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1. Introduction 

Tests for mean-variance efficiency of a given portfolio are useful tools for portfolio 

management applications and empirical asset pricing research. Early efficiency tests such as 

the classical mean-variance efficiency tests of Jobson and Korkie (1980, 1982), Gibbons 

(1982), Kandel (1984), MacKinlay (1987), Shanken (1985, 1986), and Gibbons, Ross and 

Shanken (GRS; 1989) focus on the case where the portfolio weights are unrestricted. In this 

paper we consider a setting where the trading of a subset of assets is restricted by linear 

constraints. The restricted subset of assets can be thought of as illiquid, or when the portfolio 

weights are fixed at given values, as non-traded. Applications include tests of portfolio 

efficiency for investors with a substantial investment in housing, labor income, or non-traded 

liabilities.  

An example of a relevant application is testing household portfolio efficiency while 

taking into account an illiquid investment in housing that cannot be adjusted in the short-term. 

Flavin and Yamashita (2002), Cocco (2004) and Hu (2005) show that a substantial investment 

in housing – typical for most individuals – can crowd stocks out of the investor’s portfolio. 

Pelizzon and Weber (2003) test the efficiency of more than 5000 Italian household portfolios 

under the assumption that the individual’s investment in housing is fixed. The results show 

that the constraint on the housing investment plays an important role in determining whether 

the portfolios are efficient. Our test is not only applicable in the growing field of household 

finance (for an overview, see Campbell, 2006), but also useful for institutional investors with 

non-traded liabilities, such as the liabilities arising from defined benefits pension schemes 

(see, e.g., Berkelaar and Kouwenberg, 2003).  

Our analysis starts from the optimality conditions for mean-variance efficiency of a 

given portfolio under constraints.  We formulate the null hypothesis of efficiency and propose 

a test statistic for measuring deviations from the null. Under the assumption of a normal 
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distribution for the excess asset returns, we prove that the test statistic follows an 

F-distribution. The unrestricted classical GRS test is a special case within our framework. 

Apart from generalizing the GRS test, the contribution of the paper to the literature is that the 

test statistic is easily computed and suited for small samples, whereas available tests for 

efficiency under restrictions typically rely on approximations, large sample theory or 

computer simulation of the posterior distribution.  

This paper aims to enrich the set of methods for testing mean-variance efficiency 

under constraints available in the literature. Wang (1998) extends the Bayesian approach for 

examining portfolio efficiency of Kandel et al. (1995) to include general restrictions on the 

portfolio weights. Similar to our paper, Wang (1998) assumes that asset returns are normally 

distributed. The posterior distribution of the efficiency measure is computed numerically with 

simulations. An advantage of the numerical approach is that the test can handle many 

different types of constraints. Further, Wang (1998) uses direct measures of the degree of 

portfolio efficiency, such as the maximum improvement in mean return given the variance of 

the evaluated portfolio. On the other hand, simulations can be time-consuming and some 

researchers might prefer the classical approach of hypothesis testing over the Bayesian 

approach (which uses posterior odds ratios, instead of p-values). We will not enter the debate 

about the relative merits of classical and Bayesian statistics here. Rather, our purpose is to 

extend the classical approach to testing mean-variance efficiency with a test that applies under 

restrictions on the portfolio weights. 

Basak, Jagannathan and Sun (2002) develop a direct test for portfolio efficiency 

subject to short sale constraints.  Similar to Wang (1998), Basak et al. (2002) measure the 

maximum improvement in variance that can be achieved by forming a portfolio of the 

primitive assets with the same mean as the benchmark portfolio. Basak et al. (2002) test 

whether the potential improvement is significantly greater than zero using a classical 
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statistical approach, complementing the Bayesian approach followed by Wang (1998). Basak 

et al. (2002) prove that the sampling distribution of the estimated efficiency measure 

converges to a normal distribution as the number of observations goes to infinity. In order to 

derive this asymptotic result the paper applies a linear approximation method. Basak et al. 

(2002, p. 1213) report that the estimated efficiency measure is a non-linear function of the 

data in applications with short sale constraints and the linear approximation method might 

therefore introduce large errors.  

Gouriéroux and Jouneau (1999) develop a mean-variance efficiency test for an 

investment setting where the portfolio weights of a subset of assets are fixed at given weights. 

Under the assumption of a multivariate normal asset return distribution, the test statistic 

proposed by Gouriéroux and Jouneau (1999) follows a chi-square distribution asymptotically. 

The test includes the unrestricted mean-variance test of Jobson and Korkie (1980, 1982) as a 

special case. Our paper complements the work of Gouriéroux and Jouneau (1999) by 

generalizing the classical test of Gibbons, Ross and Shanken (1989) to an investment setting 

with a subset of illiquid or non-traded assets. An advantage of our approach is that we find the 

exact small sample distribution of the test statistic (F-distribution). Further, our investment 

setting is slightly more general, as it includes linear restrictions on the entire subset of 

restricted assets. A relevant example of such a constraint is a binding limit on foreign 

investment.  

Following GRS and others, we assume that the asset returns follow a joint normal 

distribution. As shown in Affleck-Graves and McDonald (1989), monthly US stock returns 

are “reasonably normal” and the GRS test is robust to the existing non-normalities. 

Nevertheless, for other asset return series (for example, derivatives or high-frequency data), 

deviations from normality can be more severe. In these cases, we can use, for example, the 

asymptotic mean-variance efficiency test of MacKinlay and Richardson (1991) or Zhou’s 
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(1993) generalization of the GRS test under an elliptical distribution. However, if returns do 

not follow an elliptical distribution, the economic meaning of the mean-variance criterion is 

not well-defined to begin with (see, e.g., Chamberlain, 1983) and in that case we would 

advise the use of more general stochastic dominance efficiency tests (see, e.g., Post, 2003; 

Kuosmanen, 2004). 

 Like the original GRS test, our test does not use conditioning information. There exists 

mounting evidence in favor of time-varying risk and time-varying risk aversion (see, e.g., 

Ferson et al., 1987; Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001). Conditional 

efficiency generally does not imply unconditional efficiency (see, e.g., Hansen and Richard, 

1987), and conditional tests are needed in case of time variation. We refer to the recent paper 

of Ferson and Siegel (2006) for tests that use conditional information efficiently and 

generalizations of earlier work. On the other hand, given the lack of theoretical guidance for 

selecting the appropriate specification, conditional tests also entail risk of specification error 

(see, for example, Ghysels, 1998). In this paper we focus on unconditional efficiency and we 

leave the development of a conditional version of the test for future research. As a partial 

remedy, researchers and practitioners applying our unconditional test can use “ad hoc” 

approaches to control for time variation, including the formation of test portfolios that are 

periodically rebalanced, and moving or rolling window analysis.  

Finally, we would also like to mention a number of other papers that are indirectly 

related to our work. The formulation of our test statistic for mean-variance efficiency is 

inspired by the work of Shapiro and Homem-de-Mello (1998). Higle and Sen (1991) and 

Shapiro and Homem-de-Mello (1998) derive general asymptotic tests for the optimality of a 

candidate solution to a stochastic optimization problem. De Roon, Nyman and Werker (2001) 

develop asymptotic tests for mean-variance spanning under short sale constraints and 

transaction costs, using a similar test statistic. We refer to Korkie and Turtle (2002) for an 
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extensive mean-variance analysis of self-financing portfolios, including the derivation of 

spanning and efficiency tests under self-financing restrictions. Within our framework self-

financing constraints can be imposed as well, but only on a sub-set of the risky assets.  

The remainder of this study is structured as follows. Section 2 formulates the null 

hypothesis of mean-variance efficiency in an investment setting with a subset of restricted 

assets. Section 3 derives our generalization of the GRS test statistic and its small sample 

distribution. Section 4 analyzes the size and power of the test. Section 5 applies our test to two 

relevant practical cases: assessing portfolio efficiency in the presence of non-traded labor 

income and non-traded liabilities. Section 6 tests whether a value-weighted US stock-bond 

portfolio is mean-variance efficient, while taking into account a substantial position in non-

traded human capital. Finally, Section 7 presents our conclusions and suggestions for further 

research. Throughout the text, we will use Nℜ for an N-dimensional Euclidean space and 

N
+ℜ for the positive orthant. To distinguish between vectors and scalars, we use a bold font for 

vectors and a regular font for scalars. Further, all vectors are column vectors and we use r ′  for 

the transpose of r . Finally, 0N and 1N denote a (1xN) zero vector and a (1xN) unity vector. 

 

2. Null Hypothesis of the Test 

The investment universe includes N risky assets and a riskless asset.1 Investors can construct 

portfolios Nℜ∈λλλλ . We assume that the first N – R risky assets can be traded freely by the 

investor, but that trading of the last R assets is restricted, e.g. due to lack of liquidity. We split 

the portfolio weight vector ][ 21 λλλλλλλλλλλλ ′′=′  up into the N – R weights of the unconstrained 

assets RN −ℜ∈1λλλλ  and the R restricted weights Rℜ∈2λλλλ . The portfolio weights 2λλλλ  of the 

restricted assets are subject to a set of K equality constraints: bA =2λλλλ , with RK×ℜ∈A , 

Kℜ∈b  and RK ≤ . The restricted assets could for example include the investor’s human 
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capital (labor income), the investor’s house or the liabilities of a pension fund. In these three 

cases the portfolio weight is typically fixed at a particular value: the constraint matrix then 

reduces to an identity matrix, i.e. KIA = , while b  specifies the values of the fixed portfolio 

weights, i.e.  b=2λλλλ . Assuming that the market is incomplete and no perfect hedge is 

available to undo the fixed portfolio weights, we will refer to these assets as “non-traded”. 

