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1. Introduction

Tests for mean-variance efficiency of a given portfolio aseful tools for portfolio
management applications and empirical asset pricing resdzadl. efficiency tests such as
the classical mean-variance efficiency tests of JobsonKankie (1980, 1982), Gibbons
(1982), Kandel (1984), MacKinlay (1987), Shanken (1985, 1986), and Gibbons, Ross and
Shanken (GRS; 1989) focus on the case where the portfolio weighigrasgricted. In this
paper we consider a setting where the trading of a subsesetsds restricted by linear
constraints. The restricted subset of assets can be thoughtllafad, or when the portfolio
weights are fixed at given values, as non-traded. Applicatiodiside tests of portfolio
efficiency for investors with a substantial investment in houdatmr income, or non-traded
liabilities.

An example of a relevant application is testing household portféficemcy while
taking into account an illiquid investment in housing that cannot betedjusthe short-term.
Flavin and Yamashita (2002), Cocco (2004) and Hu (2005) show that argidlshvestment
in housing — typical for most individuals — can crowd stocks out ofrihestor’s portfolio.
Pelizzon and Weber (2003) test the efficiency of more than 500@nifatiusehold portfolios
under the assumption that the individual’s investment in housinged.fiThe results show
that the constraint on the housing investment plays an impodianinrdetermining whether
the portfolios are efficient. Our test is not only applicabléha growing field of household
finance (for an overview, see Campbell, 2006), but also uksfulstitutional investors with
non-traded liabilities, such as the liabilities arising frdefined benefits pension schemes
(see, e.g., Berkelaar and Kouwenberg, 2003).

Our analysis starts from the optimality conditions for mearauae efficiency of a
given portfolio under constraints. We formulate the null hypotles§ficiency and propose

a test statistic for measuring deviations from the null. Urkderassumption of a normal



distribution for the excess asset returns, we prove that dbe dtatistic follows an

F-distribution. The unrestricted classical GRS test is aialpease within our framework.

Apart from generalizing the GRS test, the contribution ofpigger to the literature is that the
test statistic is easily computed and suited for small EEn@whereas available tests for
efficiency under restrictions typically rely on approximatiorstgé sample theory or

computer simulation of the posterior distribution.

This paper aims to enrich the set of methods for testing 4vee@ance efficiency
under constraints available in the literature. Wang (1998) extbedBayesian approach for
examining portfolio efficiency of Kandedt al. (1995) to include general restrictions on the
portfolio weights. Similar to our paper, Wang (1998) assumesatisat returns are normally
distributed. The posterior distribution of the efficiency measuimmputed numerically with
simulations. An advantage of the numerical approach is thatedtecan handle many
different types of constraints. Further, Wang (1998) uses direasures of the degree of
portfolio efficiency, such as the maximum improvement in nre&mrn given the variance of
the evaluated portfolio. On the other hand, simulations can lecimsuming and some
researchers might prefer the classical approach of hypottestiag over the Bayesian
approach (which uses posterior odds ratios, instead of p-valuesyilWiet enter the debate
about the relative merits of classical and Bayesian titatisere. Rather, our purpose is to
extend the classical approach to testing mean-varianceatfy with a test that applies under
restrictions on the portfolio weights.

Basak, Jagannathan and Sun (2002) develop a direct test for portfaienef
subject to short sale constraints. Similar to Wang (1998),kBaisal. (2002) measure the
maximum improvement in variance that can be achieved by formipgriolio of the
primitive assets with the same mean as the benchmark portBzligaket al. (2002) test

whether the potential improvement is significantly greater tham aising a classical



statistical approach, complementing the Bayesian approach fdllow&/ang (1998). Basak
et al. (2002) prove that the sampling distribution of the estimated effigi measure
converges to a normal distribution as the number of observationsogméisity. In order to
derive this asymptotic result the paper applies a linear appaton method. Basa& al.
(2002, p. 1213) report that the estimated efficiency measusenion-linear function of the
data in applications with short sale constraints and the lineaoxap@tion method might
therefore introduce large errors.

Gouriéroux and Jouneau (1999) develop a mean-variance efficiencyotean
investment setting where the portfolio weights of a subset efsaaee fixed at given weights.
Under the assumption of a multivariate normal asset returnbdisbn, the test statistic
proposed by Gouriéroux and Jouneau (1999) follows a chi-square distribution @syetipt
The test includes the unrestricted mean-variance tekilsfon and Korkie (1980, 1982) as a
special case. Our paper complements the work of Gouriéroux and Jo(®29) by
generalizing the classical test of Gibbons, Ross and Shanken (©89)rtvestment setting
with a subset of illiquid or non-traded assets. An advantagaraipproach is that we find the
exact small sample distribution of the test statistic (Fitigion). Further, our investment
setting is slightly more general, as it includes lineastri@ions on the entire subset of
restricted assets. A relevant example of such a consigmiat binding limit on foreign
investment.

Following GRS and others, we assume that the asset returns #oljoint normal
distribution. As shown in Affleck-Graves and McDonald (1989), monthBy stock returns
are “reasonably normal” and the GRS test is robust to the rexiston-normalities.
Nevertheless, for other asset return series (for exameiesatives or high-frequency data),
deviations from normality can be more severe. In these casesanvuse, for example, the

asymptotic mean-variance efficiency test of MacKinkd Richardson (1991) or Zhou’s



(1993) generalization of the GRS test under an elliptical distoibutiowever, if returns do
not follow an elliptical distribution, the economic meaning @& thean-variance criterion is
not well-defined to begin with (see, e.g., Chamberlain, 1983)imntat case we would
advise the use of more general stochastic dominance efficiestsy (see, e.g., Post, 2003;
Kuosmanen, 2004).

Like the original GRS test, our test does not use conditioningmaftton. There exists
mounting evidence in favor of time-varying risk and time-vagyiisk aversion (see, e.g.,
Fersonet al., 1987; Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001). Cohditiona
efficiency generally does not imply unconditional efficiency (seg., Hansen and Richard,
1987), and conditional tests are needed in case of time varidmmefer to the recent paper
of Ferson and Siegel (2006) for tests that use conditional informafiaciently and
generalizations of earlier work. On the other hand, givenaitie df theoretical guidance for
selecting the appropriate specification, conditional testsealtil risk of specification error
(see, for example, Ghysels, 1998). In this paper we focus on uncoadéfGoiency and we
leave the development of a conditional version of the testutord research. As a partial
remedy, researchers and practitioners applying our unconditiotataasuse “ad hoc”
approaches to control for time variation, including the formatibtest portfolios that are
periodically rebalanced, and moving or rolling window analysis.

Finally, we would also like to mention a number of other papersatteatndirectly
related to our work. The formulation of our test statistic faran-variance efficiency is
inspired by the work of Shapiro and Homem-de-Mello (1998). Higle amd(8@91) and
Shapiro and Homem-de-Mello (1998) derive general asymptoticftestise optimality of a
candidate solution to a stochastic optimization problem. De RognahN and Werker (2001)
develop asymptotic tests for mean-variance spanning under shertceastraints and

transaction costs, using a similar test statistic. Wer rief Korkie and Turtle (2002) for an



extensive mean-variance analysis of self-financing portfoliosgluding the derivation of
spanning and efficiency tests under self-financing restrictidfighin our framework self-
financing constraints can be imposed as well, but only on aetudf-the risky assets.

The remainder of this study is structured as follows. Section rAutates the null
hypothesis of mean-variance efficiency in an investment se#tittga subset of restricted
assets. Section 3 derives our generalization of the GRSttamtic and its small sample
distribution. Section 4 analyzes the size and power of theSestion 5 applies our test to two
relevant practical cases: assessing portfolio efficiencthé presence of non-traded labor
income and non-traded liabilities. Section 6 tests whether a-wadighted US stock-bond
portfolio is mean-variance efficient, while taking into accoargubstantial position in non-

traded human capital. Finally, Section 7 presents our conclusions ayeksags for further
research. Throughout the text, we will use" for an N-dimensional Euclidean space and

O Y for the positive orthant. To distinguish betweentwes and scalars, we use a bold font for

vectors and a regular font for scalars. Furthénedtors are column vectors and we usefor

the transpose af . Finally, Oy andly denote a (1X) zero vector and a (M unity vector.

