t tr q−

1λ

2λ
m
Vκ
m

V
m
Vω
mρ

i
Vκ
i

V
i
Vω
iρ

1
iξ

2
iξ

Table 3 - Parameters used in the simulations. The first panel of this table displays the mean (M) of the
logs of the option bid-ask spreads used in the simulations.  The second panel displays the standard
deviations (S) of the logs of options bid-spreads in the simulations.  The bid-ask spread of an option in the
simulation is set equal to exp(M+S iμ ), where M and S are given by the displayed functions of the time-
to-maturity and moneyness of the option and iμ  is a normally-distributed random number common to all
options on a given underlying stock.  The third and fourth panels display additional parameters used in the
simulations. U[x,y] represents the uniform distribution between x and y. 

0.86 0.87 0.77 1.13 1.07 0.96
ATM 0.88 0.88 0.73 ATM 0.96 0.92 0.83

1.07 1.05 0.91 0.90 0.88 0.87
1.15 1.17 1.01 0.88 0.89 0.92

Deep OTM 0.62 0.62 0.58 Deep OTM 0.89 0.91 0.93

Market-level parameters
0.04/252 risk-neutral drift

0.0125 price of market risk

0 or -0.1 price of volatility risk

0.018 variance mean-reversion parameter

0.00013 long-run risk-neutral mean of variance 

0.0028 volatility of variance parameter

-0.7 correlation between return and change in variance

Firm-level parameters
U[0.01,0.05] variance mean reversion parameter

U[0.0002,0.001] long-run risk neutral mean of variance 

U[0.002,0.005] volatility of variance parameter

U[-0.5,-0.1] correlation between return and change in variance

U[0.25,0.75] correlation between market and equity returns

U[0.25,0.75] correlation between market and equity changes in variance

error sd 0 or U[0.001,0.005] standard deviation of stock price measurement error

t tr q−

1λ

2λ
m
Vκ
m

V
m
Vω
mρ

i
Vκ
i

V
i
Vω
iρ

1
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Table 3 - Parameters used in the simulations. The first panel of this table displays the mean (M) of the
logs of the option bid-ask spreads used in the simulations.  The second panel displays the standard
deviations (S) of the logs of options bid-spreads in the simulations.  The bid-ask spread of an option in the
simulation is set equal to exp(M+S iμ ), where M and S are given by the displayed functions of the time-
to-maturity and moneyness of the option and iμ  is a normally-distributed random number common to all
options on a given underlying stock.  The third and fourth panels display additional parameters used in the
simulations. U[x,y] represents the uniform distribution between x and y. 



Moneyness Moneyness
Deep ITM 6 (11.6) 3 (6.9) 3 (5.8) Deep ITM -157 (62.3) -105 (35.1) -82 (27.0) 

6 (14.3) 3 (9.9) 3 (8.7) -122 (50.9) -78 (31.0) -58 (23.9) 
1 (21.3) 0 (14.4) 1 (12.3) -77 (38.8) -50 (24.4) -39 (19.7) 

ATM -10 (28.6) -8 (19.2) -5 (16.3) ATM -48 (29.9) -32 (19.2) -25 (15.7) 
-36 (38.2) -25 (25.4) -17 (21.2) -27 (21.9) -18 (14.4) -14 (11.7) 
-87 (53.0) -61 (34.2) -44 (28.1) -12 (14.1) -7 (9.0) -6 (7.3) 

Deep OTM -104 (72.5) -91 (37.7) -70 (27.8) Deep OTM -6 (11.0) -4 (5.9) -3 (4.6) 

Short Short Medium Long
Puts

LongMedium
Calls

Mean of simulated option returns with no errors

Table 4 - Double sorts with simulated data. This table displays mean daily excess returns from simulated option prices.  The 
simulated model is a parameterization of the Heston model, where the price of volatility risk is negative.  The first panel contains 
the mean returns of simulated option prices without any bid-ask bounce.  The second panel contains the mean returns of simulated
option prices that are subjected to bid-ask bounce but that are otherwise identical.  The third panel contains mean returns, also 
computed with bid-ask bounce, where options are censored if their prices do not satisfy arbitrage bounds.  Moneyness and maturity 
are as defined in Table 2.  Mean returns are in basis points, and t-statistics are in parentheses. 