The set of feasible portfolios is defined as 








=ℜ∈ℜ∈ℜ∈







≡ − bA, 221

2

1 ,: λλλλλλλλλλλλ
λλλλ
λλλλ RRNNΛΛΛΛ . 

The special case ∅=A  and ∅=b , represents a test without restrictions on the portfolio 

weights, i.e. the traditional GRS test, while KIA =  represents the special case with non-

traded assets with given portfolio weights b=2λλλλ .   

Let Nℜ∈r  denote the excess returns of the risky assets. The returns follow a joint 

distribution with mean ][rE≡µµµµ  and covariance matrix ]))([( ′−−≡ µµµµµµµµ rrEΩΩΩΩ . We make a 

distinction between the expected excess returns of the traded assets R-Nℜ∈1µµµµ  and the 

restricted assets Rℜ∈2µµµµ , with 







=

2

1

µµµµ
µµµµ

µµµµ . We partition the covariance matrix 

similarly: 
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ΩΩΩΩΩΩΩΩ
ΩΩΩΩΩΩΩΩ

ΩΩΩΩ , with )()(
11

RNRN −×−ℜ∈ΩΩΩΩ  the covariance matrix of the traded 

assets, RR×ℜ∈22ΩΩΩΩ  the covariance matrix of the restricted assets and )(
21

RNR −×ℜ∈ΩΩΩΩ  

collecting the covariance terms between the traded and restricted assets.  

Investors choose investment portfolios to maximize a mean-variance objective 

function ][][)( 2
1 rVarrErg ζ−= , where 0≥ζ   is a risk aversion parameter. The portfolio 

choice problem is 

 

 { } { } { }λλλλλλλλλλλλµµµµλλλλλλλλλλλλ
λλλλλλλλλλλλ

ΩΩΩΩ
ΛΛΛΛΛΛΛΛΛΛΛΛ

′−′=′−′=
∈∈∈

ζζ 2
1

2
1 max][][max)(max rr VarEg   (1) 
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A given portfolio Λ∈ττττ     is efficient if and only if it is an optimal solution of (1) and satisfies 

the first-order Karush-Kuhn-Tucker (KKT) conditions of the constrained optimization 

problem. Before we show the KKT conditions, we first define the alphas of the assets as the 

first-order derivatives of the objective function (1) with respect to the portfolio weights, 

evaluated at the given portfolio Λ∈ττττ :  

 

 ττττµµµµλλλλ
λλλλ

αααα
ττττλλλλ

ΩΩΩΩζ−=






≡

=

)(g
d

d
 (2) 

 

Using the expression for the alphas, the KKT optimality conditions for the efficiency of the 

given portfolioττττ are: 
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A
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)(

1212222

2211111

2

1

ΩΩΩΩΩΩΩΩ
ΩΩΩΩΩΩΩΩ

ζ
ζ

 (3) 

 

with K
K ℜ∈ρρρρ  a vector of Lagrange multipliers for the K equality constraints on 2λλλλ .  

The KKT conditions are necessary and sufficient for the quadratic maximization problem 

subject to linear constraints (1), as the covariance matrix  is positive definite.2  

In the unrestricted case the KKT conditions reduce to the familiar Euler equation 

N0=αααα , i.e. all alphas should equal zero. Note that in the case with restrictions, even if some 

restricted assets have non-zero alphas, the evaluated portfolio can still be mean-variance 

efficient. More specifically, the following polyhedral cone gives the set of admissible alphas: 
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This study develops a test for the null hypothesis that the evaluated portfolio is efficient, 

:0H αααα )(AC∈ , against the alternative hypothesis of inefficiency, :1H αααα )(AC∉ . In the 

unrestricted case we find NC 0=∅)(  and the null reduces to :0H N0=αααα . 

A remaining problem is the specification of the risk aversion parameter ζ of the 

investor holding portfolio ττττ. The GRS test implicitly chooses a value for this parameter by 

setting the alpha of the evaluated portfolio equal to zero, that is, 0=′τττταααα , which gives 

1))(( −′′≡ ττττττττττττµµµµ ΩΩΩΩGRSζ .3 The alphas can then be expressed as =−≡ ττττµµµµαααα ΩΩΩΩGRSGRS ζ  

ββββττττµµµµµµµµ )( ′− , with 1))(( −′≡ ττττττττττττββββ ΩΩΩΩΩΩΩΩ . This approach is generally not consistent with the null 

hypothesis in the case with restrictions on the portfolio weights, as the alpha of the evaluated 

portfolio does not necessarily has to equal zero. However, note that in the restricted case the 

alphas of the N – R unrestricted assets still need to be zero: RN −= 01αααα . Hence, we can infer 

the investor’s risk aversion parameter ζ  from his portfolio of unrestricted assets, by solving 

the equation 011 =′τττταααα . This approach is consistent with the null hypothesis under restrictions 

and gives the following risk aversion parameter: 1
2211111111 ))(( −′′+′′= ττττττττττττττττττττµµµµ ΩΩΩΩΩΩΩΩζ . 

After substituting the expression for ζ  in the KKT conditions (3), we obtain:  
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with the vector of betas defined as usual 
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We will refer to the alphas defined by (5) as ‘generalized alphas’, because under portfolio 

weight restrictions they may differ from the classical alphas GRSαααα . The relation between the 

generalized alphas and the GRS alphas is as follows: ββββττττµµµµαααααααα )( ψ−′+= GRS , with 

1
1111 ))(( −′′≡ ττττββββττττµµµµψ  the Treynor ratio of the portfolio of unrestricted assets. 

 

3. Empirical Testing 

An empirical test of mean-variance efficiency is based on a timeseries of risky asset excess 

returns tr  observed at time 1, ,t T= L , where Nℜ∈tr  is a (Nx1) vector of returns. By 

analogy to GRS, we define the data generating process (DGP) as  

 

 ttGRSt εεεεττττββββαααα +′+= )(rr , 1, ,t T= L   (7) 

 

We assume that the regression errors tεεεε  are serially independent and identically distributed 

random draws from a multivariate normal distribution with mean N0  and covariance matrix 

NN×ℜ∈εΣΣΣΣ , conditional on the returns )( ττττtr′  of the investor’s portfolio at time t. Least squares 

estimation of the DGP (7) gives estimates of the classical betas ββββ and alphas GRSαααα , but not an 

estimate of the generalized alphas αααα under restrictions. To estimate the generalized alphas we 

use the relation ββββττττµµµµαααααααα )( ψ−′+= GRS , and replace GRSαααα  in (7) by ββββττττµµµµαααα )( ψ−′− . After 

some rearranging of the terms, we find: 
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 ttt urr +′′+= − )()( 1,1
1

11 ττττττττββββββββαααα , 1, ,t T= L   (8) 

 

with the error term ut defined as 

 

 .,,1,)()()( 1,111
1

11 Tttttt K=′−′′+′−′+= − ττττττττµµµµττττββββββββττττµµµµττττββββεεεε rru   (9) 

 

The error term ut follows a multivariate normal distribution with 0][ =tE u , conditional on the 

returns )( ττττtr′  of the investor’s entire portfolio ττττ  – including the R restricted assets – and the 

returns )( κκκκtr ′  on the portfolio 







=

R0
1ττττ

κκκκ  of N – R unrestricted assets. We define the 

covariance matrix of the regression errors as ][ ttE uu ′=ΣΣΣΣ .  

Given the estimated betas ββββ̂ , we propose the following unbiased estimator for the 

generalized alphas based on (8):  

 

 ).ˆ()ˆ(ˆˆˆ 11
1

11 ττττµµµµττττββββββββµµµµαααα ′′−≡ −  (10) 

 

Since the errors are jointly normally distributed, the estimated generalized alphas also follow 

a joint normal distribution, conditional on the returns of the portfolios ττττ  and κκκκ : 

 

 ))ˆ1(,(~ˆ 21 ΣΣΣΣθ+−TN αααααααα   (11) 

 

with 1ˆˆˆ −= τκτκτκτκρθ �S , where �Ŝ  is the Sharpe ratio of the unrestricted asset portfolio κκκκ , and τκτκτκτκρ̂  

the estimated correlation between the returns of the portfolio  ττττ  – including the R restricted  
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assets – and the returns of the unrestricted asset portfolio κκκκ . The full derivation of (11) is in 

the Appendix.4  

As a test statistic, we will use the smallest distance between the estimated generalized 

alphas and the cone of admissible alphas (4):   

 

 )ˆ(ˆ)ˆ()ˆ1(min)( 112

)(
zz

z
−′−+≡ −−

∈
αααααααα ΣΣΣΣθξ

A
A

C
 (12) 

 

where )ˆˆ()2(ˆ
1

1 ∑ =
− ′−≡ T

t ttT uuΣΣΣΣ  is an unbiased estimator of ΣΣΣΣ , based on the empirical 

regression errors )()ˆ(ˆˆˆ 1 κκκκκκκκββββββββαααα ttt rru ′′−−≡ − . The test statistic is a restricted version of the 

classical Hotelling’s 2T  statistic used in multivariate statistical analysis.  