2. Null Hypothesis of the Test

The investment universe includisisky assets and a riskless asskivestors can construct

portfoliosA 00" . We assume that the firdt— R risky assets can be traded freely by the
investor, but that trading of the |d8iassets is restricted, e.g. due to lack of liquidity. e

the portfolio weight vectord’ =[A; A,] up into theN —R weights of the unconstrained
assetsA, 00" " and theR restricted weightd, JO%. The portfolio weightsA, of the

restricted assets are subject to a seKoéquality constraint®A, =b, with AOOF,

bOO" and K < R. The restricted assets could for example include the im&$toman



capital (labor income), the investor’s house or thiilliees of a pension fund. In these three
cases the portfolio weight is typically fixed at a paracutalue: the constraint matrix then
reduces to an identity matrix, i.& =1, , while b specifies the values of the fixed portfolio
weights, i.e. A, =b. Assuming that the market is incomplete and no perfedgé is

available to undo the fixed portfolio weights, we wdlfer to these assets as “non-traded”.

A
The set of feasible portfolios is defined Ass {Ll} OoOM:A,00%% A, 00% A4, = b} :

2
The special casé =0 and b =0, represents a test without restrictions on the partfo
weights, i.e. the traditional GRS test, whife=1, represents the special case with non-
traded assets with given portfolio weighis=b .

Let r 0O denote the excess returns of the risky assets. The rénllovs a joint

distribution with meanu = E[r] and covariance matr@Q = E[(r — u)(r — 4)']. We make a

distinction between the expected excess returns of #uedrassetgy, 10" and the

H

2

restricted assets g, 007, With,u:{ } We partition the covariance matrix

T

- Q, Q _ . .
S|m|IarIy:Q=[Q1l 921] with Q,, 00N N"R the covariance matrix of the traded
21 22

assets, Q,, 0™® the covariance matrix of the restricted assets &gO0O™"N™®

collecting the covariance terms between the traded anttredtassets.

Investors choose investment portfolios moaximize a mean-variance objective

functiong(r) = E[r] -1{Var[r], where { 20 is a risk aversion parameter. The portfolio

choice problem is

max{g(A)} = maxElr'A] -4 (Varr'Al} = maxua - ¢AQA} (1)



A given portfolio r A is efficient if and only if it is an optimal soluticsf (1) and satisfies
the first-order Karush-Kuhn-Tucker (KKT) conditions ¢fie constrained optimization
problem. Before we show the KKT conditions, we firstiree the alphas of the assets as the
first-order derivatives of the objective function (1)ttwrespect to the portfolio weights,

evaluated at the given portfokdl A :

d = —
a {J g(/l)}A=r =H -¢Qr 2)

Using the expression for the alphas, the KKT oplitm&onditions for the efficiency of the

given portfolior are:

_1au|_ ﬂl_Z(Qllrl-i_Q'ZlTZ) _ ON—R
7" L’j B [)uz - Z(szrz + Qerl):| B [AIPK} )

with p, 00O a vector of Lagrange multipliers for thé equality constraints onj,.

The KKT conditions are necessary and sufficient tfee quadratic maximization problem
subject to linear constraints (1), as the covagamatrixQ is positive definité.

In the unrestricted case the KKT conditions redteehe familiar Euler equation
a =0,, i.e. all alphas should equal zero. Note thah&dase with restrictions, even if some
restricted assets have non-zero alphas, the eedlyzdrtfolio can still be mean-variance

efficient. More specifically, the following polyheal cone gives the set of admissible alphas:



— N . — ON—R K
C(A)={z0O0O .Z—{A,pK},pKDD } (4)

This study develops a test for the null hypothélset the evaluated portfolio is efficient,
H,:a OC(A), against the alternative hypothesis of inefficigit, : @ OC(A). In the
unrestricted case we find(J) =0, and the null reduces td, :a =0,.

A remaining problem is the specification of thekrigversion parametef of the
investor holding portfolior. The GRS test implicitly chooses a value for thésameter by
setting the alpha of the evaluated portfolio equmlzero, that is,a'r =0, which gives
{ons =(U'T)TQT)™2 The alphas can then be expressed @S = U - {esQT =
u—-(u'n)B, with B=(Qr)(rQr)™. This approach is generally not consistent with rill
hypothesis in the case with restrictions on thefplio weights, as the alpha of the evaluated
portfolio does not necessarily has to equal zemweéVer, note that in the restricted case the
alphas of theN —R unrestricted assets still need to be zerp=0,_;. Hence, we can infer
the investor’s risk aversion parametéfrom his portfolio of unrestricted assets, by sodyi
the equationa;r, = 0. This approach is consistent with the null hypsth@inder restrictions
and gives the following risk aversion parame@r (L47,)(1;Q,,T, + 1,Q'.T,) ™.

After substituting the expression fgr in the KKT conditions (3), we obtain:

a= |:a1:| — |:ﬂ1 - ()uir1)()61'r1)_l)81:| — { OI’\I—R :| (5)
a, M, — (/Iirl)(ﬁllrl)_lﬁz A Px

with the vector of betas defined as usual



Q1 + QL T,)(T'QT) *
(Q,,1, +Q,,1,)(T'QT) *

] -1 ﬁl
=Q Q ,
B r(r'Qr) [ B

2

}:Qr(r’ﬂr)‘1 :{ (6)

We will refer to the alphas defined by (5) as ‘gatieed alphas’, because under portfolio

weight restrictions they may differ from the clasdialphasa .. The relation between the
generalized alphas and the GRS alphas is as follaws ags +(W'T-¢)B, with

¢ = (u1,)(Br,)™" the Treynor ratio of the portfolio of unrestrictassets.

3. Empirical Testing

An empirical test of mean-variance efficiency isd on a timeseries of risky asset excess
returns r, observed at timg¢ =1,--,T, wherer, DO " is a (\x1) vector of returns. By

analogy to GRS, we define the data generating peo@GP) as
I = grs +ﬁ(rt’r) téE, t=1--,T (7)

We assume that the regression errgrsare serially independent and identically distréalt
random draws from a multivariate normal distribotiwith mean0,, and covariance matrix
>, 00O™N, conditional on the returngT 9f the investor’s portfolio at time Least squares
estimation of the DGP (7) gives estimates of tlassital betag and alphasrg.s, but not an

estimate of the generalized alplmsinder restrictions. To estimate the generalizptiad we
use the relationa = ag s + (U'T ) B, and replacea s in (7) by a—(u't-¢)B. After

some rearranging of the terms, we find:

10



r :a+ﬁ(ﬂirl)_1(rl',trl)+ut’ t=1.--T (8)
with the error ternu; defined as
u =&+ BONT- 1)+ BBT) (T, -1y r) L t=10T 9)

The error ternu, follows a multivariate normal distribution wilju,] = , @onditional on the

returns (r,7 ) of the investor’s entire portfoli@ — including theR restricted assets — and the

7

returns (r;k) on the pOI’thliOK=[ } of N—R unrestricted assets. We define the

R

covariance matrix of the regression error&asE[uu, . ]

Given the estimated beta)é, we propose the following unbiased estimator for t

generalized alphas based on (8):

a=f-B(Br) " (Ur). (10)

Since the errors are jointly normally distributélte estimated generalized alphas also follow

a joint normal distribution, conditional on theusts of the portfoliog andk :
& ~N(a, T 1+6%)5) (11)

with 6=, D.., wWhere éh_ is the Sharpe ratio of the unrestricted assefgimrt«, and p,,

the estimated correlation between the returns efprtfolio 7 — including theR restricted

