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Abstract

In this paper we present empirical tests of an extended version of the Capital Asset Pricing

Model that replaces the single period horizon with a probability distribution over different

horizons. Adopting a simple parameterization of the probability distribution of the length of

the horizon, we estimate the parameters of the distribution as well as the parameters of the

CAPM. We find that the extended model is not rejected, and that the estimated stock turnover

rate rises from 82.8% in the period 1926-62 to 266.4% in the period 1963-2009. We also find

that long horizon betas are determined by identifiable firm characteristics as well as by short

horizon betas
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1 Introduction

The capital asset pricing model of Sharpe (1964), Lintner (1965) and Mossin (1966) is the oldest and

perhaps the most elegant and intuitive of the asset pricing paradigms. It is this intuitive elegance

that has allowed the model to survive newer and more sophisticated paradigms in the classroom, the

courtroom and the boardroom,1 despite its perceived lack of empirical success and general rejection

among academics. After early acceptance,2 the model has come to be regarded by many academics

as a useful classroom example that fails to capture the complexity of the real world relation between

risk and return. Indeed rejection of the CAPM has become a touchstone for assessing the power

of statistical tests of asset pricing models, and for empirical purposes the standard asset pricing

paradigm has become the Fama-French three factor model which can be justified as a variant of

either the ICAPM or Ross’ Arbitrage Pricing Theory.3 In this paper we show that the classical

capital asset pricing model can be made empirically as well as theoretically relevant by a simple

change in its assumptions. Instead of assuming a collection of mean-variance investors with a

single horizon, we assume a single representative agent with mean variance preferences but with a

stochastic horizon: this ensures that the agent is concerned with the distribution of wealth at several

different future dates on which assets may be liquidated and returns realized. By parameterising the

probability distribution of the liquidation date we are able to estimate the model parameters using

a standard GMM approach. When the model is interpreted in terms of a stationary overlapping

generations model of investors the probability distribution of liquidation dates yields an estimate

of the implied stock turnover rate.

Since the CAPM is a single period model which does not specify the length of the time period

or horizon for which the investor makes decisions, it is necessary to make some assumption about

this for empirical purposes. The assumption of a stochastic horizon, which is critical to our analysis,

contrasts with the usual assumption made in applying the single period CAPM, that the horizon is

1Graham and Harvey (2001) report that 73.5% of firms in their survey ‘always or almost always use’ the CAPM,
and its use was much more common among large firms.

2Black, Jensen and Scholes (1972), Fama and MacBeth (1973).
3See Fama and French (1996).



fixed and exogenous. In by far the majority of asset pricing tests the horizon is taken as one month

and returns are measured over monthly intervals. This appears to have been essentially an accident

of history, occasioned by the monthly data that were made available in the first CRSP tapes. By

the time that daily data became available it was realized that the theoretical advantages associated

with the use of high frequency data are more than offset by the difficulties of measuring first and

second moments with high frequency data due to non-synchronous trading, bid-ask spreads and

other micro-structure related phenomena.

If security returns are distributed iid then the expected n period (one plus) rate of return

will be equal to the nth power of the expected 1 period rate of return. However, as Levhari and

Levi (1977) showed, the relation between betas measured over one period and betas measured over

longer intervals is more complex, and if returns are not serially independent then the length of the

period becomes critical to the measurement of both returns and betas and therefore to the relation

between them that is implied by the CAPM. In this paper, by parameterising the probability

distribution of the length of the horizon, we allow the data to reveal the horizon or the distribution

of horizons over which the model holds.

We are by no means the first to consider the effect of the time interval over which returns

are measured on the fit of the CAPM. As long ago as 1977 Levhari and Levy complained that

in various empirical tests of the CAPM the investment horizon (return interval) was selected

arbitrarily. They showed that if returns are serially independent and homoscedastic then the

beta coefficient computed using n period returns will differ systematically from that computed

using m period returns and this will affect tests of the CAPM. 4 This result was generalised by

Longstaff (1989) who also showed that the continuous time CAPM becomes a multi-factor model

when discrete period returns are used if there is time variation in expected returns and risk. Lee

(1976) considered a generalization of the CAPM to a single but unknown investment horizon under

the assumption that periodic returns were serially independent, and showed how to estimate the

horizon. Lee et al. (1990) develop a model in which returns are iid but investors have different

horizons.