GRS derive the small sample distribution of the unrestricted test statistic 

GRSGRS αααααααα ˆˆˆ)ˆ1()( 112 −− ′+=∅ ΣΣΣΣθξ . The estimates GRSαααα̂  and (T – 2)ΣΣΣΣ̂  are independent and follow 

the normal distribution in (11) and a Wishart distribution with parameter matrix ΣΣΣΣ  and (T – 2) 

degrees of freedom, respectively. It follows that a simple transformation of the test statistic 

follows an F-distribution: 

 

 
∅−−∅









−
−−

λξ ),1(,~)(
)2(

)1(
NTNf

TN

NTT
 (13) 

 

with non-centrality parameter  

 

 GRSGRST αααααααα 112
2
1 )ˆ1( −−

∅ ′+≡ εθλ ΣΣΣΣ   (14) 
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For the case with R restricted assets, we will now derive the exact small sample 

distribution of the test statistic. We define the augmented constraint matrix NK×ℜ∈A  as 

=A [ ]AO RNK −, , where )(
,

RNK
RNK

−×
− ℜ∈O  denotes a zero matrix.  The null hypothesis is 










′
=








= −

K

RNH
ρρρραααα

αααα
αααα

A

0

2

1
0 : KρρρρA ′= . Let )( KNN −×ℜ∈ΜΜΜΜ  denote a matrix whose columns form a 

basis set for the null space of A . Note that the range of the matrix ΜΜΜΜ , denoted by )(ΜΜΜΜR , is 

equal to the null space of the matrix A , denoted by )A(N : )(ΜΜΜΜR = )A(N .  According to the 

fundamental theorem of linear algebra, )(ΜΜΜΜ′N = )A( ′R . The null hypothesis, )A( ′∈Rαααα:0H , 

is therefore equivalent to )(:0 ΜΜΜΜ′∈NααααH , i.e. KNH −=′ 0ααααΜΜΜΜ:0 .  We can now formulate the 

test statistic as follows (see the Appendix for the full derivation): 

 

 =)(Aξ αααααααα ˆˆ(ˆ)ˆ1( 112 ΜΜΜΜΜΜΜΜΣΣΣΣΜΜΜΜΜΜΜΜ ′)′′+ −−θ  (15) 

 

The vector αααα̂ΜΜΜΜ′  follows a (N – K)-dimensional multivariate normal distribution with mean 

ααααΜΜΜΜ′  and covariance matrix ΣΜΣΜΣΜΣΜΜΜΜΜ′+− )ˆ1( 21 θT . Hence, the distribution of )(Aξ  is known: 
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with non-centrality parameter 

 

 αααααααα ΜΜΜΜΣΜΣΜΣΜΣΜΜΜΜΜΜΜΜΜ ′)′′+≡ −− 112
2
1 ()ˆ1( θλ TA  (17) 
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Under the null hypothesis, 0=Aλ  and the test statistic follows a central F-distribution with 

(N – K) and (T – N + K – 1) degrees of freedom. 

The most relevant applications of our efficiency test under restrictions involve non-

traded assets with a fixed portfolio weight, such as the investor’s labor income, housing or the 

liabilities of a pension fund. For these applications the portfolio weight restrictions are b=2λλλλ , 

K=R, and the constraint matrix reduces to an identity matrix: RIA = . Given the simple 

structure of the constraint matrix, it is straightforward to show that ΜΜΜΜ = 








−

−

RNR

RN

,O

I
. Note that 

1ˆˆ αααααααα =′ΜΜΜΜ  and 11
ˆˆ ΣΣΣΣΜΜΜΜΣΣΣΣΜΜΜΜ =′ , and therefore the test statistic )( RIξ  reduces to  

 

 =)( RIξ 1
1

111
12 ˆˆˆ)ˆ1( αααααααα −− ′+ ΣΣΣΣθ  (18) 

 

Hence, for the special case of non-traded assets, the expression for the test statistic can be 

simplified considerably. At first sight, it might appear that the alphas 1α̂ααα  and regression errors 

for the N – R unrestricted assets determine the value of the test statistic completely, while the 

R non-traded assets play no obvious role. Note, however, that the estimated alphas 1α̂ααα  of the 

unrestricted assets depend explicitly on the covariance between the excess returns of the 

unrestricted assets and the non-traded assets. The same holds for θ̂  and 11Σ̂ΣΣΣ . 

 

4. Size and Power of the Test 

We will now investigate the size and power of our efficiency test under restrictions. The small 

sample distribution of the test statistic in this paper – and in GRS – is derived under the 

assumption of a conditional multivariate normal return distribution, given the returns of the 

portfolio that we would like to assess. An unconditional multivariate normal distribution for 
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the asset returns, treating the returns of the given portfolio as a function of the random 

individual asset returns, i.e. as a random variable, seems more appropriate. Fortunately, 

Jobson and Korkie (1985) show that the GRS test-statistic follows an F-distribution as well 

under the assumption of an unconditional multivariate normal return distribution. Further, 

numerical results in Jobson and Korkie (1982) and Campbell et al. (1997) demonstrate that 

the GRS test performs much better in a multivariate normal setting – in terms of size and 

power – than alternative asymptotic tests of portfolio efficiency, such as the Wald test statistic 

of Jobson and Korkie (1982, JK) . Given that our efficiency test is an extension of GRS, a 

priori we would expect our test to perform well in small samples, regardless of whether the 

underlying return distribution is conditionally or unconditionally normal. On the other hand, 

the asymptotic test for efficiency under restrictions proposed by Gouriéroux and Jouneau 

(1999) is an extension of the asymptotic Wald test of JK, and for this reason we do not expect 

it to perform well in small samples. We will now conduct simulation experiments to verify 

these premises. 

 As a starting point for the simulation we use stock and bond return data from the US, 

consisting of the Ibbotson long-term government bond index, the Ibbotson long-term 

corporate bond index and six Fama and French portfolios resulting from a two by three 

double-sorting of all US stocks based on size and value (source: homepage of Kenneth 

French). We refer to Table 1 for descriptive statistics of annual total return data from the 

period 1956-2005. After estimating the sample mean and covariance matrix of the returns, we  

calculate the weights of the unconstrained ex post tangency portfolio (wu) with maximum 

Sharpe ratio. As an example of weight constraints, we fix the portfolio weight of long-term 

government bonds at 40% and the weight of long-term corporate bonds at 20%. We calculate 

the weights of the ex post tangency portfolio subject to these constraints (wc). Next, we draw 

random samples of length T from a unconditional multivariate normal distribution with mean 
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and covariance matrix fixed at the sample values. We calculate the returns of the 

unconstrained portfolio wu and test its efficiency with the GRS F statistic and the JK Wald 2 

statistic. We calculate the returns of the constrained portfolio wc and test its efficiency with 

the F test derived in this paper and the 2 test of Gouriéroux and Jouneau (1999). The 

simulation is repeated a total of S times to replicate the empirical distribution of the test 

statistics.  

One important difference in the implementation of the F tests and the 2 tests is that  

the 2 tests ideally should include all primary assets that are part of the given portfolio, as 

otherwise the test statistic erroneously could take on negative values. On the other hand, the F 

tests should never use all primary assets in the given portfolio as test assets, as in that case the 

residual covariance matrix  of the regressions in (7) and (8) is singular and the test statistic 

cannot be computed. For this reason we use all N = 8 primary assets (two bond portfolios and 

six FF portfolios) to implement the 2 tests, while we calculate the F tests with N = 6 primary 

assets, excluding the mid-cap value portfolio and the mid-cap size portfolio from the set of FF 

portfolios. Overall, the unconditional normal simulation setting with known optimal portfolio 

weights favors the Wald 2 tests, as both the JK and GJ test were derived under these 

assumptions.5  

We also assess the power of the various tests in the simulation runs. For this purpose 

we test the efficiency of an equally weighted portfolio of the unrestricted assets, which is 

clearly inefficient based on the ex post Sharpe ratio. Table 3 shows the results of the 

simulations. For each test the columns of the table show the mean and the variance of the 

simulated test statistic, the size of the test at the 1%, 5% and 10% level (rejection rate of the 

ex post efficient portfolio) and the power of the test at the 1%, 5% and 10% level (rejection 

rate of the equally weighted portfolio). Directly below each row of simulation results we show 

the mean and variance of the theoretical test statistic distribution for comparison. With a small 
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sample size of T = 50 observations, the size of the GRS F test is nearly identical to the pre-set 

significance level, while the JK Wald test has a much larger Type I error (13.8% at the 5% 

significance level and 5.2% at the 1% level). For the tests under portfolio weight constraints 

we find similar results: with T = 50 observations the F test derived in this paper has a size that 

is very close to the desired significance level, while the Wald test of Gouriéroux and Jouneau 

(1999) rejects the null hypothesis too often (e.g., a 10.7% rejection rate at the 5% significance 

level). At small sample sizes, i.e. T = 50 and T = 100, the F tests perform much better than in 

terms of size than the Wald tests, while in larger samples (T = 200, T = 400 and T = 800) the 

performance of the Wald test gradually improves.  