11



assets — and the returns of the unrestricted peséolio . The full derivation of (11) is in
the AppendiX.
As a test statistic, we will use the smallest distabetween the estimated generalized

alphas and the cone of admissible alphas (4):

E(A) = Zgg;g)a+é2>'l<a—z)'i'l«‘r—z) (12)

where iE(T—Z)‘l(Z::thO;) is an unbiased estimator &, based on the empirical

regression errorsl, =1, —a — B([?’K)'l(rt'/( .)The test statistic is a restricted version of the

classical Hotelling’sT * statistic used in multivariate statistical anadysi

GRS derive the small sample distribution of the esincted test statistic
E(0) = U+ 62) ™ @pe2 “lgns - The estimatesdi and T— 2)Z are independent and follow

the normal distribution in (11) and a Wishart dsition with parameter matri¥ and T — 2)
degrees of freedom, respectively. It follows thaimple transformation of the test statistic

follows an F-distribution:

(T(T -N-1)

N(T -2) JE(D) ~ N (13)

with non-centrality parameter

A =4T QU+ 6%) Al Urs (14)
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For the case withR restricted assets, we will now derive the exactlsmmample

distribution of the test statistic. We define thegmented constraint matrid OO0N as

A=|0, . A, whereO, ,_,00""™® denotes a zero matrix. The null hypothesis is

a. Oy — .
Hy:a :{ 1} = {A?pﬂ =A'p,. Let MOOY™ ™ denote a matrix whose columns form a
K

basis set for the null space Af. Note that the range of the matft , denoted byR(M), is
equal to the null space of the matrx, denoted byN(A): R(M)=N(A). According to the
fundamental theorem of linear algebrs(M')=R(A"). The null hypothesisH, :aOR(A"),

is therefore equivalent tél,:a O N(M' ,).e. H,:M'a =0,_,. We can now formulate the

test statistic as follows (see the Appendix forftliederivation):
E(A) = L+G)TAM(M EM) M’ (15)

The vectorM’a follows a (N — K)-dimensional multivariate normal distribution withean

M'a and covariance matrix™* (1 + 92)M'ZM . Hence, the distribution of (A) is known:

TT-N+K-1
( ((N -K)(T - 2))]‘% "o (o)
with non-centrality parameter
Ay =3TA+6°)"aM(M'IM) "M’ @ (17)

13



Under the null hypothesis), =0 and the test statistic follows a central F-disttibn with

(N-K)and T —N+ K - 1) degrees of freedom.
The most relevant applications of our efficiencgttender restrictions involve non-
traded assets with a fixed portfolio weight, sushte investor’s labor income, housing or the

liabilities of a pension fund. For these applicasidhe portfolio weight restrictions atg=b,

K=R, and the constraint matrix reduces to an identityrimia A =1,. Given the simple

I\
structure of the constraint matrix, it is straigiwfard to show thaM :[ NTR } Note that
R,N-R

M'G =@, andM'EM = £,,, and therefore the test statiséifl ;) reduces to

~

&) = W+6)) a5 la, (18)

Hence, for the special case of non-traded asdasexpression for the test statistic can be
simplified considerably. At first sight, it mighppear that the alphag, and regression errors
for theN — R unrestricted assets determine the value of thestatistic completely, while the

R non-traded assets play no obvious role. Note, kiewehat the estimated alphas of the

unrestricted assets depend explicitly on the camag between the excess returns of the

unrestricted assets and the non-traded assetsafe holds fod and 5.

4. Size and Power of the Test

We will now investigate the size and power of officeency test under restrictions. The small
sample distribution of the test statistic in theppr — and in GRS — is derived under the
assumption of a conditional multivariate normalratdistribution, given the returns of the

portfolio that we would like to assess. Ainconditional multivariate normal distribution for

14



the asset returns, treating the returns of thengpertfolio as a function of the random
individual asset returns, i.e. as a random varjabéEms more appropriate. Fortunately,
Jobson and Korkie (1985) show that the GRS tesisStafollows an F-distribution as well
under the assumption of an unconditional multitarinormal return distribution. Further,
numerical results in Jobson and Korkie (1982) aadh@bell et al. (1997) demonstrate that
the GRS test performs much better in a multivarredemal setting — in terms of size and
power — than alternative asymptotic tests of pbdfefficiency, such as the Wald test statistic
of Jobson and Korkie (1982, JK) . Given that odicefncy test is an extension of GRS, a
priori we would expect our test to perform wellamall samples, regardless of whether the
underlying return distribution is conditionally anconditionally normal. On the other hand,
the asymptotic test for efficiency under restrictioproposed by Gouriéroux and Jouneau
(1999) is an extension of the asymptotic Wald eéXK, and for this reason we do not expect
it to perform well in small samples. We will nownmtuct simulation experiments to verify
these premises.

As a starting point for the simulation we use ktand bond return data from the US,
consisting of the Ibbotson long-term government doandex, the Ibbotson long-term
corporate bond index and six Fama and French piogfeesulting from a two by three
double-sorting of all US stocks based on size aaldiev (source: homepage of Kenneth
French). We refer to Table 1 for descriptive stafisof annual total return data from the
period 1956-2005. After estimating the sample nes@thcovariance matrix of the returns, we
calculate the weights of the unconstrained ex pasgiency portfolio W) with maximum
Sharpe ratio. As an example of weight constraiwts fix the portfolio weight of long-term
government bonds at 40% and the weight of long-teosrporate bonds at 20%. We calculate
the weights of the ex post tangency portfolio scibje these constraintsvf). Next, we draw

random samples of lengihfrom a unconditional multivariate normal distrilmut with mean

15



and covariance matrix fixed at the sample valuee Wélculate the returns of the
unconstrained portfolias, and test its efficiency with the GRSstatistic and the JK Walgf
statistic. We calculate the returns of the consé@iportfoliow, and test its efficiency with
the F test derived in this paper and the test of Gouriéroux and Jouneau (1999). The
simulation is repeated a total 8ftimes to replicate the empirical distribution tiettest
statistics.

One important difference in the implementation lié £ tests and thg? tests is that
the y? tests ideally should include all primary assets #re part of the given portfolio, as
otherwise the test statistic erroneously could @ka@egative values. On the other handRhe
tests should never use all primary assets in tengbortfolio as test assets, as in that case the
residual covariance matriX of the regressions in (7) and (8) is singular tredtest statistic
cannot be computed. For this reason we usd alB primary assets (two bond portfolios and
six FF portfolios) to implement the tests, while we calculate tlfetests withN = 6 primary
assets, excluding the mid-cap value portfolio d&dmid-cap size portfolio from the set of FF
portfolios. Overall, the unconditional normal simtibn setting with known optimal portfolio
weights favors the Walg? tests, as both the JK and GJ test were derive@rutitbse
assumptions.

We also assess the power of the various testsisithulation runs. For this purpose
we test the efficiency of an equally weighted paitf of the unrestricted assets, which is
clearly inefficient based on the ex post Sharpé.rafable 3 shows the results of the
simulations. For each test the columns of the tashlew the mean and the variance of the
simulated test statistic, the size of the teshatlt%, 5% and 10% level (rejection rate of the
ex post efficient portfolio) and the power of thesttat the 1%, 5% and 10% level (rejection
rate of the equally weighted portfolio). Directlglbw each row of simulation results we show

the mean and variance of the theoretical tesssiadistribution for comparison. With a small

16



sample size of = 50 observations, the size of the GR&st is nearly identical to the pre-set
significance level, while the JK Wald test has achiarger Type | error (13.8% at the 5%
significance level and 5.2% at the 1% level). Far tests under portfolio weight constraints
we find similar results: witd = 50 observations thie test derived in this paper has a size that
is very close to the desired significance levelilevthe Wald test of Gouriéroux and Jouneau
(1999) rejects the null hypothesis too often (eadlp.7% rejection rate at the 5% significance
level). At small sample sizes, i.€= 50 andTl = 100, theF tests perform much better than in
terms of size than the Wald tests, while in laggmnples T = 200, T = 400 andT = 800) the
performance of the Wald test gradually improves.