Moneyness Moneyness
Deep ITM 8 (11.3) 4 (6.8) 4 (5.8) Deep ITM 570 (76.2) 580 (52.2) 659 (48.8) 

8 (14.3) 5 (9.7) 5 (8.6) 294 (56.6) 305 (39.3) 314 (34.5) 
10 (21.0) 5 (14.0) 5 (12.2) 66 (40.5) 43 (25.8) 50 (21.6) 

ATM 27 (28.1) 11 (18.9) 9 (16.1) ATM -18 (30.0) -17 (19.1) -12 (15.7) 
187 (40.5) 126 (27.1) 123 (24.3) -20 (21.7) -14 (14.0) -11 (11.6) 
602 (63.7) 597 (46.3) 686 (45.1) -10 (14.0) -6 (8.8) -5 (7.3) 

Deep OTM 1255 (117.5) 1144 (61.6) 1336 (58.5) Deep OTM -5 (10.7) -3 (5.8) -3 (4.7) 

Moneyness Moneyness
Deep ITM -27 (12.7) -19 (7.5) -18 (6.5) Deep ITM 327 (61.4) 437 (47.5) 518 (50.1) 

-10 (15.2) -6 (10.1) -4 (8.9) 237 (44.3) 277 (32.9) 297 (31.0) 
5 (21.3) 3 (14.2) 4 (12.3) 63 (39.1) 42 (25.4) 49 (21.4) 

ATM 26 (28.2) 10 (18.9) 9 (16.1) ATM -18 (29.9) -17 (19.1) -12 (15.7) 
181 (42.2) 125 (27.6) 123 (24.5) -23 (21.5) -15 (13.9) -12 (11.4) 
492 (87.3) 541 (60.2) 644 (56.0) -24 (13.9) -15 (8.6) -14 (7.1) 

Deep OTM 691 (189.7) 860 (121.8) 1145 (99.7) Deep OTM -44 (10.6) -23 (5.5) -18 (4.5) 

Calls Puts
Short Medium Long Short Medium Long

Mean of simulated option returns with errors and no censoring

Mean of simulated option returns with errors and censoring
Calls Puts

Short Medium Long Short Medium Long

Table 4 - Double sorts with simulated data. This table displays mean daily excess returns from simulated option prices.  The 
simulated model is a parameterization of the Heston model, where the price of volatility risk is negative.  The first panel contains 
the mean returns of simulated option prices without any bid-ask bounce.  The second panel contains the mean returns of simulated
option prices that are subjected to bid-ask bounce but that are otherwise identical.  The third panel contains mean returns, also 
computed with bid-ask bounce, where options are censored if their prices do not satisfy arbitrage bounds.  Moneyness and maturity 
are as defined in Table 2.  Mean returns are in basis points, and t-statistics are in parentheses. 



No errors, no filtering
 

coefficient t-statistic coefficient t-statistic coefficient t-statistic
Intercept x 104 0.35 0.47 -0.01 0.02 0.07 0.16

(0.83) (1.06) (0.65) (1.03) (0.6) (1.05)
βM x 103 0.19 0.69 0.17 0.60

(0.30) (1.04) (0.313) (1.05)
βVol x 102 -0.005 -4.79 -0.005 -4.7 -0.005 -4.64

(0.001) (1.04) (0.001) (1.05) (0.001) (1.01)
γ x 106 -0.22 -0.14

(2.093) (1.13)

2 31

Table 5 - Fama-MacBeth regressions on simulated data.  This table displays the means and the standard 
deviations (in parentheses) of the estimated coefficients of Fama-MacBeth regressions and their t-statistics.  The 
means and standard deviations are calculated across all simulations.  The simulated model is a parameterization of
the Heston model with negative volatility risk premium. The first panel displays the results based on simulated 
data without bid-ask bounce and without any filtering of options.  The second panel displays the results based on 
simulated data with bid-ask bounce.  The third panel displays the results based on samples that have bid-ask 
bounce that filter out options that have large relative bid-ask spreads prior to the start of the interval over which 
returns are computed.  The regressions are estimated with portfolios of total delta-hedged options sorted by time-
to-maturity, moneyness, and pre-ranking volatility beta. The variables in the cross-sectional regressions are the 
betas with the respect to the market (βM), the  beta with respect to the market volatility (βVOL),  the mean gamma 
(γ), the mean of the square of the option spreads (OPTION SPREAD) in the portfolio and the mean of the bias 
adjustment for stock spreads (β×R BIAS), ), which is given computed as ' 2[ ( ) ( )] Stock SpreadT t t T tS S Sb b+ ´ , 
where ( )T tSb  is the Black-Scholes beta of the option with respect to the stock. 
 