The power of the Wald tests is generally slightly higher than the power of the F tests 

in small samples, but this is not a big advantage, given the corresponding large Type I error: 

the Wald tests reject the null hypothesis more often, regardless of whether the null is true or 

not. In samples of T = 200 and larger, the power of the F and Wald tests is similar. Please 

note that the estimated mean and variance in Table 3 indicate that the simulated distribution of 

our test statistic follows the theoretical F distribution closely in small samples. This is not the 

case for the Gouriéroux and Jouneau (1999) statistic, which has a much higher mean and 

variance in small samples than the theoretical (asymptotic) 2 distribution.  

Overall, these simulation results indicate that our F test for mean-variance efficiency 

with non-traded assets has similar favorable properties as the GRS test in small samples, 

performing better than the asymptotic Wald test of Gouriéroux and Jouneau (1999). Further, if 

run the Wald tests with a reduced set of N = 6 primary assets, instead of the complete set of 8 

assets, then the 2 test statistic is not well-defined (can become negative) and the simulated 

distribution becomes completely different from theoretical distribution, with poor simulated 

test size results (results not reported to save space, but available upon request). 
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5. Testing the Efficiency of Portfolios with Non-Traded Assets 

In this section we show how our test for portfolio efficiency with restricted assets can be 

applied in the presence of non-traded liabilities, as well as in the case of non-traded labor 

income. We do not discuss the relevant case of a non-traded position in housing to save some 

space, but the approach follows the same steps as in the two examples in this section.  

 

5.1  Asset-Liability Management 

An interesting application of our mean-variance test under restrictions is to test the efficiency 

of portfolios that are evaluated relative to an exogenous, non-traded, stochastic benchmark. 

For example, the risk and return of the investment portfolio of a defined benefit pension plan 

are usually measured relative to the growth of the plan liabilities Lt, defined as the net present 

value of all future pension payments. The plan surplus, St, is defined as the difference between 

the value of the assets, At, and the liabilities: St = At – Lt. Given a fixed level of plan 

contributions, in the short-term the fund managers of the plan typically make a trade-off 

between maximizing the expected value of the plan surplus E[St+1] and avoiding unpredictable 

fluctuations in the surplus that might lead to plan deficits (St+1 < 0). This trade-off can be 

formalized with the following mean-variance surplus management problem:  

 

 ][][max 12
1

1 ++ − tt SVarSE ζ   (19) 

 

Let’s assume for ease of exposition that a risk free asset with return R0 exists. Let rL 

denote the random return on the liabilities from time t to t+1, in excess of the risk free rate. 

The (Ix1) vector r1 denote the excess returns of a set of unrestricted risky assets available to 

the pension fund portfolio manager. Given the (Ix1) vector of investment portfolio weights 

1λλλλ , the surplus at time t+1 is equal to tLtt LRrARS )1()1( 00111 ++−+′+=+ λλλλr  
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))/(()1( 110 Ltttt rALASR −′++= λλλλr . The mean-variance surplus management problem can 

now be reduced to the following equivalent formulation: 

 

 ])/([
~

])/([max 112
1

11 LttLtt rALVarrALE −′−−′ λλλλλλλλ rr ζ   (20) 

 

with ζζ tA=~
. The surplus management problem as defined above in (20) has been proposed 

and studied by Sharpe and Tint (1990). 

 Suppose that the plan manager would like to evaluate the mean-variance “surplus 

efficiency” of the given (Ix1) risky asset portfolio 1ττττ , assuming no constraints on the risky 

asset weights. The first order conditions for mean-variance surplus efficiency of 1ττττ  are:  

 

 ( ) ILtt AL 0=−−≡ σσσσττττµµµµαααα )/(
~

11111 ΩΩΩΩζ   (21) 

 

where the (Ix1) row vector 1µµµµ   denotes expected excess returns of the risky assets and 11ΩΩΩΩ  

the corresponding (IxI) covariance matrix, while the (Ix1) vector Lσσσσ  measures the return 

covariance between the risky assets and the liabilities.  

So far, the risk aversion parameter ζ~  has not been specified yet. To give the plan’s 

fund manager the benefit of the doubt, we set the value of ζ~ such that the evaluated portfolio 

1ττττ  has zero alpha. i.e. ])/(/[
~

1111111 ττττσσσσττττττττττττµµµµ Ltt AL ′−′′= ΩΩΩΩζ . The first-order efficiency condition 

now is 

 

 I
Ltt

Ltt

AL

AL
0=

′−′
−′−≡

))/((

))/((

11111

111
1111 ττττσσσσττττττττ

σσσσττττττττµµµµµµµµαααα
ΩΩΩΩ
ΩΩΩΩ

  (22) 
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Please note the equivalence between the first order conditions for the N – R unrestricted assets 

in (5) and the first order conditions of the surplus management problem (22) above. Our 

mean-variance test under restrictions can be applied to derive an unbiased estimator for the 

alphas 1αααα  and a multivariate test statistic. Within our framework we simply treat the I risky 

assets as N – R unrestricted assets with weights 1λλλλ  and excess returns r1, and the plan 

liabilities as a single restricted asset, i.e. with R = 1, with excess return r2 = rL and portfolio 

weight 2λλλλ . The plan’s short position in the liabilities can be modeled with the single equality 

constraint 22 bA =λλλλ  with 1=A  and )/( tt AL−=b . Note that N = I + 1 and K = 1.  

 To implement the empirical test, we first estimate the traditional market model (7) 

relative to the returns )( ττττtr′  on the pension fund’s augmented portfolio [ ]′−′=′ )/(1 tt ALττττττττ : 

 

 ttLtttGRSt rAL ,1,1,1,1 ))/(( εεεεττττββββαααα +−′+= rr , 1, ,t T= L   (23) 

 

Next, the generalized alphas are estimated with equation (10):  

 

 )ˆ()ˆ(ˆˆˆ 11
1

11111 ττττµµµµττττββββββββµµµµαααα ′′−= −  (24) 

 

We calculate the residuals t,1û  corresponding to (24) and estimate the covariance matrix 11Σ̂ΣΣΣ . 

Next, we compute the value of test statistic as =ξ 1
1

111
12 ˆˆˆ)ˆ1( αααααααα −− ′+ ΣΣΣΣθ , with 1

11 ˆˆˆ −= ττττρθ S , where 

1̂S  is the Sharpe ratio of the risky asset portfolio 1ττττ  and ττττ1ρ̂  the estimated correlation between 

the returns of the augmented portfolio ττττ  – including the short position in the liabilities –  and 

the returns of the risky asset portfolio 1ττττ . The test statistic for the mean variance surplus 
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efficiency of portfolio 1ττττ  follows an F-distribution with IKN =− )(  and )1( −+− KNT  

)1( −−= IT  degrees of freedom.  

 

5.2  Mean-Variance Test with Non-Traded Labor Income 

A second relevant application of our mean-variance test under restrictions is to test the 

efficiency of portfolios of individuals with non-tradable labor income. We consider a non-

retired individual investor. At time t the individual’s overall wealth Wt consists of a liquid 

investment portfolio At  – invested in bonds, stocks, etc .. – and the expected net present value 

of future labor income, denoted by Yt.
6 The net present value of labor income at time t+1 is 

defined as: Yt+1 = ( 1 + rY + R0 )Yt, with rY a normally distributed random variable. The (Ix1) 

vector r1 denotes the excess returns on the risky assets available to the individual, following a 

multivariate normal distribution. Given the (Ix1) vector of investment portfolio weights 1λλλλ , 

the individual’s wealth at time t+1 is tYtttt YRrARYAW )1()1( 0011111 ++++′+=+= +++ λλλλr  

tYttttt WrWYWAWR ))/()/(()1( 110 +′++= λλλλr .  

The individual investor’s aim is to invest in an efficient portfolio in terms of wealth at 

time t+1,  

 

 ][][max 12
1

1 ++ − tt WVarWE ζ   (25) 

 

which is equivalent to the maximizing the following objective, 

 

 ])/()/[(
~

])/()/[(max 112
1

11 YttttYtttt rWYWAVarrWYWAE +′−+′ λλλλλλλλ rr ζ   (26) 

 

with ζζ tW=~
. 
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 Following the same steps as before, we can derive the first order conditions for the 

mean-variance efficiency of a given (Ix1) risky asset portfolio 1ττττ :  

 

 I
Ytttttt

Ytttt

WYWAWA

WYWA
0=

′+′
+′−≡

))/)(/()/((

))/()/((

11111
2

111
1111 ττττσσσσττττττττ

σσσσττττττττµµµµµµµµαααα
ΩΩΩΩ

ΩΩΩΩ
 (27) 

 

with the (Ix1) vector Yσσσσ  measuring the covariance between the excess asset return and the 

change in the present value of labor income.  