In a paper that is close in spirit to this, Handa et al. (1993) show that while the standard

CAPM is rejected using monthly returns on size ranked portfolios, it is not rejected by a standard

4If m > n and βn > 1(< 1), then βm > (<)βn. See also Hawawini (1983).
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F-test when annual returns on the same portfolios are used.5 Kothari et al. (1995) provide further

evidence of a statistically significant risk premium associated with beta when annual data is used to

compute beta. Finally, Jagannathan and Wang (2007) show that the Consumption CAPM explains

the returns on 25 Fama-French size and book to market portfolios as well as does the FF three

factor model, when returns are measured on a calendar year basis. They motivate the calendar

year assumption by the observation that many decisions are made at the end of the year because

of Christmas, bonuses, and end-of-year capital gains tax considerations. This paper differs from

these papers by allowing the data themselves to determine the appropriate length of the period for

the CAPM relation to hold, rather than specifying it a priori.

In recent unpublished work Beber et al. (2011) develop a model in which investors have

mean variance utility functions and heterogeneous horizons and there are stochastic transaction

costs, but the focus of their paper is on transaction costs and the clientele effects that develop

when investors have different horizons. Kamara et al. (2012) argue that there are long and short

horizon risk factors arising from the different autocorrelation properties of the factors. They find

evidence that the long horizon factors (which include the market return) are priced when betas are

estimated using annual returns, but not when using monthly returns.

The model in this paper is similar to that of Beber et al. (2011) in that it allows for

heterogeneous investor liquidation dates, but unlike their model ours assumes that all investors

are ex-ante identical and are subject to stochastic liquidation. Their model assumes that returns

are iid, and ours does not impose this assumption. Finally, while these authors consider only

investors with horizons of 1 month and 20 years, we are able to consider multiple horizons. When

we interpret the model as an overlapping generations model with a continuum of investors we are

able to calculate the share turnover rate implied by the model parameters.

In Section 2 we motivate our approach by showing how measured returns and betas vary

systematically with the length of the return interval, and with the characteristics of the underlying

firms. In Section 3 we show how the length of the return interval affects tests of the CAPM. In

Section 4 we present our simple version of the CAPM with stochastic liquidation. In Section 5

we report the empirical results of tests of the model and estimate the distribution of liquidation

dates. Section 6 concludes. For most of our results, we rely on the Fama-French size and book-

to-market sorted portfolios as our test assets since these have become almost canonical in tests

5See also Handa, et al. (1989)
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of asset pricing models. However, we also present results for the Fama-French industry portfolios

both for robustness and because differences in costs of capital across industries are likely to be more

important for capital allocation than differences across Size and Book-to-market sorted portfolios

since small Size and high Book-to-Market are typically transient firm characteristics.

2 Returns, betas, and the measurement interval

In this section we show first how average returns and betas vary empirically with the length of

the return interval, and then relate the variation of beta with the horizon to firm and portfolio

characteristics.

2.1 Horizon effects for the Fama-French portfolios

We motivate our analysis by showing first how mean returns and betas on the Fama-French Size

and Book-to-market sorted portfolios are both affected by the choice of time interval over which

returns are measured. The τ month return starting in month t, Rτ
t , is defined by compounding the

one month returns, Rt:

Rτ
t ≡ Πk=τ−1

k=0 (1 + Rt+k) − 1

For each of the 25 Size and Book-to-market sorted Fama-French portfolios, τ month betas,

βτ
j , j = 1, · · · , 25, were estimated by Ordinary Least Squares for τ = 3, 6, 9, · · · , 24 months using

overlapping monthly observations for the period January 1926 to December 2009. The estimation

equation using τ month returns is:

Rτ
j,t = ατ + βτ

j Rτ
m,t + eτ

jt

where Rτ
m,t is the τ month return on the market portfolio starting in month t.