The power of the Wald tests is generally slightighler than the power of tHe tests
in small samples, but this is not a big advantagesn the corresponding large Type | error:
the Wald tests reject the null hypothesis morempftegardless of whether the null is true or
not. In samples of = 200 and larger, the power of theand Wald tests is similar. Please
note that the estimated mean and variance in Talnidicate that the simulated distribution of
our test statistic follows the theoreti¢aldistribution closely in small samples. This is tioe
case for the Gouriéroux and Jouneau (1999) statistiich has a much higher mean and
variance in small samples than the theoretiC<';1Ir\(1ep]st;lyrtic)X2 distribution.

Overall, these simulation results indicate that Buest for mean-variance efficiency
with non-traded assets has similar favorable pt@mias the GRS test in small samples,
performing better than the asymptotic Wald tesBotiriéroux and Jouneau (1999). Further, if
run the Wald tests with a reduced seNof 6 primary assets, instead of the complete s8t of
assets, then the test statistic is not well-defined (can become tiggpand the simulated
distribution becomes completely different from tregwal distribution, with poor simulated

test size results (results not reported to saveespmut available upon request).
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5. Testing the Efficiency of Portfolios with Non-Tiaded Assets

In this section we show how our test for portfodifiiciency with restricted assets can be
applied in the presence of non-traded liabiliti@s,well as in the case of non-traded labor
income. We do not discuss the relevant case ohanaoled position in housing to save some

space, but the approach follows the same stepsthe two examples in this section.

5.1 Asset-Liability Management

An interesting application of our mean-variance tewler restrictions is to test the efficiency
of portfolios that are evaluated relative to angetus, non-traded, stochastic benchmark.
For example, the risk and return of the investnpemtfolio of a defined benefit pension plan
are usually measured relative to the growth ofptla@ liabilitiesL;, defined as the net present
value of all future pension payments. The planlsstig, is defined as the difference between
the value of the asset#y, and the liabilities:S = A — L. Given a fixed level of plan
contributions, in the short-term the fund managgfrshe plan typically make a trade-off
between maximizing the expected value of the plaiplgs ER.1] and avoiding unpredictable
fluctuations in the surplus that might lead to pteficits §+1 < 0). This trade-off can be

formalized with the following mean-variance surpinanagement problem:

maxE[S,,] - 1{Var[S,,] (19)

Let's assume for ease of exposition that a risk &isset with returRy exists. Letr,
denote the random return on the liabilities fromdi to t+1, in excess of the risk free rate.
The (x1) vectorr; denote the excess returns of a set of unrestrictky assets available to

the pension fund portfolio manager. Given thel) vector of investment portfolio weights

A, the surplus at timet+l is equal to S, =@+rA +R)A -@1+r +R)L,
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=(@1+R,)S +A(rjA, —(L,/A)r.). The mean-variance surplus management problem can

now be reduced to the following equivalent formiglat

maxE[r,A, - (L, / A)r 1-1{Var[rA, — (L, / A)r, ] (20)

with Z~ = A{ . The surplus management problem as defined aloof20) has been proposed

and studied by Sharpe and Tint (1990).
Suppose that the plan manager would like to etaltize mean-variance “surplus

efficiency” of the given Ik1) risky asset portfoliar,, assuming no constraints on the risky

asset weights. The first order conditions for meanance surplus efficiency af, are:

a =4 _E(Qllrl - (Lt /A)UL): OI (21)

where the Ik1) row vector 4, denotes expected excess returns of the riskysassd Q,,
the correspondinglXl) covariance matrix, while thdxl) vector g, measures the return
covariance between the risky assets and the tiabili

So far, the risk aversion parame’ér has not been specified yet. To give the plan’s
fund manager the benefit of the doubt, we set ﬁhee/off such that the evaluated portfolio
1, has zero alpha. i.€ = 1, [1,Q,,1, - (L, / A)o.T, . The first-order efficiency condition

now is

(Qllrl - (Lt /A)JL) -0 (22)
(TiQnTl - (Lt /A)a-’Lrl) I

a =H _lu:l'.rl
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Please note the equivalence between the first catatitions for théN — R unrestricted assets
in (5) and the first order conditions of the sugplmanagement problem (22) above. Our
mean-variance test under restrictions can be apptiederive an unbiased estimator for the

alphasa, and a multivariate test statistic. Within our flemork we simply treat the risky
assets a®\ — R unrestricted assets with weigh#s and excess returng, and the plan

liabilities as a single restricted asset, i.e. viRth 1, with excess return = r. and portfolio

weight A, . The plan’s short position in the liabilities cb@ modeled with the single equality
constraintAAd, =b, with A=1andb =—(L,/A). Note thaN =1 + 1 andK = 1.

To implement the empirical test, we first estimtite traditional market model (7)

relative to the returnér,T  ®n the pension fund’'s augmented portfolie [r{ - (L, /A)]':

rl,t = al,GRS + ﬂl(rtlr - (Lt /A\)rL,t) + gl,t’ t=1.--T (23)

Next, the generalized alphas are estimated withatemu (10):

@, = i - B.(Bir) " (iLr) (24)

We calculate the residuals, corresponding to (24) and estimate the covariamatix 5:11.

~

Next, we compute the value of test statisticéas (1+8%)*@,5,}d,, with 8 = S p;*, where
éi is the Sharpe ratio of the risky asset portfaijand p,, the estimated correlation between

the returns of the augmented portfofio— including the shomposition in the liabilities — and

the returns of the risky asset portfolm. The test statistic for the mean variance surplus
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efficiency of portfolio r; follows an F-distribution with(N-K) =1 and (T-N+K -1)

=(T -1 -1) degrees of freedom.

5.2 Mean-Variance Test with Non-Traded Labor Incone

A second relevant application of our mean-variatest under restrictions is to test the
efficiency of portfolios of individuals with nonddable labor income. We consider a non-
retired individual investor. At time the individual’'s overall wealthWV; consists of a liquid
investment portfolics — invested in bonds, stocks, etc .. — and the@rgd net present value
of future labor income, denoted b° The net present value of labor income at tirke is
defined as¥u1 = (1 +ry + Ry)Y;, with ry a normally distributed random variable. Thel|
vectorr; denotes the excess returns on the risky assataldeao the individual, following a

multivariate normal distribution. Given théx{) vector of investment portfolio weights,,
the individual's wealth at time+1 is W,,, = A, +Y,, = A+ /A, +R)A + (L+r, +R)Y,
= @+ ROW, + (A TW)rA, + (Y IW)r W

The individual investor’'s aim is to invest in ari@ént portfolio in terms of wealth at

timet+1,

maxE[W,,,] —%ZVar[\NHl] (25)

which is equivalent to the maximizing the followingjective,

maxE[(A /WA, + (Y, IW)r,] -1 Var[(A /WA, + (Y, /W), ] (26)

with ¢ =W,¢ .
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Following the same steps as before, we can dénedirst order conditions for the

mean-variance efficiency of a givelixl) risky asset portfolia;:

a, = - T ((AQ MQ,n + (e, (27)
(A W) 1,Q 7, + (A TW)(Y /W) oy T,)

with the (x1) vector g, measuring the covariance between the excessrassat and the
change in the present value of labor income.

Our methodology can be applied to derive an unbdi@séimator for the alphag, and
a multivariate test statistic for the mean-variaediciency of the portfolior,, given the
investor’'s non-tradable labor income. Within owamnfrework we treat thierisky assets as—R
unrestricted assets with portfolio weights and we take the net value present value of labor

income as a single restricted asdet subject to the constraimt, =Y, /W,. To estimate the

classical betas(?l we use the market model (7) relative to the retwn the individual's
overall portfolio -including the value of labor income — and we usgaéiqn (10) to estimate
the generalized alpha,. The test statisticf = (1+6?)*a;2; 4,, follows an F-distribution

with 1 and(T -1 —-1) degrees of freedom.