Our methodology can be applied to derive an unbiased estimator for the alphas 1αααα  and 

a multivariate test statistic for the mean-variance efficiency of the portfolio 1ττττ , given the 

investor’s non-tradable labor income. Within our framework we treat the I risky assets as N–R 

unrestricted assets with portfolio weights 1λλλλ  and we take the net value present value of labor 

income as a single restricted asset 2λλλλ , subject to the constraint tt WY /2 =λλλλ . To estimate the 

classical betas 1β̂βββ  we use the market model (7) relative to the returns on the individual’s 

overall portfolio – including the value of labor income – and we use equation (10) to estimate 

the generalized alphas 1α̂ααα . The test statistic, =ξ 1
1

111
12 ˆˆˆ)ˆ1( αααααααα −− ′+ ΣΣΣΣθ , follows an F-distribution 

with I  and )1( −− IT  degrees of freedom.  

 

6. Empirical Application 

In this section we will illustrate our mean-variance efficiency test under restrictions with an 

empirical application. We will examine US stock market data to test if a proxy for the market 

portfolio is mean-variance efficient for an individual investor with labour income. For various 

reasons, market portfolio efficiency is an interesting hypothesis. First, the Sharpe-Lintner-

Mossin CAPM predicts that the market portfolio is efficient. Second, market portfolio 
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efficiency seems consistent with the popularity of passive mutual funds and exchange traded 

funds that track broad value-weighted indexes. 

As a proxy for the market portfolio we construct a portfolio that invests 50% in US 

bonds and 50% in the CRSP all-share index, which is the value-weighted average of all 

common stocks listed on the NYSE, AMEX and NASDAQ markets and covered by CRSP. 

The 50% portfolio weight of bonds consists of an investment of 25% in long-term US 

government bonds and 25% in long-term corporate bonds, both represented by total return 

indices of Ibbotson and Associates. The 50% percent portfolio weight that we assign to bonds 

is not based on prior information about the total market value of US long-term bonds relative 

to the total market value of US equity, but serves as an example and crude approximation.  

We use two sets of test assets. The first set consists of 12 value-weighted industry 

portfolios from the data library on the homepage of Kenneth French. The second set of test 

assets consists of the Ibbotson long-term government bond index, the Ibbotson long-term 

corporate bond index and four Fama and French portfolios: small stocks with low price to 

book (SL), small stocks with high price to book (SH), big stocks with low price to book (BL) 

and big stocks with high price to book (BH). The four Fama and French portfolio were 

selected from six portfolios that result from a two by three double-sorting of all US stocks 

based on size and value, available from the data library on the homepage of Kenneth French.  

We use annual return data from the post-war era 1956-2005, a total of 50 observations. 

We use annual data for three reasons. First, as argued by Benartzi and Thaler (1995), we 

expect that many investors have an investment horizon of one year. Second, we know the 

exact distribution of the test statistic under normality and we would like to exploit this 

advantage of the test in a small sample setting. Third, annual returns follow a normal 

distribution more closely than asset returns of higher frequency (e.g. monthly, weekly or daily 

returns), which is important given that we assumed normality to derive the distribution of the 
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test statistic. Table 1 and Table 2 display descriptive statistics of the excess return series, as 

well as the estimated correlations between the excess returns.  

 

6.1  Mean-Variance Test Results with Non-Traded Labor Income 

We first test the efficiency of our proxy for the market portfolio, consisting of 50% bonds and 

50% stocks, relative to the set of 12 industry portfolios with the unconstrained GRS test, 

without taking the individual’s labor income into account. Table 4 shows that the p-value of 

the unconstrained GRS test is equal to 0.297, indicating that the efficiency of the given 

portfolio cannot be rejected.  

We now additionally take into account the estimated value of the individual’s labor 

income, assuming that it cannot be hedged perfectly and that its weight in total wealth is fixed 

at Yt/Wt. For the growth rate of the individual’s labor income we use the yearly change in the 

series “Average hourly earnings of production workers” in the manufacturing sector from the 

US Bureau of Labor Statistics (http://www.bls.gov/). Table 1 and 2 show descriptive statistics 

for this series. We choose this particular series mainly as an illustration, expecting it to 

capture systematic fluctuations in labor income in the sector that are relevant for portfolio 

choice. We would like mention for the sake of completeness that individual labor income has 

a volatile idiosyncratic component – due to the career path of the individual – that is not fully 

captured in an average hourly earnings series. We refer readers interested in a careful panel 

estimation of the individual labor income process to Cocco, Gomes and Maenhout (2005).  

What value should we give to Yt/Wt, the present value of labor income divided by total 

wealth? This ratio will vary strongly from one individual to another, but some quick back-of-

the-envelope calculations show that the present value of labor income will dominate other 

sources of wealth for most wage-earners. For example, consider a relatively wealthy 

individual, 10 years from retirement, with a liquid investment portfolio of $800,000 (assume 
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no homeownership for the sake of simplicity)  and an annual income of $100,000 growing at 

3% per year on average. Setting the discount rate for future labor income at 5%, we find that 

the present value of labor income is $901,002, and the ratio Yt/Wt = 53%. Considering the 

same individual at 5 or 15 years from retirement, the ratios are Yt/Wt  = 37% and Yt/Wt  =
  

62%, respectively. For a young individual, 40 years from retirement, with an annual income 

of $30,000 and an initial asset portfolio of $150,000, the ratio Yt/Wt is 89%. At 15 and 25 

years from retirement, the ratio is 80% and 86%, respectively. Given these and similar 

estimates, we expect the labor-to-total-wealth ratio to be relatively high for the typical 

(median) wage-earner and we use 50%, 70% and 90% as base cases for Yt/Wt. 

Table 4 shows the test results for the efficiency of the stock-bond market portfolio 

proxy, relative to the 12 industry portfolios, given a restricted “investment” in labor income – 

growth rate based on the BLS manufacturing average earnings – with Yt/Wt  equal to 50%, 

70% and 90%, respectively. In all three cases we find that efficiency of the given portfolio 

cannot be rejected (p-values 0.292, 0.293 and 0.612), as in the unrestricted GRS case without 

labor income. Interestingly, though, the estimated alphas of some of the 12 industry portfolios 

change considerable once labor income is taken into account. For example, as the present 

value of labor income from working in the manufacturing industry becomes a larger 

component of the individual’s total wealth, the estimated alpha of the Manufacturing industry 

portfolio turns from positive (0.3% per year) to strongly negative (-3.4% per year). This effect 

arises due to the relatively high correlation of 0.19 between the excess returns of the 

Manufacturing industry portfolio and the change of average hourly earnings in the industry 

(measured in excess of the risk-free rate), reported in Table 1. We find a similar positive 

correlation, and hence decreasing alpha at higher levels of Yt/Wt, for the industry portfolios 

Business Equipment, Durable Consumer Goods and Energy. For the industry portfolios Non-
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Durable Consumer Goods, Health Care and Telecommunications, on the other hand, the 

correlation is negative and the alpha increases at higher levels of Yt/Wt.  

Table 4 shows that the average deviation of the estimated alphas from the null 

hypothesis value of zero – defined as ∑ 2ˆ iα  – is relatively high at Yt/Wt = 0.90, but on the 

other hand the value of test statistic is relatively low and the null hypothesis cannot be 

rejected (p-value 0.612). Basically, as the value of labor income starts to dominate the 

individual’s total wealth, the standard deviation of the regression errors associated with the 

estimated alphas become larger, as wage growth is not very strongly correlated with the 

industry portfolio returns. This latter “increasing error” effect dominates the increase in the 

deviation of the alphas from zero and overall the value of the test statistic decreases, leading 

to lower test significance. 

In Table 5 we repeat the efficiency tests, using as test assets the Ibbotson long-term 

government bond index, the Ibbotson long-term corporate bond index and four Fama and 

French value/size portfolios (Fama and French, 1992). Not surprisingly, due to the presence 

of strong size and value effects in this set of returns, the unconstrained GRS test – without 

considering labor income – strongly rejects the efficiency of our stock-bond market portfolio 

proxy (p-value of 0.001). The small value portfolio sticks out with an estimated alpha of 7.9% 

per annum, followed at some distance by the portfolio of large-cap value stocks with an alpha 

of 3.6% per annum. After taking into account the individual’s labor income, the estimated 

alpha of the small value portfolio shrinks to 3.0% per year at a labor-income-to-total-wealth 

ratio of Yt/Wt = 0.90. At the same time, the estimated alpha of the small growth company 

portfolio (SL) drops sharply from -0.4% in the GRS-case to -8.3% in the presence of labor 

income (at Yt/Wt = 0.90). Further, bonds become more attractive in the presence of labor 

income. These effects are driven by the positive correlation between the returns of small 

stocks – both value and growth – and the growth of average hourly earnings in the 
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manufacturing industry (measured in excess of the risk-free rate) and the negative correlation 

between bonds returns with labor income growth. Although the estimated alphas change in 

the presence of labor income, the overall deviation of the estimated alphas from zero remains 

of similar magnitude and efficiency of the market portfolio proxy is strongly rejected.  In the 

case Yt/Wt = 0.90 the regression errors of the alpha estimates are relatively high, leading to a 

somewhat higher p-value of 0.019 for the efficiency test, but efficiency is still clearly rejected 

at the 5% level. 