Panel A of Table 1 reports for each of the 25 portfolios the 1 month betas and the ratio of

the τ month beta to the 1 month beta for each τ . If the betas were independent of the return

4



interval the entries after the 1-month beta would all be equal to unity. Instead, we see that there

is a tendency for the betas to rise with the return interval. However, this effect is not the same for

all portfolios. For the 3 and 12 month return intervals for example, there is a clear tendency for

the betas of high book to market portfolios to be high relative to the 1 month betas, and this effect

is concentrated in the small firm portfolios and to a lesser extent in the large firm portfolios; it is

much less pronounced for the medium size firm portfolios.6 In contrast, for the 24 month return

interval there is a clear tendency for the betas of low book to market firm portfolios to be below

their 1 month equivalents, and this is most pronounced for the small firm portfolios. In some cases

these effects are very large. For example, the beta of the small low book to market firm portfolio

declines by 10% (25%) relative to the 1 month value as the return interval is increased to 12 (24)

months. In contrast, the beta of the small high book to market firm portfolio increases by 26%

(18%) as the return interval is increased from 1 month to 12 (24) months.

However, it is possible that the variation in betas with the horizon is due mainly to sampling

variation. To assess this, the distribution of the ratio of τ month betas to one month betas was

bootstrapped from 10,000 samples generated by sampling at random from the joint vectors of

monthly market and portfolio returns. By construction, these generated samples will be serially

independent. For each sample, betas were estimated for all horizons and the ratios to the one month

betas computed. Panel A of Table 2 reports the 10th, 50th, and 90th percentiles of the bootstrapped

distribution of the ratios of τ month betas to one month betas. The medians of the bootstrapped

ratios tend to be close to unity for up to 6 months and almost all the 3-month empirical ratios

and about half of the 6-month empirical ratios are outside the 10th and 90th percentiles of the

bootstrapped distribution. For longer horizons the sampling variability disguises any systematic

variation in betas with the length of the horizon. The fact that sampling variability alone can

cause large variation in beta estimates with the horizon means that it is important in our empirical

tests of the CAPM to allow for errors in the estimation of betas. We shall do this within a GMM

framework.

It follows from the definition of the τ month return that, if 1 period returns are independent,

then the expected one plus τ period return is equal to the expected one plus 1 period return raised

6Longstaff (1989) shows that the ranking of betas for different firms may reverse as a function of the interval over
which returns are measured.
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to the power τ :

E[1 + Rτ ] = {E[1 + R1]}τ

Raising both sides of the equation to the power 12/τ , this implies that the annualized expected τ

month return is given by:

{E[1 + Rτ ]}12/τ = {E[1 + R1]}12 (1)

so that the annualized expected return is independent of the return interval, τ , and the ratio

of the annualized expected τ -month return to the annualized expected 1-month return is equal to

unity.

It is natural to consider the sample equivalent of relation (1) by comparing the annualized

average τ -month return to the annualized average 1-month return. The average τ month return

is defined by R̄τ = 1
T−τ ΣT−τ

t=1 Rτ
t . The annualized average τ month return, aR̄τ , is defined by

1 +a R̄τ ≡ (1 + R̄τ )(12/τ ).

Panel B of Table 1 reports the annualized average of the 1-month returns for the 25 portfolios,

and the ratios of the annualized average τ -month returns to the annualized averages of the 1-month

returns. Panel B of Table 2 reports statistics from the bootstrapped distribution of this ratio. The

medians of the bootstrapped ratios, which are calculated from serially independent returns, are

almost all very close to unity. In contrast, the empirical ratios tend to be above unity for the 6

month horizon and even more so for the 3 month horizon. Almost all of the ratios for the 3-month

horizon are greater than the 90th percentile of the bootstrapped distribution which is consistent

with positive short run auto-correlation in portfolio returns. For longer return intervals the ratios of

the annualized average returns tend to be closer to unity and are well within the range of sampling

variability.