6. Empirical Application

In this section we will illustrate our mean-varianefficiency test under restrictions with an
empirical application. We will examine US stock ketrdata to test if a proxy for the market
portfolio is mean-variance efficient for an indivi investor with labour income. For various
reasons, market portfolio efficiency is an interegthypothesis. First, the Sharpe-Lintner-

Mossin CAPM predicts that the market portfolio ifficgent. Second, market portfolio
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efficiency seems consistent with the popularitypa$sive mutual funds and exchange traded
funds that track broad value-weighted indexes.

As a proxy for the market portfolio we construcpertfolio that invests 50% in US
bonds and 50% in the CRSP all-share index, whicthesvalue-weighted average of all
common stocks listed on the NYSE, AMEX and NASDAQ@rkets and covered by CRSP.
The 50% portfolio weight of bonds consists of amestment of 25% in long-term US
government bonds and 25% in long-term corporatedfohoth represented by total return
indices of Ibbotson and Associates. The 50% perngertfolio weight that we assign to bonds
is not based on prior information about the totarket value of US long-term bonds relative
to the total market value of US equity, but seragsn example and crude approximation.

We use two sets of test assets. The first set stsnef 12 value-weighted industry
portfolios from the data library on the homepageKefineth French. The second set of test
assets consists of the Ibbotson long-term goverhrbend index, the Ibbotson long-term
corporate bond index and four Fama and French@imdt small stocks with low price to
book (SL), small stocks with high price to book §Sbkig stocks with low price to book (BL)
and big stocks with high price to book (BH). Theufdcama and French portfolio were
selected from six portfolios that result from a tiwp three double-sorting of all US stocks
based on size and value, available from the dataryi on the homepage of Kenneth French.

We use annual return data from the post-war er&-28995, a total of 50 observations.
We use annual data for three reasons. First, agedrgy Benartzi and Thaler (1995), we
expect that many investors have an investment troraf one year. Second, we know the
exact distribution of the test statistic under nalitp and we would like to exploit this
advantage of the test in a small sample settingtdTannual returns follow a normal
distribution more closely than asset returns oh&rgrequency (e.g. monthly, weekly or daily

returns), which is important given that we assumeanality to derive the distribution of the
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test statistic. Table 1 and Table 2 display detiwdpstatistics of the excess return series, as

well as the estimated correlations between thessxeturns.

6.1 Mean-Variance Test Results with Non-Traded Latr Income

We first test the efficiency of our proxy for thearket portfolio, consisting of 50% bonds and
50% stocks, relative to the set of 12 industry folids with the unconstrained GRS test,
without taking the individual’s labor income inteaunt. Table 4 shows that the p-value of
the unconstrained GRS test is equal to 0.297, atidig that the efficiency of the given
portfolio cannot be rejected.

We now additionally take into account the estimatatle of the individual's labor
income, assuming that it cannot be hedged perfaatlythat its weight in total wealth is fixed
at Y/W,. For the growth rate of the individual’s labor @mese we use the yearly change in the
series “Average hourly earnings of production woskén the manufacturing sector from the
US Bureau of Labor Statistics (http://www.bls.goWable 1 and 2 show descriptive statistics
for this series. We choose this particular seriegsniym as an illustration, expecting it to
capture systematic fluctuations in labor incomehe sector that are relevant for portfolio
choice. We would like mention for the sake of coat@hess that individual labor income has
a volatile idiosyncratic component — due to theeeapath of the individual — that is not fully
captured in an average hourly earnings series. aféx readers interested in a careful panel
estimation of the individual labor income procas€bcco, Gomes and Maenhout (2005).

What value should we give t4/W, the present value of labor income divided byltota
wealth? This ratio will vary strongly from one indiual to another, but some quick back-of-
the-envelope calculations show that the presentevaf labor income will dominate other
sources of wealth for most wage-earners. For examgbnsider a relatively wealthy

individual, 10 years from retirement, with a liquidzestment portfolio of $800,000 (assume
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no homeownership for the sake of simplicity) andaanual income of $100,000 growing at
3% per year on average. Setting the discount catéufure labor income at 5%, we find that
the present value of labor income is $901,002, taredratio Y/W; = 53%. Considering the
same individual at 5 or 15 years from retiremein, tatios are'yW; = 37% andY/W; =
62%, respectively. For a young individual, 40 yefaosn retirement, with an annual income
of $30,000 and an initial asset portfolio of $18MOthe ratioYy/W; is 89%. At 15 and 25
years from retirement, the ratio is 80% and 86%peetively. Given these and similar
estimates, we expect the labor-to-total-wealthordati be relatively high for the typical
(median) wage-earner and we use 50%, 70% and 9@dsascases fof/\W..

Table 4 shows the test results for the efficienéythe stock-bond market portfolio
proxy, relative to the 12 industry portfolios, giva restricted “investment” in labor income —
growth rate based on the BLS manufacturing aveeagrings — withyy/W; equal to 50%,
70% and 90%, respectively. In all three cases we finat efficiency of the given portfolio
cannot be rejected (p-values 0.292, 0.293 and )).6%2n the unrestricted GRS case without
labor income. Interestingly, though, the estimatkxhas of some of the 12 industry portfolios
change considerable once labor income is takenaotmunt. For example, as the present
value of labor income from working in the manufastg industry becomes a larger
component of the individual’'s total wealth, theirstted alpha of the Manufacturing industry
portfolio turns from positive (0.3% per year) toostgly negative (-3.4% per year). This effect
arises due to the relatively high correlation o190.between the excess returns of the
Manufacturing industry portfolio and the changeawtrage hourly earnings in the industry
(measured in excess of the risk-free rate), redarneTable 1. We find a similar positive
correlation, and hence decreasing alpha at highexld of Y/W,, for the industry portfolios

Business Equipment, Durable Consumer Goods andyizn€or the industry portfolios Non-
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Durable Consumer Goods, Health Care and Teleconuatimomns, on the other hand, the
correlation is negative and the alpha increasbgher levels ofY/W..

Table 4 shows that the average deviation of themattd alphas from the null
hypothesis value of zero — defined gﬁf —is relatively high atvy/W; = 0.90, but on the

other hand the value of test statistic is relayiview and the null hypothesis cannot be
rejected (p-value 0.612). Basically, as the valfidabor income starts to dominate the
individual’'s total wealth, the standard deviationtlee regression errors associated with the
estimated alphas become larger, as wage growtlotissery strongly correlated with the
industry portfolio returns. This latter “increasiegror” effect dominates the increase in the
deviation of the alphas from zero and overall thki@ of the test statistic decreases, leading
to lower test significance.

In Table 5 we repeat the efficiency tests, usingea$ assets the Ibbotson long-term
government bond index, the Ibbotson long-term caigobond index and four Fama and
French value/size portfolios (Fama and French, 1998t surprisingly, due to the presence
of strong size and value effects in this set afirret, the unconstrained GRS test — without
considering labor income — strongly rejects théigfiicy of our stock-bond market portfolio
proxy (p-value of 0.001). The small value portfadiiicks out with an estimated alpha of 7.9%
per annum, followed at some distance by the paotfafl large-cap value stocks with an alpha
of 3.6% per annum. After taking into account thdividual’s labor income, the estimated
alpha of the small value portfolio shrinks to 3.@%r year at a labor-income-to-total-wealth
ratio of YYW; = 0.90. At the same time, the estimated alphahefdmall growth company
portfolio (SL) drops sharply from -0.4% in the GR&se to -8.3% in the presence of labor
income (atYyW; = 0.90). Further, bonds become more attractivéhé presence of labor
income. These effects are driven by the positiveetation between the returns of small

stocks — both value and growth — and the growthaweérage hourly earnings in the
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manufacturing industry (measured in excess of iglefree rate) and the negative correlation
between bonds returns with labor income growthhduigh the estimated alphas change in
the presence of labor income, the overall deviadibtne estimated alphas from zero remains
of similar magnitude and efficiency of the markettfolio proxy is strongly rejected. In the
caseY/W = 0.90 the regression errors of the alpha estsnate relatively high, leading to a
somewhat higher p-value of 0.019 for the efficietest, but efficiency is still clearly rejected

at the 5% level.