 

7. Conclusions 

This paper extends the classical Gibbons, Ross and Shanken (1989) test for mean-variance 

efficiency of a given portfolio to include linear equality restrictions on the weights of a subset 

of restricted assets. Our test can be applied to test portfolio efficiency while taking into 

account investments in non-traded labor income, housing and pension liabilities. We derive 

the exact small sample distribution of the test statistic under both the null hypothesis and the 

alternative hypothesis, under the assumption of a conditional multivariate normal distribution 

for the excess asset returns. The unrestricted GRS test is a special case within our framework. 

Simulation experiments demonstrate that our test performs well: the type I error of the test is 

very close to the desired significance level, while the asymptotic Wald test of Gouriéroux and 

Jouneau (1999) rejects the null too often in small samples (with 50 or 100 observations).  

 As an illustration, we apply our test to assess the mean-variance efficiency of a well-

diversified US stock-bond portfolio for an individual investor with non-traded labor income. 

We use two sets of primitive test assets. The first set consists of 12 industry portfolios and the 

second set consist of four Fama and French size and value portfolios and two Ibbotson long-

term bond portfolios. For the growth rate of the individual’s labor income we use series 

“Average hourly earnings of production workers” in the US manufacturing sector. Exploiting 
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the suitability of our test for small samples, we use 50 years of annual return data for the 

efficiency tests. In line with existing evidence, we find that mean-variance efficiency of the 

broad stock-bond portfolio cannot be rejected relative to the 12 industry portfolios, while 

efficiency is strongly rejected when size and value sorted portfolios are used as test assets. 

Taking into account the non-traded future labor income of the investor does not change the 

conclusions regarding portfolio efficiency, but it does considerably affect the magnitude, and 

even the sign, of the estimated alphas. For example, the estimated alpha of the Manufacturing 

industry portfolio changes from 0.3% per year to -3.4% per year, once we take labor income 

linked to average wage growth in the manufacturing sector into account.  

Following GRS, our test assumes a serially-IID normal asset return distribution, 

without incorporating conditioning information about the state-of-the-world. Further research 

could focus on deriving a version of the test in a setting with conditioning information, 

following, for example, MacKinlay and Richardson (1991), Zhou (1993), Jagannathan and 

Wang (1996) and Ferson and Siegel (2006). Finally, we would like to stress that the mean-

variance model can fail to distinguish between efficient and inefficient portfolios if the return 

distribution is not elliptical (see, for example, Chamberlain, 1983). To avoid possible 

specification error, we advise the empirical researcher to use mean-variance efficiency tests in 

combination with more general stochastic dominance efficiency tests. 
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Appendix 

In this appendix we prove that the estimator of the generalized alphas defined in (10) follows 

a joint normal distribution conditional on the returns of the portfolios ττττ  and κκκκ . Let TN×ℜ∈R  

denote a matrix containing the sample returns: )( 1 Trr L≡R . Using TT R11ˆ −≡µµµµ , 

T1RR ′−≡ µµµµ̂~
, RRRR ′=′ ~~~

 and 1−)′′)(′≡ ττττττττττττδδδδ RRR
~~

( , we can write the OLS estimator for the 

betas in (7) as ≡ββββ̂ δδδδR . Further, it follows that 2ˆˆˆ −=′ τττττκτκτκτκκκκκββββ σσ , with 1−)′′(≡
�ττττττττττττ RR

~~
ˆ 2σ  and  

1−)′′(≡
�ττττκκκκτκτκτκτκ RR

~~σ̂ . We can now write the estimator for the generalized alphas in (10) as: 

 

 ( ))ˆ)(ˆˆ()ˆ()ˆ(ˆˆˆ 1211 κκκκµµµµδδδδκκκκµµµµκκκκββββββββµµµµαααα τκτκτκτκττττ ′−=′′−= −−− σσTT 1R  (A) 

 

Reformulating the DGP in (8) in matrix notation as )+′′+′= − UR1R κκκκκκκκββββββββαααα 1)(( T , with 

TN×ℜ∈U  denoting the matrix of regression errors )( 1 Tuu L≡U , we can now show that the 

generalized alphas are a linear function of the errors U: 

 

 ( ))ˆ)(ˆˆ(ˆ 121 κκκκµµµµδδδδαααααααα τκτκτκτκττττ ′−+= −− σσTT 1U  (B) 

  

Proof of ( ))ˆ)(ˆˆ(ˆ 121 κκκκµµµµδδδδαααααααα τκτκτκτκττττ ′−+= −− σσTT 1U : 

Using )+′′+′= − UR1R κκκκκκκκββββββββαααα 1)(( T , 0=′ δδδδT1  and 2ˆˆˆ −=′=′ τττττκτκτκτκββββκκκκδδδδκκκκ σσR , we find 
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Conditional on the returns of the portfolios ττττ  and κκκκ , it follows from (B) that the estimator αααα̂  

follows a joint normal distribution with αααααααα =]ˆ[E . Below we provide the proof of 

ΣΣΣΣ)ˆ1(]ˆ[ 21 θ+=− −TarV αααααααα . 

 

Proof of ΣΣΣΣ)ˆ1(]ˆ[ 21 θ+=− −TarV αααααααα : 

Using 0=′ T1δδδδ  and =′δδδδδδδδ 211 ˆ)
~~

( −−− =′′ ττττττττττττ σTRR , we find 

ΣΣΣΣ)ˆˆ)ˆ()(ˆˆ)ˆ((]ˆ[ 121121 δδδδκκκκµµµµδδδδκκκκµµµµαααααααα τκτκτκτκτττττκτκτκτκττττ
−−−− ′−′−=− σσσσ TT TTVar 11  

 ΣΣΣΣ)ˆˆ)ˆ(ˆˆ)ˆ(2( 2421211 δδδδδδδδκκκκµµµµδδδδκκκκµµµµ τκτκτκτκτττττκτκτκτκττττ ′′+′′−= −−−− σσσσ TTT 1  

ΣΣΣΣ))ˆˆ()ˆ(( 21211 −−− ′+= τκτκτκτκττττκκκκµµµµ σσTT  

ΣΣΣΣ)ˆ1( 21 θ+= −T , with )ˆˆ(ˆˆ 1−′= τκτκτκτκττττκκκκµµµµ σσθ 1ˆˆ −= τκτκτκτκρ�S  

 

 
 

Proof of αααααααα ˆˆ(ˆ)ˆ1()( 112 ΜΜΜΜΜΜΜΜΣΣΣΣΜΜΜΜΜΜΜΜ ′)′′+= −−θξ A : 

The test statistic is the solution to an unrestricted minimization problem, that is, 

)ˆ(ˆ)ˆ()ˆ1(min)( 112 ρρρρααααρρρραααα
ρρρρ

AAA ′−′−′+= −−

ℜ∈
ΣΣΣΣθξ

K
. The solution to this problem is 

ααααρρρρ ˆˆ)ˆ( 11* −−− ′≡ ΣΣΣΣΣΣΣΣ AAA  and αααααααα ˆ)ˆ)ˆ(ˆˆ(ˆ)ˆ1()( 111112 −−−−−− ′′−′+= ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ AAAAA θξ . Using Khatri’s 

(1966) lemma, we find =′′− −−−−− )ˆ)ˆ(ˆˆ( 1111 ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ AAAA ΜΜΜΜΜΜΜΜΣΣΣΣΜΜΜΜΜΜΜΜ ′)′ −1ˆ(  and thus 

αααααααα ˆˆ(ˆ)ˆ1()( 112 ΜΜΜΜΜΜΜΜΣΣΣΣΜΜΜΜΜΜΜΜ ′)′′+= −−θξ A . 
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Table 1 Descriptive Statistics and Correlations of the Test Asset Returns – I  
    T-bill Long-term bonds Stocks Fama and French (2x3) size/value portfolios Labor   
    1-month  Corporate Government VW Big/High Big/Low Small/High Small/Low Income   
 Mean  0.053  0.020  0.018  0.065  0.097  0.059  0.145  0.069  0.045  
 Median  0.051  0.032  0.002  0.098  0.145  0.062  0.156  0.051  0.036  
 Maximum  0.147  0.320  0.298  0.433  0.705  0.399  0.679  0.855  0.101  
 Minimum  0.010 -0.159 -0.152 -0.359 -0.310 -0.373 -0.344 -0.524  0.010  
 Std. Dev.  0.028  0.102  0.108  0.174  0.198  0.184  0.246  0.291  0.023  
 Skewness  0.990  0.404  0.549 -0.321  0.193 -0.198  0.080  0.460  0.882  
 Kurtosis  4.155  3.217  2.743  2.467  3.699  2.327  2.717  3.150  2.819  
 Jarque-Bera  10.942  1.458  2.646  1.450  1.329  1.270  0.220  1.811  6.558  
 p-value  0.004  0.482  0.266  0.484  0.514  0.530  0.896  0.404  0.038  
            