2.2 Determinants of relative betas for different horizons

Betas that are calculated for the same security using different return intervals may differ for at

least three reasons in addition to sampling variability. First, even if returns are independently and

identically distributed over time, the multiplicative relation between n-period returns and 1-period
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returns implies a complex relation between 1-period betas, β1, and n-period betas, βn. Levhari

and Levy (1977) show that if the CAPM holds over either 1 period or n periods, βn will exceed (be

less than) β1 if and only if β1 is greater (less) than unity.

The second reason, identified by Dimson (1979) and Scholes and Williams (1977), is purely

empirical: betas that are estimated using short horizon data may be biased due to thin trading

which causes the observed (closing) prices of the security and the market portfolio to be non-

synchronous. Since the (value-weighted) market portfolio consists mainly of the frequently traded

stocks of large companies, the effect is typically to bias down the betas of small stocks that are

infrequently traded.

The third reason for differences between betas calculated using long and short period returns

is that there are systematic differences across firms in the timing of information release and in the

speed of adjustment of stock prices to market-wide information that give rise to complex patterns

of cross-temporal covariances and thereby affect betas calculated over different return intervals. Lo

and Mackinlay (1990) show that the returns on large firm stocks lead the returns on small firm

stocks, and Brennan et al. (1993) show that the speed of adjustment to market-wide information

depends also on the number of analysts following the stock holding firm size constant.7

To confirm that there are differences in betas at different horizons due to differences in the

fundamental characteristics of stocks we estimate each year from 1969 to 2010 for all common stocks

(firms with share code 10 or 11 and stock price higher than 5) on the CRSP tape with at least

36 monthly returns over the past 5 years, a 1 month beta, a 6 month beta, and a 12 month beta

using compounded overlapping returns over the past 60 months. For each firm the ratio of the two

long horizon betas to the 1 month beta is calculated and regressed on a set of regressors that are

chosen to capture delays and time-variation in the rate of information release. The first regressor is

firm Size which is the market value of the equity: we expect that the long horizon beta ratios will

be declining in firm size because of the evidence cited above that large firms release more timely

information.8 The second regressor is the Book-to-market ratio: we hypothesize that the ratios of

long to short return interval betas will be declining in the Book-to-market ratio because the news

about value firms is primarily about current cash flows and we expect this to become available to

7Brennan and Copeland (1988) show that the betas of firms that split their stock increase by around 18% if daily
returns are used, and Wiggins (1992) shows that the effect is attenuated if returns over longer time intervals are used
to compute betas, which is consistent with stock splits increasing the speed of adjustment to information.

8Handa et al. (1989) have previously shown that betas of small firms increase and betas of large firms decrease
with the measurement interval.
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the market is a relatively continuous fashion, whereas the news about growth firms is primarily

about the development of new growth opportunities and we expect this to be relatively lumpy.

Both Size and Book-to-market ratio are measured at the end of the last fiscal year. The third

variable is the Seasonality of earnings. We anticipate that firms whose earnings are more seasonal

will have seasonal patterns in information release that will increase the ratio of long horizon to

short horizon betas. Seasonality is measured by the average over the past 5 years of the ratio of the

highest quarterly earnings per share for each year to the average quarterly earnings per share for

that year. The fourth variable, following Brennan et al. (1993), is the number of analysts following

the firm, which is given by the number of analysts issuing one year earnings forecasts in the previous

year from IBES. These variables are subjected to a logarithmic transformation. To take account of

the ‘mechanical’ tendency of 1 month betas to increase (decrease) with the return horizon if the 1

month is greater (smaller) than unity discussed by Levhari-Levi (1977), we include the estimated

1 month beta. This requires two adjustments. First, the Levhari-Levi effect is non-linear since it

predicts that long period betas will exceed (fall short of) short period betas if the beta is greater

than unity. Therefore, in addition to including an estimate of β1, we include a linear function of the

estimated β1 when this exceeds unity, 1β1 > 1 + max[β1 − 1, 0]. The Levhari-Levi analysis implies

that the coefficient of the 1 month beta will be negative, while the coefficient of the truncated β1

variable will be positive. Secondly, it is necessary to take account of the fact that β1 is measured

with error since this will induce spurious correlation with the dependent variable, the ratio of βn

to β1. Therefore we instrument the estimate of the β1 regressor using firm Size, Book-to-market

ratio, book leverage and monthly volatility estimated over the past 5 years.