( ) ( )

Option errors, no filtering
 

coefficient t-statistic coefficient t-statistic coefficient t-statistic coefficient t-statistic
Intercept x 104 -38.48 -18.01 -47.63 -21.37 -19.86 -5.63 -24.36 -5.42

(6.63) (4.71) (8.28) (6.82) (4.79) (1.11) (6.14) (1.39)
βM x 103 9.45 11.50 1.78 1.88

(5.505) (7.21) (1.401) (1.42)
βVol x 102 0.036 28.96 0.039 30.41 -0.009 -6.29 -0.009 -5.84

(0.004) (2.93) (0.005) (3.92) (0.002) (1.23) (0.002) (1.26)
0.08 44.58 0.08 45.30

(0.003) (9.49) (0.002) (8.71)
6.28 6.81 7.09 6.45

(1.382) (1.38) (1.517) (1.39)

Option errors and filtering on t-2 spread
  

coefficient t-statistic coefficient t-statistic
Intercept x 104 8.97 10.18 -2.90 -1.39

(1.13) (1.64) (2.09) (0.98)
βM x 103 -0.02 -0.03 0.69 1.87

(0.336) (0.99) (0.37) (1.00)
βVol x 102 -0.003 -2.6 -0.005 -4.13

(0.001) (1) (0.001) (1.07)
0.04 3.28

(0.01) (0.98)
2.89 4.51

(0.686) (1.11)β×R BIAS

OPTION 
SPREAD x 104

4321

21

OPTION 
SPREAD x 104

β×R BIAS

Table 5 - Fama-MacBeth regressions on simulated data.  This table displays the means and the standard 
deviations (in parentheses) of the estimated coefficients of Fama-MacBeth regressions and their t-statistics.  The 
means and standard deviations are calculated across all simulations.  The simulated model is a parameterization of
the Heston model with negative volatility risk premium. The first panel displays the results based on simulated 
data without bid-ask bounce and without any filtering of options.  The second panel displays the results based on 
simulated data with bid-ask bounce.  The third panel displays the results based on samples that have bid-ask 
bounce that filter out options that have large relative bid-ask spreads prior to the start of the interval over which 
returns are computed.  The regressions are estimated with portfolios of total delta-hedged options sorted by time-
to-maturity, moneyness, and pre-ranking volatility beta. The variables in the cross-sectional regressions are the 
betas with the respect to the market (βM), the  beta with respect to the market volatility (βVOL),  the mean gamma 
(γ), the mean of the square of the option spreads (OPTION SPREAD) in the portfolio and the mean of the bias 
adjustment for stock spreads (β×R BIAS), ), which is given computed as ' 2[ ( ) ( )] Stock SpreadT t t T tS S Sb b+ ´ , 
where ( )T tSb  is the Black-Scholes beta of the option with respect to the stock. 
 



1 2 3
Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

Intercept x 104 -45.20 -21.67 -20.94 -4.93 -2.92 -1.44
(7.79) (6.40) (5.62) (1.20) (2.10) (1.02)

βM x 103 14.49 11.91 1.73 1.17 0.89 1.69
(7.49) (6.58) (2.02) (1.17) (0.51) (0.97)

βVol x 102 0.050 32.57 -0.004 -2.42 0.000 0.06
(0.006) (3.69) (0.002) (1.12) (0.001) (1.01)

0.08 45.84 0.04 3.43
(0 002) (8 56) (0 011) (0 98)

OPTION SPREAD x 104

Filtering on t-2 spreadNo filtering

Table 6 - Fama-MacBeth regressions on simulated data with zero volatility risk premium.  This table
displays the means and the standard deviations (in parentheses) of the estimated coefficients of Fama-
MacBeth regressions and their t-statistics.  The means and standard deviations are calculated across all
simulations.  The simulated model is a parameterization of the Heston model with zero volatility risk
premium. All regressions are based on simulated data with bid-ask bounce.  The regressions with filtering are
based on samples with deletion of options with large relative bid-ask spreads prior to the start of the return
interval.  The regressions are estimated with portfolios of total delta-hedged options sorted by time-to-
maturity, moneyness, and pre-ranking volatility beta. The variables in the cross-sectional regressions are the
beta with respect to the market (βM), the beta with respect to the market volatility (βVOL), the mean of the
square of the option spreads (OPTION SPREAD) in the portfolio, and the mean of the bias adjustment for
stock spreads (β×R BIAS), which is given by ' 2[ ( ) ( )] Stock SpreadT t t T tS S Sb b+ ´ , where ( )T tSb is the
Black and Scholes beta of the option with respect to the stock.   