 Correlations T-Bill 1m Corp.bonds Gov. bonds Stocks VW FF BH FF BL FF SH FF SL  gy,manu – R0  
 T-Bill 1m (R0)  1.000 -0.141 -0.094 -0.184 -0.142 -0.158 -0.166 -0.168 -0.654  
 Corp. Bonds -0.141  1.000  0.950  0.231  0.307  0.213  0.221  0.004 -0.191  
 Gov. Bonds -0.094  0.950  1.000  0.133  0.211  0.136  0.098 -0.099 -0.239  
 Stocks VW -0.184  0.231  0.133  1.000  0.848  0.953  0.779  0.851  0.068  
 FF BH -0.142  0.307  0.211  0.848  1.000  0.739  0.866  0.722  0.057  
 FF BL -0.158  0.213  0.136  0.953  0.739  1.000  0.617  0.766 -0.003  
 FF SH -0.166  0.221  0.098  0.779  0.866  0.617  1.000  0.840  0.165  
 FF SL  -0.168  0.004 -0.099  0.851  0.722  0.766  0.840  1.000  0.243  
 gy,manu – R0 -0.654 -0.191 -0.239  0.068  0.057 -0.003  0.165  0.243  1.000  
                        
The table shows descriptive statistics and correlations of the test asset returns used in Section 4 and 6, based on 50 annual return observations from 
1956 to 2005. All asset returns are measured in excess of the 1-month T-Bill rate (source: Ibbotson and Associates). “Stock VW” denotes the value-
weighted average of all common stocks listed on the NYSE, AMEX and NASDAQ markets and covered by CRSP. The returns for the long-term 
corporate and government bonds are based on total return indices from Ibbotson and Associates. We use four Fama and French portfolios, resulting 
from a 2x3 double sorting of stock based on size and value: small stocks with low price to book (SL), small stocks with high price to book (SH), big 
stocks with low price to book (BL) and big stocks with high price to book (BH). For the growth rate of labor income, denoted by gy,manu, we use the 
yearly change in the series “Average hourly earnings of production workers” in the manufacturing sector from the US Bureau of Labor Statistics 
(http://www.bls.gov/). Descriptive statistics are reported for the original wage growth rate (without subtracting the risk-free rate), but for ease of 
comparison correlations with excess asset returns are based on wage growth rate in excess of the risk free. 



 Table 2 Descriptive Statistics and Correlations of the Test Asset Returns – II 
    Business    Consumer   Healthcare     Cons. non- Other Wholesale        
    equipment Chemicals durables Energy and drugs Manufact. Finance durables industries and retail Telecom Utilities   
 Mean  0.090  0.056  0.063  0.082  0.095  0.061  0.085  0.092  0.068  0.082  0.065  0.062  
 Median  0.117  0.072  0.060  0.103  0.078  0.096  0.072  0.081  0.114  0.074  0.039  0.070  
 Maximum  0.797  0.352  0.679  0.561  0.579  0.503  0.469  0.491  0.459  0.614  0.495  0.454  
 Minimum -0.455 -0.267 -0.481 -0.361 -0.295 -0.385 -0.409 -0.351 -0.406 -0.433 -0.421 -0.291  
 Std. Dev.  0.280  0.162  0.252  0.194  0.205  0.186  0.205  0.189  0.201  0.230  0.197  0.171  
 Skewness  0.211 -0.276  0.222 -0.156  0.290 -0.051 -0.015 -0.103 -0.425  0.176 -0.062  0.013  
 Kurtosis  2.990  2.176  2.594  3.119  2.651  2.886  2.646  2.929  2.296  2.905  2.715  2.650  
 Jarque-Bera  0.372  2.051  0.755  0.231  0.956  0.048  0.263  0.099  2.538  0.276  0.201  0.257  
 p-value  0.830  0.359  0.685  0.891  0.620  0.976  0.877  0.952  0.281  0.871  0.904  0.879  
               
 Correlations BUSEQ CHEMS DURBL ENRGY HLTH MANUF MONEY NODUR OTHER SHOPS TELCM UTILS  
 BUSEQ  1.000  0.598  0.597  0.308  0.539  0.721  0.505  0.453  0.738  0.675  0.577  0.262  
 CHEMS  0.598  1.000  0.724  0.552  0.611  0.840  0.696  0.733  0.815  0.777  0.604  0.510  
 DURBL  0.597  0.724  1.000  0.389  0.376  0.755  0.630  0.635  0.756  0.816  0.577  0.573  
 ENRGY  0.308  0.552  0.389  1.000  0.331  0.656  0.529  0.392  0.673  0.351  0.260  0.555  
 HLTH  0.539  0.611  0.376  0.331  1.000  0.592  0.664  0.729  0.626  0.646  0.460  0.579  
 MANUF  0.721  0.840  0.755  0.656  0.592  1.000  0.740  0.734  0.888  0.760  0.488  0.582  
 MONEY  0.505  0.696  0.630  0.529  0.664  0.740  1.000  0.825  0.767  0.759  0.577  0.737  
 NODUR  0.453  0.733  0.635  0.392  0.729  0.734  0.825  1.000  0.666  0.837  0.560  0.770  
 OTHER  0.738  0.815  0.756  0.673  0.626  0.888  0.767  0.666  1.000  0.804  0.638  0.598  
 SHOPS  0.675  0.777  0.816  0.351  0.646  0.760  0.759  0.837  0.804  1.000  0.644  0.639  
 TELCM  0.577  0.604  0.577  0.260  0.460  0.488  0.577  0.560  0.638  0.644  1.000  0.515  
 UTILS  0.262  0.510  0.573  0.555  0.579  0.582  0.737  0.770  0.598  0.639  0.515  1.000  
 T-Bill 1m (R0) -0.265 -0.205 -0.243 -0.140 -0.071 -0.246 -0.117 -0.036 -0.135 -0.106 -0.033 -0.114  
 Corp. bonds -0.016  0.287  0.318  0.006  0.236  0.127  0.374  0.421  0.198  0.347  0.303  0.506  
 Gov. bonds -0.099  0.167  0.175 -0.052  0.249  0.024  0.316  0.343  0.110  0.220  0.261  0.480  
 Stocks VW  0.789  0.872  0.773  0.660  0.690  0.906  0.817  0.762  0.950  0.860  0.722  0.654  
 gy,manu – R0  0.175  0.015  0.136  0.158 -0.117  0.188 -0.002 -0.128  0.056 -0.038 -0.129 -0.081  
                              
The table shows descriptive statistics and correlations of the industry returns used in Section 6, based on 50 annual return observations from 1956 to 2005. The 12 industry 
portfolio returns are from the data library of Kenneth French, value-weighted and measured in excess of the 1-month T-Bill rate. “Stock VW” denotes the CRISP value-weighted 
average of all US common stocks. Bond returns are from Ibbotson and Associates. The growth rate of labor income, denoted by gy,manu,  is the yearly change in “Average hourly 
earnings of production workers” in the manufacturing sector from the US Bureau of Labor Statistics (http://www.bls.gov/).  



Table 3 Multivariate Normal Simulation Results 
          Size at signif. level Power at signif. level   

    Statistic Mean  Var. 10.0% 5.0% 1.0% 10.0% 5.0% 1.0%   

 Unconstrained GRS F 1.05 0.44 10.0% 5.1% 1.0% 96.9% 93.6% 80.0%  
 T = 50 F(6,43) 1.05 0.44        

 S = 100,000 JK �2 8.74 27.18 21.3% 13.8% 5.2% 98.8% 97.6% 92.8%  

  �2(7) 7.00 14.00        

 Constrained KP F 1.04 0.61 9.5% 4.7% 1.0% 85.1% 76.9% 55.6%  
 T = 50 F(4,45) 1.05 0.63        