7. Conclusions

This paper extends the classical Gibbons, RossShathken (1989) test for mean-variance
efficiency of a given portfolio to include lineaguality restrictions on the weights of a subset
of restricted assets. Our test can be applied gb gertfolio efficiency while taking into
account investments in non-traded labor incomesimguand pension liabilities. We derive
the exact small sample distribution of the testistia under both the null hypothesis and the
alternative hypothesis, under the assumption afraitional multivariate normal distribution
for the excess asset returns. The unrestricted 8&$s a special case within our framework.
Simulation experiments demonstrate that our tesopas well: the type | error of the test is
very close to the desired significance level, wiile asymptotic Wald test of Gouriéroux and
Jouneau (1999) rejects the null too often in ssethples (with 50 or 100 observations).

As an illustration, we apply our test to assessniean-variance efficiency of a well-
diversified US stock-bond portfolio for an indivialuinvestor with non-traded labor income.
We use two sets of primitive test assets. The $esiconsists of 12 industry portfolios and the
second set consist of four Fama and French sizevane portfolios and two Ibbotson long-
term bond portfolios. For the growth rate of theliwdual's labor income we use series

“Average hourly earnings of production workers'tie US manufacturing sector. Exploiting
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the suitability of our test for small samples, wse b0 years of annual return data for the
efficiency tests. In line with existing evidencee Wind that mean-variance efficiency of the
broad stock-bond portfolio cannot be rejected retato the 12 industry portfolios, while
efficiency is strongly rejected when size and vadoeted portfolios are used as test assets.
Taking into account the non-traded future labooome of the investor does not change the
conclusions regarding portfolio efficiency, buttes considerably affect the magnitude, and
even the sign, of the estimated alphas. For exarti@esstimated alpha of the Manufacturing
industry portfolio changes from 0.3% per year tel98 per year, once we take labor income
linked to average wage growth in the manufactusiector into account.

Following GRS, our test assumes a serially-1ID rarmasset return distribution,
without incorporating conditioning information alidhe state-of-the-world. Further research
could focus on deriving a version of the test irsedting with conditioning information,
following, for example, MacKinlay and Richardsor®9l), Zhou (1993), Jagannathan and
Wang (1996) and Ferson and Siegel (2006). Final/,would like to stress that the mean-
variance model can fail to distinguish betweencedfit and inefficient portfolios if the return
distribution is not elliptical (see, for exampleh&@nberlain, 1983). To avoid possible
specification error, we advise the empirical reslear to use mean-variance efficiency tests in

combination with more general stochastic dominaftieiency tests.
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Appendix

In this appendix we prove that the estimator ofghaeralized alphas defined in (10) follows
a joint normal distribution conditional on the netsi of the portfoliosr andx . Let RO O
denote a matrix containing the sample retur®®:=(r,---r;). Using g=T7'R1,,
R=R - g1, RR'=RR’' andd = (ﬁ'r)(rRﬁ'r)’l, we can write the OLS estimator for the
betas in (7) a8 = RS . Further, it follows thatB'x = 4,,6;2, with 62 = (TRR'T)T™ and

K-T !

O, = (K'F~{F~{’T)T'1. We can now write the estimator for the generdliaphas in (10) as:

a= - BBr) (i K) =R[T 1L, - 3(6%5;)(iK) (A)

Reformulating the DGP in (8) in matrix notation &= (al, + B(B'k) kR +U), with

uOO™ denoting the matrix of regression errdWss (u,---u, ), we can now show that the

generalized alphas are a linear function of thersty:

a=a+U[T 1, - 8(626,1)(iK)) (B)

11,4

Proof of @ = a +U(T ™1, - 8(626,1)(i[K)):

T 1K

Using R = (a1. + B(B'k) kR +U), 1.6 =0 andkRJ = kB = 5,,6;2, we find

a=R(T 1, ~({K)(BK)™"0) = (al; + B(B'K) KR +U)T 'L, ~ (F'Kk)(B'K) ™)

=a-a(@K)(BKx) L 3+ BBK) (T (R1, - (ZKk)(BK) kRJ)
+U(T ™1, - (ZK)(BK)™"I)

=a+U(T 'L, - (K)625,18).
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Conditional on the returns of the portfoliosand «, it follows from (B) that the estimatar

follows a joint normal distribution withE[@]=a. Below we provide the proof of

Var[d-a] =T (1+6%)s.

Proof of Var[@ - a] =T *(1+6%)%:

Using 8’1, =0 anddd = (rRR'1)™ =T 4,2, we find

Var[@-a] = (T 71, —(ZK)676,0)(T "1, —(ZK)5;0,0)Z
=T -2T({'K)G[ 0,01, +(K)* 76, 5O)Z
= (T +TH({K)*(6,0,)°)Z

T 1K

=T 1+6%)3, with 6 = I’k (6,6%) =S,

Proof of £(A) = (L+62)*a4M(M'IM)*M' G :

The test statistic is the solution to an unresdctminimization problem, that is,

E(A)= min M+8) @ - pA)S(@-Ap). The solution to this problem is
p OO

p =(AZA) AT G and &(A) = 1+ &)@ (Z - TA(AZ A’ ) AZ ™)@ . Using Khatri's

(1966) lemma, we find (Z!-ZA'(AZA) AT =M(M'EM)™M' and thus

E(A) = 1+ 6 @MM IM) MG .
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Table 1 Descriptive Statistics and Correlations ofhe Test Asset Returns — |

T-bill Long-term bonds Stocks Fama and French (&x83/value portfolios Labor
1-month Corporate Government VW Big/High Big/Low  Small/High Small/Low Income
Mean 0.053 0.020 0.018 0.065 0.097 0.059 0.145 .069D 0.045
Median 0.051 0.032 0.002 0.098 0.145 0.062 0.156 .0510 0.036
Maximum 0.147 0.320 0.298 0.433 0.705 0.399 0.679 .85%) 0.101
Minimum 0.010 -0.159 -0.152 -0.359 -0.310 -0.373 -0.344 520 0.010
Sd. Dev. 0.028 0.102 0.108 0.174 0.198 0.184 0.246 2910 0.023
Skewness 0.990 0.404 0.549 -0.321 0.193 -0.198 0.080 46@ 0.882
Kurtosis 4.155 3.217 2.743 2.467 3.699 2.327 2.717 .15 2.819
Jarque-Bera 10.942 1.458 2.646 1.450 1.329 1.270 0.220 1.811 6.558
p-value 0.004 0.482 0.266 0.484 0.514 0.530 0.896 408 0.038
Correlations T-Bill Im  Corp.bonds Gov. bonds Stocks VW FF BH FF BL FF SH FF SL gymanu— Ro
T-Bill 1m (Ry) 1.000 -0.141 -0.094 -0.184 -0.142 -0.158 -0.166 .168 -0.654
Corp. Bonds -0.141 1.000 0.950 0.231 0.307 19.2 0.221 0.004 -0.191
Gov. Bonds -0.094 0.950 1.000 0.133 0.211 ®.13 0.098 -0.099 -0.239
Stocks VW -0.184 0.231 0.133 1.000 0.848 0.953 0.779 0.851 0.068
FF BH -0.142 0.307 0.211 0.848 1.000 0.739 866. 0.722 0.057
FF BL -0.158 0.213 0.136 0.953 0.739 1.000 610. 0.766 -0.003
FF SH -0.166 0.221 0.098 0.779 0.866 0.617 0od. 0.840 0.165
FF SL -0.168 0.004 -0.099 0.851 0.722 0.766 .840 1.000 0.243
Oymanu— Ro -0.654 -0.191 -0.239 0.068 0.057 -0.003 0.165 0.243 1.000