(0.002) (8.56) (0.011) (0.98)
6.92 5.76 2.89 3.96

(1.61) (1.29) (0.79) (1.10)β×R BIAS

Table 6 - Fama-MacBeth regressions on simulated data with zero volatility risk premium.  This table
displays the means and the standard deviations (in parentheses) of the estimated coefficients of Fama-
MacBeth regressions and their t-statistics.  The means and standard deviations are calculated across all
simulations.  The simulated model is a parameterization of the Heston model with zero volatility risk
premium. All regressions are based on simulated data with bid-ask bounce.  The regressions with filtering are
based on samples with deletion of options with large relative bid-ask spreads prior to the start of the return
interval.  The regressions are estimated with portfolios of total delta-hedged options sorted by time-to-
maturity, moneyness, and pre-ranking volatility beta. The variables in the cross-sectional regressions are the
beta with respect to the market (βM), the beta with respect to the market volatility (βVOL), the mean of the
square of the option spreads (OPTION SPREAD) in the portfolio, and the mean of the bias adjustment for
stock spreads (β×R BIAS), which is given by ' 2[ ( ) ( )] Stock SpreadT t t T tS S Sb b+ ´ , where ( )T tSb is the
Black and Scholes beta of the option with respect to the stock.   



Option-spread-bias-correction Fama-MacBeth regression  
Intercept βVol βM OPTION 

SPREAD
0.0007 -0.0003 -0.00004 0.04369 62 2402
(2.2) (-4.6) (-0.2) (4.3)

Average returns
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 10.9 11.9 -5.2 Deep OTM -358.4 -81.3 -20.0

10.6 25.1 -1.9 -260.9 -56.7 -32.2
3.5 35.3 12.2 -139.4 -44.8 -17.7

ATM 6 5 38 7 8 5 ATM 76 9 34 1 13 8

Average number of cross-
sectional observations

Number of time 
series observations

Table 7 – S&P 500 options returns.  The first panel displays the results of a Fama-MacBeth regression on
S&P 500 option returns.  The variables in the cross-sectional regressions are the beta with the respect to the
market (βM), the beta with respect to the market volatility (βVOL) and  the mean of the square of the option
spreads (OPTION SPREAD) in the portfolio.  The second panel contains the average returns of S&P 500
options across moneyness and time-to-maturity.  The third panel displays the spread bias component of the
average returns.  This spread bias component is calculated with the coefficient on the OPTION SPREAD in
the first panel and the bid-ask spread of each option in the sample.  The third panel displays the difference
between the average return in the second panel and the bias component, this difference is the bias adjusted
average option return. 

ATM -6.5 38.7 8.5 ATM -76.9 -34.1 -13.8
-15.7 57.5 22.1 -42.9 -48.0 -12.6
27.6 190.5 46.7 -25.4 -12.4 0.1

Deep OTM 830.2 426.7 237.8 Deep ITM -25.6 9.4 15.0

Spread bias component
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 0.1 0.0 0.0 Deep OTM 43.9 20.9 12.5

0.3 0.1 0.0 12.7 6.7 4.5
0.9 0.3 0.1 4.6 2.9 1.5

ATM 2.1 1.0 0.4 ATM 2.2 1.1 0.5
7.4 4.1 2.1 1.1 0.4 0.2

183.8 142.2 76.2 0.3 0.1 0.0
Deep OTM 1139.0 1413.8 1141.3 Deep ITM 0.1 0.0 0.0

Bias-adjusted average returns
Calls Puts

Moneyness Short Medium Long Moneyness Short Medium Long
Deep ITM 10.8 11.9 -5.2 Deep OTM -402.3 -102.2 -32.5