 S = 100,000 GJ �2 6.01 17.40 17.7% 10.7% 3.8% 88.0% 81.5% 65.3%  

   �2(5) 5.00 10.00              

 Unconstrained GRS F 1.02 0.38 10.0% 4.9% 1.0% 90.3% 83.4% 62.9%  

 T = 100 F(6,93) 1.02 0.38        

 S = 50,000 JK �2 7.76 19.04 15.1% 8.7% 2.5% 94.9% 90.9% 78.2%  

  �2(7) 7.00 14.00        

 Constrained KP F 1.01 0.55 9.8% 5.0% 1.0% 90.1% 83.1% 63.1%  
 T = 100 F(4,95) 1.02 0.56        
 S = 50,000 GJ �2 5.44 13.01 13.6% 7.7% 2.0% 92.8% 87.5% 72.2%  
   �2(5) 5.00 10.00              
 Unconstrained GRS F 1.01 0.35 10.0% 4.9% 1.0% 99.8% 99.4% 97.3%  
 T = 200 F(6,193) 1.01 0.35        
 S = 25,000 JK �2 7.35 16.23 12.4% 6.8% 1.6% 99.9% 99.8% 98.9%  
  �2(7) 7.00 14.00        
 Constrained KP F 1.00 0.52 9.7% 4.9% 0.9% 99.7% 99.2% 96.4%  
 T = 200 F(4,195) 1.01 0.53        
 S = 25,000 GJ �2 5.20 11.21 11.5% 6.2% 1.4% 99.8% 99.5% 97.9%  
   �2(5) 5.00 10.00              
 Unconstrained GRS F 1.00 0.33 9.6% 4.7% 0.9% 99.8% 99.6% 98.2%  
 T = 400 F(6,393) 1.01 0.34        
 S = 12,500 JK �2 7.14 14.78 11.0% 5.6% 1.1% 99.9% 99.8% 99.0%  
  �2(7) 7.00 14.00        
 Constrained KP F 1.00 0.49 9.8% 4.6% 0.9% 99.8% 99.5% 98.2%  
 T = 400 F(4,395) 1.01 0.51        
 S = 12,500 GJ �2 5.08 10.42 10.8% 5.3% 1.0% 99.9% 99.7% 98.5%  
   �2(5) 5.00 10.00              
 Unconstrained GRS F 1.01 0.34 9.9% 5.0% 1.1% 100.0% 100.0% 100.0%  
 T = 800 F(6,793) 1.00 0.34        
 S = 6,250 JK �2 7.14 14.87 10.8% 5.4% 1.3% 100.0% 100.0% 100.0%  
  �2(7) 7.00 14.00        
 Constrained KP F 1.01 0.51 10.4% 5.1% 1.0% 100.0% 100.0% 100.0%  
 T = 800 F(4,795) 1.00 0.51        
 S = 6,250 GJ �2 5.11 10.44 10.7% 5.5% 1.1% 100.0% 100.0% 100.0%  
    �2(5) 5.00 10.00               

The label GRS F denotes the test for mean-variance efficency of Gibbons, Ross and Shanken (1989), while JK �2 
denotes the Wald test of Jobson and Korkie (1982). KP F denotes the test for mean-variance efficiency under 
portfolio weight constraints derived in this paper, while GJ �2 denotes the Wald test under constraints of 
Gouriéroux and Jouneau (1999). The theoretical mean and variance of the test statistic under the null hypothesis 
are shown below each row of results. The size estimates are based on the percentage of simulation rounds in 
which the efficiency of the ex post tangency portfolio was rejected, while the power is based on the percentage 
of simulation rounds in which the efficiency of an equally weighted portfolio was rejected.  
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Table 4 Mean-Variance Efficiency Test Results – I 
              
   Unrestricted With labor income  

   GRS Yt/Wt = 0.5 Yt/Wt = 0.7 Yt/Wt = 0.9  

 Portfolio  
iα̂  

iα̂  
iα̂  

iα̂   
 BUSEQ  0.026  0.020  0.012 -0.031  
 CHEMS  0.006  0.005  0.004 -0.003  
 DURBL -0.008 -0.012 -0.018 -0.051  
 ENRGY  0.044  0.040  0.036  0.009  
 HLTH  0.043  0.044  0.047  0.059  
 MANUF  0.007  0.003 -0.003 -0.034  
 MONEY  0.021  0.020  0.019  0.013  
 NODUR  0.034  0.036  0.038  0.051  
 OTHER  0.003  0.002 -0.001 -0.016  
 SHOPS  0.010  0.010  0.009  0.009  
 TELCM  0.011  0.013  0.016  0.029  
 UTILS  0.012  0.013  0.014  0.019  
         
 ∑ 2ˆ

iα   0.081  0.079  0.079  0.112  
 �  1.235  1.244  1.243  0.839  
 p-value  0.297  0.292  0.293  0.612  
              
The table shows the results of the mean-variance efficiency test for a proxy 
of the market portfolio, consisting of 50% US stocks (value-weighted, 
CRISP), 25% long-term US government bonds (Ibbotson and Associates) 
and 25% long-term US corporate bonds (Ibbotson and Associates), relative 
to the returns of 12 industry portfolios (value-weighted, from the data library 
of Kenneth French). Efficiency test results are presented for an unrestricted 
investor without labor income (GRS) and for investors with non-traded labor 
income with the weight of the net present value of labor income fixed at 
Yt/Wt = 0.5, 0.7 and 0.9, respectively, relative to total wealth. The growth 
rate of labor income is the yearly change in “Average hourly earnings of 
production workers” in the manufacturing sector from the US Bureau of 
Labor Statistics. The table show estimated alphas of the 12 industry 
portfolios, the average deviation of the alphas from the null hypothesis, the 
value of the test statistic (�) and the corresponding p-value. 
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Table 5 Mean-Variance Efficiency Test Results – II 
              
   Unrestricted With labor income  

   GRS Yt/Wt = 0.5 Yt/Wt = 0.7 Yt/Wt = 0.9  

 Portfolio  
iα̂  

iα̂  
iα̂  

iα̂   
 Gov. bonds -0.006 -0.004 -0.001  0.016  
 Corp. bonds -0.005 -0.004 -0.002  0.010  
 FF BH  0.036  0.034  0.032  0.017  
 FF BL -0.001 -0.002 -0.003 -0.008  
 FF SH  0.079  0.074  0.067  0.030  
 FF SL  -0.004 -0.012 -0.023 -0.083  
         
 ∑ 2ˆiα   0.087  0.083  0.078  0.092  
 �  4.451  4.519  4.501  2.874  
 p-value  0.001  0.001  0.001  0.019  
              
The table shows the results of the mean-variance efficiency test for a proxy 
of the market portfolio, consisting of 50% US stocks (value-weighted, 
CRISP), 25% long-term US government bonds (Ibbotson and Associates) 
and 25% long-term US corporate bonds (Ibbotson and Associates), relative 
to the returns of a portfolio of long-term corporate bonds, long-term 
government bonds and the returns of four Fama and French portfolios. The 
Fama and French portfolios are the result of a 2x3 double sorting of stock 
based on size and value: small stocks with low price to book (SL), small 
stocks with high price to book (SH), big stocks with low price to book (BL) 
and big stocks with high price to book (BH). Efficiency test results are 
presented for an unrestricted investor without labor income (GRS) and for 
investors with non-traded labor income with the weight of the net present 
value of labor income fixed at Yt/Wt = 0.5, 0.7 and 0.9, respectively, relative 
to total wealth. The growth rate of labor income is the yearly change in 
“Average hourly earnings of production workers” in the manufacturing 
sector from the US Bureau of Labor Statistics. The table show estimated 
alphas for the 6 test asset portfolios, the average deviation of the alphas from 
the null hypothesis, the value of the test statistic (�) and the corresponding p-
value. 
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Footnotes 

                                                
1 In practice, Treasury securities (T-bills, T-bonds and TIPS) promise riskless yields to maturity and can serve as 
riskless assets. The availability of these assets in the market of course does not exclude restrictions on riskless 
lending and borrowing. We use the riskless asset primarily to construct excess returns for the risky assets. Excess 
returns typically are less sensitive to time-variation than nominal returns. Also, if excess returns are used, then 
there is no need for an explicit budget restriction in the portfolio possibilities set. 
2 The KKT conditions also include a feasibility condition, in this case .2 bA =ττττ  Please note that this condition is 

always satisfied trivially, as Λ∈ττττ  by definition.  
3 GRS do not explicitly specify a mean-variance objective function and therefore do not choose a specific risk 
aversion parameter. However, 1))(( −′′= ττττττττττττµµµµ ΩΩΩΩζ  is the only level of risk aversion that makes the GRS approach 

consistent with the maximization of a mean-variance objective function. 
4 In the unrestricted case, ττττκκκκ =  and 

GRSαααααααα = . Further, equation (8) reduces to (7), i.e.  
ttGRSt εεεεττττββββαααα +′+= )(rr , 

1, ,t T= L , while εΣΣΣΣΣΣΣΣ =  and �Ŝˆ =θ . Thus, our framework includes the unrestricted GRS test a special case. In 

the GRS approach, the return distribution is assumed to be normal given the returns of the portfolio ττττ . 
Effectively, the estimated Sharpe ratio �Ŝ  of the evaluated portfolio ττττ  is treated as non-stochastic while deriving 

the return distribution of the estimated alphas 
GRSαααα̂ .  In our approach, the return distribution is assumed to be 

normal given the returns of the entire portfolio ττττ  and the returns of the unrestricted asset portfolio κκκκ . 
Effectively, the empirical Sharpe ratio �Ŝ  of portfolio κκκκ  and the estimated correlation coefficient τκτκτκτκρ̂  are treated 

as non-stochastic while deriving the return distribution of the estimated generalized alphas αααα̂ .   
5 For GRS and our test knowledge of the historical returns of the unconstrained asset portfolio and the 
constrained portfolio are sufficient, without the need to explicitly specify the portfolio weights of the primary 
assets (which are typically unknown in most asset pricing applications). 
6 Our framework can take into account additional restricted investments in housing. For ease of exposition we 
ignore homeownership here, e.g. assuming that the investor rents an apartment.  