Each year from 1969 to 2010,9 the ratios of estimated betas, β̂6/β̂1 and β̂12/β̂1, are regressed

on the independent variables described above. Following Fama and MacBeth (1973), the coefficients

of the cross-section regressions are averaged over time, and standard errors are computed adjusting

for serial correlation in the annual coefficient estimates. The results, which are reported in Table

3, show a strong Size effect which is consistent with the prior studies cited above: the betas of

large firms tend to increase with the horizon at a slower rate than do the betas of small firms.

The Book-to-market effect is negative in all the regressions but is not significant until Analysts is

introduced: however, the introduction of this and other variables does not have a dramatic effect

on the coefficient of Book-to-market. Considering these two variables alone, we see that they imply

that Large size firms and V alue firms will have relatively less systematic risk when their risk is

9When the number of analysts is included in the regression the sample starts in 1984.
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measured at long horizons. Thus, if the ‘true’ horizon is, for example, one year, then measuring

risk and return at the one month horizon will tend to understate the risk of small firms and growth

firms since their 12-month betas tend to be greater than their 1-month betas: this is consistent with

the apparent outperformance of small firms relative to standard CAPM benchmarks that measure

risk at the 1-month horizon, but is inconsistent with the apparent outperformance of value firms.10

The coefficients of the other variables are consistent with the discussion above. The betas of

firms with seasonal earnings tend to increase as the horizon is extended, and the effect for the 12-

month beta ratio is about twice as large as for the 6-month beta ratio. We also find that the more

analysts that follow the firm, the smaller is the change in beta as the return horizon is extended.

Table 4 reports the results of similar regressions in which the dependent variable is the 12-

month beta and the independent variables are the firm characteristics, Size and Book-to-market and

the betas with respect to the Fama-French HML and SMB factors, as well as the one month beta.

Panel A reports the results for regressions using individual securities.11 The first regression shows

that Size and Book-to-market are significant determinants of the 12-month beta after allowing for

the effect of the 1-month beta, and the sign of the coefficients of these variables are consistent with

the sign of the coefficients in Table 3: Small and High Book-to-market firms have low 12-month betas

given their 1-month betas. The second regression shows a modest increase in explanatory power

when the SMB and HML betas are substituted for these firm characteristics, and the coefficients

of these betas are consistent with the coefficients of the corresponding physical characteristics.

Panel B reports for the 25 Fama-French portfolios the results of regressing the 12-month beta

on the Fama-French HML and SMB betas as well as β̂1. Note that while the positive coefficient of

βSMB is consistent with the negative coefficient of Size in Panel A and Table 3 (small firms have

lower 12-month betas), the positive coefficient of βHML is inconsistent with the negative coefficient

on Book-to-market in Panel A and Table 3. The third column shows that the SMB and HML betas

alone explain over 90% of the variance of the 12-month betas. The fifth column shows that the

coefficient of β̂1 is insignificant in the presence of the SMB and HML betas, so that the 12-month

betas for these portfolios are close to being spanned by the HML and SMB betas, and inclusion

of the 1-month beta does not improve the spanning. This implies that if the CAPM held with a

12-month horizon, then we would expect to find that 12-month average returns would also be well

10However, see the discussion of Panel B of Table 4 below.
11Similar results are obtained if the one month beta is instrumented.
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explained by the Fama-French model loadings on SMB and HML estimated from monthly data.

Moreover, we would expect the coefficients of both SMB and HML betas to be positive as in fact

they are. Whether these betas would also explain the cross-section of 1-month average returns

would depend on the relation between 1-month and 12-month average returns.