10.3 25.1 -1.9 -273.6 -63.4 -36.6
2.6 35.0 12.1 -144.0 -47.7 -19.2

ATM -8.6 37.7 8.2 ATM -79.1 -35.3 -14.2
-23.1 53.3 20.0 -44.0 -48.4 -12.8

-156.2 48.2 -29.5 -25.8 -12.5 0.1
Deep OTM -308.8 -987.1 -903.5 Deep ITM -25.7 9.3 15.0

Table 7 – S&P 500 options returns.  The first panel displays the results of a Fama-MacBeth regression on
S&P 500 option returns.  The variables in the cross-sectional regressions are the beta with the respect to the
market (βM), the beta with respect to the market volatility (βVOL) and  the mean of the square of the option
spreads (OPTION SPREAD) in the portfolio.  The second panel contains the average returns of S&P 500
options across moneyness and time-to-maturity.  The third panel displays the spread bias component of the
average returns.  This spread bias component is calculated with the coefficient on the OPTION SPREAD in
the first panel and the bid-ask spread of each option in the sample.  The third panel displays the difference
between the average return in the second panel and the bias component, this difference is the bias adjusted
average option return. 



Tripled sorted portfolios with filters

1 2 3 4 5 6
Intercept × 103 0.176 0.877 0.322 0.186 0.038 0.194

(1.015) (1.844) (2.054) (1.145) (0.137) (1.414)
βVol × 103 0.328 0.224 -0.193 -0.255

(2.400) (1.506) (-1.659) (-2.002)
βM × 103 -1.603 -0.992 0.601 0.132

Total delta-hedged. EW portfolios, OLS regressions

Table 8 - Fama-MacBeth regressions on portfolios of equity options.  This table displays the results of
Fama-MacBeth regressions on 420 portfolios formed on the basis of moneyness, maturity, and pre-
ranking volatility beta.  Calls and puts comprise separate portfolios.  The sample period is 1997 to 2006.
Options with bid-ask spread larger than 25% of the mid option price are deleted.  The dependent variables
are total delta-hedged returns. The variables included in in the cross-sectional regressions are the beta
with the respect to market volatility (βVol), the beta with respect to the stock market return (βM), the mean
of the square of the option’s relative spread (OPTION SPREAD), the mean of ' ( ) ( )T t t T tS S Sb b+ where

( )T tSb  is the Black and Scholes beta of the option with respect to the stock (β×R BIAS INTERCEPT),
and the mean of ' 2[ ( ) ( )] Stock SpreadT t t T tS S Sb b+ ´  (β×R BIAS SLOPE).  The variables β×R BIAS
SLOPE and β×R  BIAS INTERCEPT are adjustments for the bias in the delta hedged return caused by
stock bid-ask bounce.  RMSE is the root mean square error of the cross-sectional regressions.  Newey-
West t-statistics, computed using an automatic lag length selector, are in parentheses.   

βM  10 1.603 0.992 0.601 0.132
(-3.294) (-2.887) (1.786) (0.378)

0.032 0.025 0.036
(9.606) (3.597) (10.171)
1.364 0.941 -0.444

(1.175) (0.833) (-0.408)
-0.073 -0.097 -0.080

(-1.280) (-1.878) (-1.553)

R-square 0.530 0.312 0.590 0.651 0.564 0.567
RMSE × 104 13.0 15.8 12.2 11.2 12.6 12.5

Avg. CS obs. 266.7 266.7 266.7 266.7 266.7 266.7
TS obs. 2240 2240 2240 2240 2240 2240

OPTION SPREAD

β×R BIAS 
INTERCEPT × 107

β×R BIAS SLOPE



Tripled sorted portfolios with filters  

Intercept × 103 0.194 0.433 -0.169 0.024
(1.414) (3.275) (-7.770) (1.024)

βVol × 103 -0.255 -0.480 0.288 0.170
(-2.002) (-3.862) (1.868) (1.164)

βM × 103 0.132 0.026 1.312 1.248
(0.378) (0.068) (3.807) (3.475)
0.036 0.007 0.022 -0.012