The table shows descriptive statistics and coiioglatof the test asset returns used in Sectiord4abased on 50 annual return observations from
1956 to 2005. All asset returns are measured iassxof the 1-month T-Bill rate (source: Ibbotsod Associates). “Stock VW” denotes the value-
weighted average of all common stocks listed onNN&E, AMEX and NASDAQ markets and covered by CRERe returns for the long-term
corporate and government bonds are based on évtathrindices from Ibbotson and Associates. WefogeFama and French portfolios, resulting
from a 2x3 double sorting of stock based on sizkvaatue: small stocks with low price to book (Sgall stocks with high price to book (SH), big
stocks with low price to book (BL) and big stockihahigh price to book (BH). For the growth ratelabor income, denoted by, g.., we use the
yearly change in the series “Average hourly eamiofproduction workers” in the manufacturing sedtom the US Bureau of Labor Statistics
(http://www.bls.gov/). Descriptive statistics aregported for the original wage growth rate (withsubtracting the risk-free rate), but for ease of
comparison correlations with excess asset retusbased on wage growth rate in excess of thenegk



Table 2 Descriptive Statistics and Correlations ofhe Test Asset Returns — Il

Business Consumer Healthcare Cons. non-  Other Wholesale

equipment Chemicals durables Energy and drugs uMath  Finance durables industries andretail Twetec Utilities
Mean 0.090 0.056 0.063 0.082 0.095 0.061 0.085 .09 0.068 0.082 0.065 0.062
Median 0.117 0.072 0.060 0.103 0.078 0.096 0.072 .081 0.114 0.074 0.039 0.070
Maximum 0.797 0.352 0.679 0.561 0.579 0.503 0.469 .4910 0.459 0.614 0.495 0.454
Minimum -0.455 -0.267 -0.481 -0.361 -0.295 -0.385 -0.409 .350 -0.406 -0.433 -0.421 -0.291
Sd. Dev. 0.280 0.162 0.252 0.194 0.205 0.186 0.205 .18 0.201 0.230 0.197 0.171
Skewness 0.211 -0.276 0.222 -0.156 0.290 -0.051 -0.015 .10® -0.425 0.176 -0.062 0.013
Kurtosis 2.990 2.176 2.594 3.119 2.651 2.886 2.646 .92 2.296 2.905 2.715 2.650
Jarque-Bera 0.372 2.051 0.755 0.231 0.956 0.048 0.263 .09 2.538 0.276 0.201 0.257
p-value 0.830 0.359 0.685 0.891 0.620 0.976 0.877 .95 0.281 0.871 0.904 0.879

Correlations BUSEQ CHEMS DURBL ENRGY HLTH MANUF  MONEY NODUR OTHE SHOPS TELCM UTILS

BUSEQ 1.000 0.598 0.597 0.308 0.539 0.721  509. 0.453 0.738 0.675 0.577 0.262
CHEMS 0.598 1.000 0.724 0.552 0.611 0.840 69®. 0.733 0.815 0.777 0.604 0.510
DURBL 0.597 0.724 1.000 0.389 0.376 0.755 630. 0.635 0.756 0.816 0.577 0.573
ENRGY 0.308 0.552 0.389 1.000 0.331 0.656 529. 0.392 0.673 0.351 0.260 0.555
HLTH 0.539 0.611 0.376 0.331 1.000 0.592 60.6 0.729 0.626 0.646 0.460 0.579
MANUF 0.721 0.840 0.755 0.656 0.592 1.000 740. 0.734 0.888 0.760 0.488 0.582
MONEY 0.505 0.696 0.630 0.529 0.664 0.740 00Q. 0.825 0.767 0.759 0.577 0.737
NODUR 0.453 0.733 0.635 0.392 0.729 0.734 82D. 1.000 0.666 0.837 0.560 0.770
OTHER 0.738 0.815 0.756 0.673 0.626 0.888  760D. 0.666 1.000 0.804 0.638 0.598
SHOPS 0.675 0.777 0.816 0.351 0.646 0.760  7590. 0.837 0.804 1.000 0.644 0.639
TELCM 0.577 0.604 0.577 0.260 0.460 0.488 570. 0.560 0.638 0.644 1.000 0.515
UTILS 0.262 0.510 0.573 0.555 0.579 0.582 730. 0.770 0.598 0.639 0.515 1.000
T-Bill Im (R;)  -0.265 -0.205 -0.243 -0.140 -0.071 -0.246 -0.117  .036 -0.135 -0.106 -0.033 -0.114

Corp. bonds -0.016 0.287 0.318 0.006 0.236 20.1 0.374 0.421 0.198 0.347 0.303 0.506
Gov. bonds -0.099 0.167 0.175 -0.052 0.249 £.02 0.316 0.343 0.110 0.220 0.261 0.480
Stocks VW 0.789 0.872 0.773 0.660 0.690 0.906 0.817 0.762 0.950 0.860 0.722 0.654
Oy,manu— Ro 0.175 0.015 0.136 0.158 -0.117 0.188 -0.002 0.128 0.056 -0.038 -0.129 -0.081

The table shows descriptive statistics and coimglatof the industry returns used in Section 6ellasn 50 annual return observations from 1956 @520he 12 industry
portfolio returns are from the data library of Ketim French, value-weighted and measured in exdebe d-month T-Bill rate. “Stock VW” denotes thdrRGSP value-weighted
average of all US common stocks. Bond returns rama ibbotson and Associates. The growth rate arléicome, denoted by, gan IS the yearly change in “Average hourly
earnings of production workers” in the manufactgraector from the US Bureau of Labor Statisticgp(fitvww.bls.gov/).



Table 3 Multivariate Normal Simulation Results

Size at signif. level Power at signif. level

Statistic Mean Var. 10.0% 5.0% 1.0% 10.0% 5.0% 1.0%

Unconstrained GRSF 1.05 044 10.0% 5.1% 1.0% 96.9% 93.6% 80.0%
T=50 F(6,43) 1.05 0.44

S=100,000  JKy? 8.74 2718 21.3% 13.8% 5.2% 98.8% 97.6% 92.8%
YA(7) 7.00 14.00

Constrained  KPF 1.04 061 95% 4.7% 1.0% 851% 76.9% 55.6%
T=50 F(4,45) 1.05 0.63

S=100,000 GJy? 6.01 17.40 17.7% 10.7% 3.8% 88.0% 81.5% 65.3%
v(5) 5.00 10.00

Unconstrained GRSF 1.02 0.38 10.0% 4.9% 1.0% 90.3% 83.4% 62.9%
T=100 F(6,93) 1.02 0.38

S=50,000 JK o2 7.76  19.04 15.1% 8.7% 2.5% 94.9% 90.9% 78.2%
x4(7) 7.00 14.00

Constrained  KPF 1.01 055 98% 5.0% 1.0% 90.1% 83.1% 63.1%
T=100 F(4,95) 1.02 0.56

S=50,000 GJy? 544 13.01 13.6% 7.7% 2.0% 92.8% 87.5% 72.2%
Y4(5) 5.00 10.00

Unconstrained GRSF 1.01 0.35 10.0% 4.9% 1.0% 99.8% 99.4% 97.3%
T=200 F(6,193) 1.01 0.35

S= 25,000 JK o2 735 16.23 12.4% 6.8% 1.6% 99.9% 99.8% 98.9%
x4(7) 7.00 14.00

Constrained  KPF 1.00 052 97% 4.9% 0.9% 99.7% 99.2% 96.4%
T =200 F(4,195) 1.01 0.53