3 A preliminary analysis of the effects of the return interval on

capital asset pricing

We have seen that the interval over which returns are measured has large effects on both the

annualized return on a portfolio of stocks and on its measured beta coefficient, and that these

effects vary across portfolios. In other words, the return interval affects both the left and right

hand sides of standard CAPM regressions and therefore presumably affects the fit of the regression.

To illustrate this phenomenon and to assess its potential importance, Panel A of Table 5

reports the results of ordinary least squares cross section regressions of average portfolio excess

returns on betas for the period January 1926 to December 2009 from the equation:

Rj − RF = a + λβj

and Figure 1 plots annualized monthly returns and annual returns against the predicted

returns from regressions that use either annualized monthly returns or annual returns, and betas

calculated from either monthly returns or annual returns.

In the first row of Panel A both average returns and betas are calculated from 1 month returns:

the R2 is less than 10%. The regression slope and the mean absolute error from the regression are

annualized by multiplying by 12. The annualized slope is 5.2% and the mean absolute error is 2.6%

per annum. The intercept is 4.0% per annum. These estimates are typical of CAPM estimates for

similar sample periods. 12

In the second row the dependent variable remains the average monthly return but the

independent variable is now the annual beta, obtained by regressing overlapping 12 month

compounded returns on the corresponding market return. Replacing the monthly beta by the

12Fama and French (1992), Kothari et al. (1995).
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annual beta raises the R2 of the cross section regression to 48.4% and the annualized mean absolute

error falls to 1.5%. It is clear that the returns line up much more closely with the annual betas

than they do with the monthly betas. Moreover the intercept is now only 0.3% per annum.13

In the third row average 12 month returns are regressed on the monthly betas. Now the

R2 is 13.0% and the mean absolute error is 2.7% which is similar to the results we obtained with

monthly returns and monthly betas. Thus the monthly cross section regression in Panel A is

greatly improved by substituting annual betas for monthly betas, while substituting annual returns

for monthly returns makes relatively little difference. In the fourth row we report the results of

regressing average annual returns on annual betas. Now the R2 is 56% and the market price of risk

is 10.2%. The intercept is only -1.7% per annum, and the mean absolute error is now only 1.7%

per annum.

Figure 1 shows why the annual betas perform so much better than the monthly betas: there

is insufficient variation across portfolios in the monthly betas and therefore the predicted returns.

The standard deviation of the annual betas is 1.8 times as large as that of the monthly betas. In

addition, the correlation between the actual and predicted returns is much higher when annual

betas are used; for monthly (annual) returns the correlation increases from 0.30 to 0.72 (0.35 to

0.78) when the prediction is based on annual rather than monthly betas.

While these simple OLS regressions do not allow us to draw strong conclusions because the

OLS assumptions are not satisfied, they do illustrate in dramatic fashion that the return interval

for the purposes of both measuring mean returns and estimating betas makes a very large difference

to the relation between realized average returns and measured betas.

We construct bootstrapped samples in order to assess the importance of the serial dependence

structure of returns on the cross-sectional return-risk relation at different horizons. Specifically,

we generate 10,000 data samples from the joint time series of market and portfolio returns by

sampling randomly from the vector of joint returns: this approach maintains the cross sectional

covariance properties of the data while ensuring that there is no time series dependence within

the generated samples. For each generated sample we estimate the parameters (a, λ) and calculate

the resulting R2. The p-values which are reported in brackets are the proportion of the generated

samples in which the estimated parameter exceeds that calculated from the sample data. A low

p-value suggests that the parameter estimates are inconsistent with the assumption of serially

13Kothari et al. (1995) also regress monthly returns on annual betas and report significant slope coefficients.
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independent returns, given the means and the cross-sectional moments of the joint distribution of

monthly returns. Not surprisingly the p-values for the first regression which uses only monthly

data are close to 50%, since for this regression the temporal ordering of the sample data makes

no difference to the parameter estimates. For the other regressions the temporal ordering of the

monthly returns will be important if the returns are serially dependent. The p-values for the

R2 statistic are below 0.5 for the other regressions which involve either annual returns or annual

betas. When annual returns are regressed on monthly betas the p-value drops to 0.43, less than 0.5

but not greatly less. However, when the independent variable is the annual beta the p-values are

only 0.11 and 0.07, so that it is quite unlikely that the observed risk-return relations could have

been generated by monthly returns with the same joint distribution if the returns were serially

independent. Therefore the serial dependence of monthly returns must be taken into account in

assessing risk-return relations, and this can only be done by considering returns measured over

longer horizons than one month.