(10.171) (1.648) (5.814) (-2.969)
0 444 45 306 0 138 8 572

Price-Weighted

OPTION SPREAD

R BIAS

WLS RegressionOLS Regression
Equal-

Weighted
Relative

Price-Weighted
Equal-

Weighted
Relative

Table 9 – Robustness analysis for Fama-MacBeth regressions on portfolios of equity options.  This 
table displays the results of Fama-MacBeth regressions on 420 portfolios formed on the basis of 
moneyness, maturity, and pre-ranking volatility beta.  Calls and puts comprise separate portfolios.  The 
sample period is 1997 to 2006.  Options with bid-ask spread larger than 25% of the mid option price are 
deleted.   The dependent variables are total delta-hedged returns. The variables in the cross-sectional 
regressions are the beta with the respect to market volatility (βVol), the beta with respect to the stock 
market return (βM), and three bias control variables that were described in Table 8.   RMSE is the root
mean square error of the cross-sectional regressions.  Newey-West t-statistics, computed using an 
automatic lag length selector, are in parentheses.   

-0.444 -45.306 0.138 -8.572
(-0.408) (-5.542) (0.410) (-2.979)
-0.080 -0.051 0.004 -0.009

(-1.553) (-0.889) (0.318) (-0.529)

R-square 0.567 0.532 0.118 0.037
RMSE × 104 12.5 12.5 17.9 17.9

Avg. CS obs. 266.7 266.7 266.7 266.7
TS obs. 2240 2240 2240 2240

β×R BIAS 
INTERCEPT × 107

β×R BIAS SLOPE



Dependent 
variable: λVol λM volatility factor stock return 

factor

Intercept × 103 -0.213 0.246 0.077 0.335
-(2.539) (0.678) (3.883) (1.309)

1-day lag of λVol 0.165 0.452 -0.012 0.131
(6.012) (1.755) -(1.664) (1.273)

R-square 0.027 0.011 0.002 0.001
# of obs. 2239 2239 2239 2239

Table 10 – The predictive ability of volatility risk premia.  This table measures the
forecastability of risk premia and factors.  The explanatory variable in the top panel is the
realized price of volatility risk, lagged one day, measured as the coefficient on volatility
betas in a single cross-sectional regression.    The contemporaneous version of this variable
is the first dependent variable.  The realized price of market risk is the second dependent
variable.  The volatility and market return factors are the last two dependent variables.  The
second panel is identical except that the explanatory variable is a 22-day moving average
of the realized price of volatility risk.  White T-statistics are in parentheses.   

Dependent 
variable: λVol λM volatility factor stock return 

factor

Intercept × 103 -0.140 0.449 0.085 0.405
-(1.585) (1.223) (3.840) (1.457)
0.464 1.286 0.018 0.508

(6.247) (3.809) (0.888) (1.991)

R-square 0.022 0.010 0.000 0.003
# of obs. 2218 2218 2218 2218

lagged 1-month 
average of λVol



1 2 3 4
Intercept × 103 0.322 -2.110 0.194 -1.869

(2.054) -(3.034) (1.414) -(3.208)
Intercept × VIX(t-1) × 102 1.101 0.934

(3.362) (3.400)
βVol × 103 0.022 -1.652 -0.026 -2.032

(1.506) -(3.390) -(2.002) -(4.541)
βVol × VIX(t-1) × 102 0.849 0.804

(3.522) (3.754)
βM × 103 -0.992 -2.801 0.132 -4.467

-(2.887) -(1.878) (0.378) -(2.948)
β  VIX(t 1)  102 0 819 2 082

Total delta-hedged. EW portfolios, OLS regressions

Table 11 - Fama-MacBeth regressions with time varying risk premia.  This table displays the results
of Fama-MacBeth regressions on 420 portfolios formed on the basis of moneyness, maturity, and pre-
ranking volatility beta.  Calls and puts comprise separate portfolios.  The sample period is 1997 to 2006.
Options with bid-ask spread larger than 25% of the mid option price are deleted.   The dependent 
variables are total delta-hedged returns. The variables in the cross-sectional regressions are the beta with 
the respect to market volatility (βVol), the beta with respect to the stock market return (βM), and three 
variables described in Table 8 that control for bid-ask bounce.  Cross-sectional regression intercepts and 
slope coefficients on βVol and βM are regressed on the lag of the VIX index, while only unconditional
means are reported for the bias controls.  Newey-West t-statistics, computed using an automatic lag 
length selector, are in parentheses.   