S= 25,000 GJy? 520 11.21 11.5% 6.2% 1.4% 99.8% 99.5% 97.9%
Y4(5) 5.00 10.00

Unconstrained GRSF 1.00 033 96% 4.7% 0.9% 99.8% 99.6% 98.2%
T =400 F(6,393) 1.01 0.34

S=12,500 JK o2 714 1478 11.0% 56% 1.1% 99.9% 99.8% 99.0%
YA(7) 7.00 14.00

Constrained  KPF 1.00 049 98% 4.6% 0.9% 99.8% 99.5% 98.2%
T =400 F(4,395) 1.01 0.51

S=12,500 GJy? 5.08 1042 10.8% 53% 1.0% 99.9% 99.7% 98.5%
Y4(5) 5.00 10.00

Unconstrained GRSF 1.01 034 99% 5.0% 1.1% 100.0% 100.0% 100.0%
T =800 F(6,793) 1.00 0.34

S=6,250 JK o2 7.14 1487 10.8% 5.4% 1.3% 100.0% 100.0% 100.0%
YA(7) 7.00 14.00

Constrained  KPF 1.01 0.51 10.4% 5.1% 1.0% 100.0% 100.0% 100.0%
T =800 F(4,795) 1.00 0.51

S=6,250 GJy? 511 1044 10.7% 5.5% 1.1% 100.0% 100.0% 100.0%
x?(5) 5.00 10.00

The label GRF denotes the test for mean-variance efficency bbGs, Ross and Shanken (1989), whiledK
denotes the Wald test of Jobson and Korkie (198R)F denotes the test for mean-variance efficiency unde
portfolio weight constraints derived in this papemile GJy* denotes the Wald test under constraints of
Gouriéroux and Jouneau (1999). The theoretical neanvariance of the test statistic under the Imytlothesis
are shown below each row of results. The size estimmare based on the percentage of simulatiordsoumn
which the efficiency of the ex post tangency pditfevas rejected, while the power is based on #regntage

of simulation rounds in which the efficiency of aqually weighted portfolio was rejected.



Table 4 Mean-Variance Efficiency Test Results — |

Unrestricted With labor income
GRS  Y/W,=05 Y/W,=0.7 Y/W=0.9
Portfolio a a, a, a,
BUSEQ 0.026 0.020 0.012 -0.031
CHEMS 0.006 0.005 0.004 -0.003
DURBL -0.008 -0.012 -0.018 -0.051
ENRGY 0.044 0.040 0.036 0.009
HLTH 0.043 0.044 0.047 0.059
MANUF 0.007 0.003 -0.003 -0.034
MONEY 0.021 0.020 0.019 0.013
NODUR 0.034 0.036 0.038 0.051
OTHER 0.003 0.002 -0.001 -0.016
SHOPS 0.010 0.010 0.009 0.009
TELCM 0.011 0.013 0.016 0.029
UTILS 0.012 0.013 0.014 0.019
2a 0.081 0.079 0.079 0.112
& 1.235 1.244 1.243 0.839
p-value 0.297 0.292 0.293 0.612

The table shows the results of the mean-variarfigesfcy test for a proxy

of the market portfolio, consisting of 50% US stecialue-weighted,

CRISP), 25% long-term US government bonds (Ibbotsod Associates)
and 25% long-term US corporate bonds (IbbotsonAs®bciates), relative
to the returns of 12 industry portfolios (value-ghgied, from the data library
of Kenneth French). Efficiency test results arespreed for an unrestricted
investor without labor income (GRS) and for investwith non-traded labor
income with the weight of the net present valudadifor income fixed at

Y/W, = 0.5, 0.7 and 0.9, respectively, relative to tetaklth. The growth

rate of labor income is the yearly change in “Ageréhourly earnings of
production workers” in the manufacturing sectornirshe US Bureau of
Labor Statistics. The table show estimated alphighe 12 industry

portfolios, the average deviation of the alphasnftbie null hypothesis, the
value of the test statisti¢)(and the corresponding p-value.
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Table 5 Mean-Variance Efficiency Test Results — I

Unrestricted With labor income
GRS YW, =05 Y/W=0.7 Y/W,=0.9
Portfolio a a, a, a,
Gov. bonds -0.006 -0.004 -0.001 0.016
Corp. bonds -0.005 -0.004 -0.002 0.010
FF BH 0.036 0.034 0.032 0.017
FF BL -0.001 -0.002 -0.003 -0.008
FF SH 0.079 0.074 0.067 0.030
FF SL -0.004 -0.012 -0.023 -0.083
2.ar 0.087 0.083 0.078 0.092
£ 4.451 4,519 4.501 2.874
p-value 0.001 0.001 0.001 0.019

The table shows the results of the mean-variarfigesfcy test for a proxy
of the market portfolio, consisting of 50% US stecialue-weighted,
CRISP), 25% long-term US government bonds (Ibbotsod Associates)
and 25% long-term US corporate bonds (Ibbotson/Asubciates), relative
to the returns of a portfolio of long-term corperabonds, long-term
government bonds and the returns of four Fama aedch portfolios. The
Fama and French portfolios are the result of a @x3ble sorting of stock
based on size and value: small stocks with lowepta book (SL), small
stocks with high price to book (SH), big stockshwibw price to book (BL)
and big stocks with high price to book (BH). Eféiocy test results are
presented for an unrestricted investor without tabhoome (GRS) and for
investors with non-traded labor income with the gietiof the net present
value of labor income fixed a/W, = 0.5, 0.7 and 0.9, respectively, relative
to total wealth. The growth rate of labor incomethe yearly change in
“Average hourly earnings of production workers” fhe manufacturing
sector from the US Bureau of Labor Statistics. Télele show estimated
alphas for the 6 test asset portfolios, the avedagétion of the alphas from
the null hypothesis, the value of the test statig)i and the corresponding p-
value.
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Footnotes

Y In practice, Treasury securities (T-bills, T-borasl TIPS) promise riskless yields to maturity aad serve as
riskless assets. The availability of these assethe market of course does not exclude restristimm riskless
lending and borrowing. We use the riskless assetgoily to construct excess returns for the riskgets. Excess
returns typically are less sensitive to time-vaoiatthan nominal returns. Also, if excess returres esed, then
there is no need for an explicit budget restrictiothe portfolio possibilities set.

2 The KKT conditions also include a feasibility cdtiwh, in this casear, =b. Please note that this condition is

always satisfied trivially, ag OA by definition.
¥ GRS do not explicitly specify a mean-variance oftdje function and therefore do not choose a sjpedik
aversion parameter. Howevel = (4'r)(r'Qr)™ is the only level of risk aversion that makes @RS approach

consistent with the maximization of a mean-variaolgctive function.
*In the unrestricted casg, =7 and a= o Further, equation (8) reduces to (7), i.g.: Ao + B(IT) + &,
t=1.- T, whileg = z, and g = ér . Thus, our framework includes the unrestricted G&S$ a special case. In

the GRS approach, the return distribution is assumeebe normal given the returns of the portfolo
Effectively, the estimated Sharpe ra@p of the evaluated portfolig is treated as non-stochastic while deriving

the return distribution of the estimated alphgg,. In our approach, the return distribution is assd to be

normal given the returns of the entire portfoljo and the returns of the unrestricted asset pootfali
Effectively, the empirical Sharpe rat'@ of portfolio ¢ and the estimated correlation coefficigs) are treated

as non-stochastic while deriving the return disttiiin of the estimated generalized alplgas

® For GRS and our test knowledge of the historieilinns of the unconstrained asset portfolio and the
constrained portfolio are sufficient, without theed to explicitly specify the portfolio weights tife primary
assets (which are typically unknown in most assetry applications).

® Our framework can take into account additionatrieted investments in housing. For ease of exjmosive
ignore homeownership here, e.g. assuming thantrestor rents an apartment.
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