As a more formal illustration of the effect of the return interval, we test the first order

condition of a representative agent who has a quadratic utility function and a τ month horizon,

and does not rebalance his portfolio. Let Uτ (W ) be his utility of wealth if the horizon is τ months.

Denote his initial wealth by W0, and suppose that he can invest in N risky assets as well as a risk

free asset. Let Rτ
j denote the return on risky asset j if held for τ periods, and similarly let Rτ

F

denote the return on the risk free asset if held for τ periods. Then the investor’s objective function

may be written as:

max
xj

Eτ

{
Uτ [W0(R

τ
F + ΣN

j=1xj(R
τ
j − Rτ

F )]
}

(1)

where xj, (j = 1, · · · , N ) is the fraction of wealth allocated to security j, and Eτ denotes

expectations over the τ period distribution of returns. The first order condition for an optimum in

(1) is:

Eτ

{
U ′

τ [W
τ ](Rτ

j − Rτ
F )

}
= 0, j = 1, · · · , N (2)

where W τ = W0[R
τ
F + ΣN

j=1xj(R
τ
j − Rτ

F )]. If the utility function Uτ () is quadratic, then the

marginal utility will be a linear function of the return on the investor’s portfolio which, since he is

a representative investor, will be the market portfolio, so that the FOC (2) may be written as:
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Eτ

{
(1− bτR

τ
m)(Rτ

j − Rτ
F )

}
= 0, j = 1, · · · , N (3)

where bτ > 0. We estimate equation (3) by GMM for different return intervals using the returns on

the 25 FF portfolios for the period January 1926 to December 2009, and for two subperiods. The

market portfolio is the CRSP value weighted portfolio and the risk free rate is the (compounded)

one-month T-bill rate. In Panel A of Table 6 we report the parameter estimates and tests of the

over-identifying restrictions for selected return intervals of 1 to 24 months. The over-identifying

restrictions imposed by the CAPM are rejected (accepted) at the 5% level for all horizons less

(more) than 10 months for the whole sample period and for less (more) than 4 and 6 months for

the 1926-62 and 1963-2009 subsamples respectively. The (annualized) mean absolute pricing error

is greatest for the one month horizon, except for the period 1926-62 when the maximum is at 3

months. However, the mean absolute pricing error is only an indicative measure of goodness of fit

since it does not take account of covariances between the returns on the portfolios.

Motivated by the finding of Jagannathan and Wang (2007) that December to December

returns are particularly important for the Consumption CAPM, we report in Panel B estimates of

the model that use annual December to December returns only. It can be seen that the results are

not significantly different from the results that use all overlapping 12 month returns, although the

estimated risk aversion coefficient, b, is larger when only the December to December returns are

used in the estimation: 3.0 as compared with 1.6 for the overlapping estimate for the whole sample

period.

Table 7 reports the annualized pricing errors for the individual portfolios using the CAPM

pricing kernel for the period January 1926 to December 2009 with different assumed horizons.

There is a clear tendency for the pricing errors to decrease with the horizon - the root mean square

pricing error is 3% at the one month horizon and achieves a minimum of 2.2% at the twelve month

horizon. Generally the pricing errors of the low book-to-market portfolios increase (in magnitude)

as the horizon increases while those of the high book-to-market portfolios decrease.