βM × VIX(t-1) × 102 0.819 2.082
(1.223) (2.990)

0.036 0.036
(10.171) (10.171)
-0.444 -0.444

-(0.408) -(0.408)
-0.080 -0.080

-(1.553) -(1.553)

R-square 0.590 0.586 0.567 0.572
RMSE × 104 12.2 12.2 12.5 12.4

Avg. CS obs. 266.7 266.7 266.7 266.7
TS obs. 2240 2240 2240 2240

OPTION SPREAD

β×R BIAS INTERCEPT × 
107

β×R BIAS SLOPE



Regular 
delta-

hedged

Sort variable: βVol βVol βVol βVol
Implied 
Volatility

Volatility 
Ratio βVol

OLS OLS WLS WLS OLS OLS OLS
EW RPW EW RPW EW EW EW

Intercept × 103 -1.869 -1.123 -0.381 -0.197 -1.589 -1.652 -0.486
-(3.208) -(1.841) -(5.332) -(1.794) -(3.177) -(2.999) -(5.611)

Intercept × VIX(t-1) × 102 0.934 0.704 0.096 0.100 0.796 0.745 0.139
(3.400) (2.496) (2.726) (1.841) (3.462) (2.902) (3.210)

β × 103 2 032 1 778 1 942 1 690 1 834 2 044 2 140

Total delta-hedged

Table 12 – Robustness analysis for Fama-MacBeth regressions with time varying risk premia.  This table
displays the results of Fama-MacBeth regressions on 420 portfolios formed on the basis of moneyness,
maturity, and either the pre-ranking volatility beta, the stock’s at-the-money implied volatility, or the ratio of
implied to 22-day trailing realized volatility.  Calls and puts comprise separate portfolios.  The sample period is
1997 to 2006.  Options with bid-ask spread larger than 25% of the mid option price are deleted.   The dependent
variables are either total or regular delta-hedged returns.  The variables in the cross-sectional regressions are the
beta with the respect to market volatility (βVol), the beta with respect to the stock market return (βM), and three
variables described in Table 8 that control for bid-ask bounce.  Cross-sectional regression intercepts and slope
coefficients on βVol and βM are regressed on the lag of the VIX index, while only unconditional means are
reported for the bias controls.  Newey-West t-statistics, computed using an automatic lag length selector, are in
parentheses.   

βVol × 10 -2.032 -1.778 -1.942 -1.690 -1.834 -2.044 -2.140
-(4.541) -(3.985) -(3.506) -(3.227) -(4.094) -(4.953) -(3.796)

βVol × VIX(t-1) × 102 0.804 0.588 1.009 0.842 0.723 0.922 1.064
(3.754) (2.787) (3.696) (3.318) (3.285) (4.401) (3.812)

βM × 103 -4.467 -5.663 -4.068 -3.336 -5.795 -5.458 -3.391
-(2.948) -(3.355) -(2.801) -(2.139) -(3.707) -(3.358) -(2.305)

βM × VIX(t-1) × 102 2.082 2.575 2.435 2.075 2.768 2.463 1.439
(2.990) (3.475) (3.513) (2.870) (3.828) (3.249) (2.135)
0.036 0.007 0.022 -0.012 0.037 0.019 0.023

(10.171) (1.648) (5.814) -(2.969) (11.032) (5.950) (5.665)
-0.444 -45.306 0.138 -8.572 0.558 -0.403 -0.209

-(0.408) -(5.542) (0.410) -(2.979) (0.393) -(0.382) -(0.681)
-0.080 -0.051 0.004 -0.009 -0.018 0.032 -0.006

-(1.553) -(0.889) (0.318) -(0.529) -(0.387) (0.710) -(0.441)

R-square 0.572 0.539 0.133 0.053 0.464 0.300 0.307
RMSE × 104 12.4 12.4 17.7 17.8 16.2 21.1 15.9

Avg. CS obs. 266.7 266.7 266.7 266.7 263.5 263.6 266.7
TS obs. 2240 2240 2240 2240 2240 2240 2240

OPTION SPREAD

β×R BIAS INTERCEPT × 
107

β×R BIAS SLOPE



1 2 3 4
Intercept × 103 0.194 0.312 -1.869 -1.668

(1.414) (2.423) (-3.208) (-3.146)
Intercept × VIX(t-1) × 102 0.934 0.896

(3.400) (3.622)
Total βVol × 103 -0.255 -2.032

(-2.002) (-4.541)
Contract component of βVol × 103 -0.402 -2.264

(-2.766) (-4.378)
3

Table 13 – Decomposing volatility betas into contract and firm components.  This table displays the results 
of Fama-MacBeth regressions on 420 portfolios formed on the basis of moneyness, maturity, and pre-ranking 
volatility beta.  Calls and puts comprise separate portfolios.  The sample period is 1997 to 2006.  Options with 
bid-ask spread larger than 25% of the mid option price are deleted.   The dependent variables are total delta-
hedged returns.  In specifications 1 and 3, the variables in the cross-sectional regressions are the beta with the 
respect to market volatility (βVol), the beta with respect to the stock market return (βM), and three variables 
described in Table 8 that control for bid-ask bounce.  Specifications differ by separating βVol into “contract” and 
“firm” components.  The contract component is identical for all portfolios with the same maturity and
moneyness.  The firm component, which accounts for variation due to differences in the underlying stocks, is
the difference between the portfolio’s own estimated beta and the contract component.  In specifications 1 and
2, risk premia are assumed constant.  In 3 and 4, cross-sectional regression intercepts and slope coefficients on 
βVol and βM are regressed on the lag of the VIX index.  Newey-West t-statistics, computed using an automatic 
lag length selector, are in parentheses.   

Firm component of βVol × 103 0.253 -1.226
(1.946) (-2.852)

Total βVol × VIX(t-1) × 102 0.804
(3.754)

Contract component of βVol × VIX(t-1) × 102 0.843
(3.429)

Firm component of βVol × VIX(t-1) × 102 0.669
(3.533)

βM × 103 0.132 0.132 -4.467 -4.439
(0.378) (0.381) (-2.948) (-2.914)

βM × VIX(t-1) × 102 2.082 2.069
(2.990) (2.953)

0.036 0.043 0.036 0.043
(10.171) (14.658) (10.171) (14.658)

-0.444 -0.964 -0.444 -0.964
(-0.408) (-0.859) (-0.408) (-0.859)
-0.080 -0.061 -0.080 -0.061

(-1.553) (-1.206) (-1.553) (-1.206)

R-square 0.567 0.561 0.572 0.566
RMSE × 104 12.5 12.6 12.4 12.5

Avg. CS obs. 266.7 266.7 266.7 266.7
TS obs. 2240 2240 2240 2240

OPTION SPREAD

β×R BIAS INTERCEPT × 107

β×R BIAS SLOPE
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Figure 1 - Time series of market one-vega P&L and of the S&P 500 index.  This figure plots the time series of 
the market volatility factor (market one-vega P&L) and of the S&P 500 index.  The market one-vega P&L is built 
from returns of total-delta hedged options written on the S&P 500 index.   
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Figure 2 – Option price-error distribution.  This figure plots the option price-error distribution used in 
the simulations.   The bid-ask spread of an option in the simulation is set equal to iM Se μ+ ×   where M and 
S are functions of the time-to-maturity and moneyness of the option, while iμ is a normally distributed 
random number for the underlying stock.   Option prices in the simulations with measurement errors are
equal to the model price plus a random number generated from the plotted probability density.  
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Figure 3 – The relation between volatility betas and average total delta-hedged returns.  This figure plots the average returns 
and volatility betas of relative price-weighted portfolios that are sorted on the basis of maturity, moneyness, and pre-ranking 
volatility betas.  Puts and calls comprise separate portfolios.  The sample period is 1997 to 2006.  Options with bid-ask spread larger 
than 25% of the mid option price are deleted.  Each letter represents one portfolio, with C for call portfolios and P for put portfolios. 
Black letters correspond to out-of-the-money options, while gray letters denote in-the-money or at-the-money options.  
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Figure 4 - Fama-MacBeth estimates of realized volatility risk premia.  This figure displays the estimated realized volatility
risk premia from cross-sectional regressions on beta with the respect to market volatility ( Vol), the beta with respect to the stock
market return ( M), and bias control variables described in Table 8.  Results use OLS regression on 420 equal-weighted portfolios
formed on the basis of moneyness, maturity, and pre-ranking volatility beta.  Calls and puts comprise separate portfolios.  The
sample period is 1997 to 2006.  Options with bid-ask spread larger than 25% of the mid option price are deleted.  The dependent
variables are total delta-hedged returns. 