We have seen that our conclusions about the empirical validity of the simple CAPM rest

heavily on what we assume about the appropriate interval over which returns are measured. In the

following section we introduce a simple model that allows for different investment horizons.
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4 Asset Pricing with Stochastic Liquidation

Consider a representative investor who trades only to meet stochastic liquidation needs. We assume

for simplicity that if any of the portfolio is to be liquidated, then the whole portfolio will be

liquidated. Let πτ be the probability that he is forced to liquidate at the end of τ periods, and let

Uτ (W ) be his utility of wealth if the liquidation takes place at the end of period τ . Then, assuming

that the latest liquidation date is τ∗, the investor’s objective function may be written:

max
xj

Στ∗

τ=1πτE
{
Uτ [W0(R

τ
F + Σjxj(R

τ
j − Rτ

F )]
}

(4)

where xj, (j = 1, · · · , N ) is the fraction of wealth allocated to security j. The first order condition

for an optimum in (4) is:

Στ∗

τ=1πτE
{
U ′

τ [W
τ ](Rτ

j − Rτ
F )

}
= 0, j = 1, · · · , N (5)

where W τ = W0[R
τ
F + ΣN

j=1xj(R
τ
j − Rτ

F )].

Such a representative agent economy can be sustained by a stationary overlapping generations

exchange economy with a continuum of identical investors, each of whom is subject to stochastic

liquidation. If there are n generations of investors in the market in the steady state, (1/n)th of the

market will be liquidated each period and will be purchased by the new generation of investors,

each of whom will maximize an objective function (4).

If the utility functions Uτ () are quadratic, then the marginal utility will be a linear function

of the return on the investor’s portfolio which, since he is a representative investor, will be the

market portfolio, so that the FOC (5) can be written as:

Στ∗

τ=1πτE
{
(1− bτR

τ
m)(Rτ

j − Rτ
F )

}
= 0, , j = 1, · · · , N (6)

bτ > 0. Equation (6) nests as special cases discrete time versions of the CAPM with different

trading intervals. For example, πτ̂ = 1, πτ = 0, for τ 6= τ̂ implies that the CAPM holds with a

τ̂ period trading interval. Equation (6) suggests that if investors trade only infrequently then the

simple CAPM will hold for a long holding interval, τ . In general, equation (6) represents a weighted

14



of average of different versions of the CAPM which differ only in the definition of the holding period.

Of course it is possible that the distribution of holding periods will differ for different securities; for

example, Amihud and Mendelson (1986) suggest that securities with higher transactions costs will

be held by investors with longer trading horizons. However, the assumption of different liquidation

probabilities for different securities would complicate our model considerably. For example, if the

whole of the portfolio is not liquidated at time τ then the notion of the marginal utility of wealth

at time τ becomes problematic. For this reason we stick with the simple formulation (6).

Using the definition of covariance, equation (6) may be written as:

Στ∗

τ πτ

{
(E[Rτ

j ]− Rτ
F )− bτE[Rτ

m(Rτ
j − Rτ

F )]
}

= 0 (7)

Or,

Στ∗

τ πτ

{
(E[Rτ

j ] − Rτ
F )(1− bτE[Rτ

m])− bτ cov(Rτ
m, Rτ

j )
}

= 0 (8)

Define π∗

τ = πτ (1− bτE[Rτ
m])/Σsπs(1− bsE[Rs

m]). Since 1 − bτE[Rτ
m] is the marginal utility

of wealth in the event of liquidation at time τ , π∗

τ > 0 is the marginal utility of wealth weighted

probability of liquidation at time τ . Then

Στ∗

τ π∗

τ

{
(E[Rτ

j ] − Rτ
F ) − λτ

cov(Rτ
m, Rτ

j )

var(Rτ
m)

}
= 0 (9)

where λτ = bτvar(Rτ
m)/(1− bτE[Rτ

m]). Finally, defining βτ
j ≡ cov(Rτ

j , R
τ
m)/var(Rτ

m),

Στ∗

τ π∗

τ

{
E[Rτ

j ]− Rτ
F

}
= Στπ

∗

τλτβ
τ
j (10)

Thus, the CAPM with stochastic liquidation leads to an equilibrium condition that expresses

the sum of expected excess returns for different horizons weighted by the marginal utility of wealth

weighted probability as the same probability weighted sum of betas times the market risk premium

for each horizon. In what follows we shall assume that the expected marginal utility of wealth is

the same for each possible liquidation date. Then π∗

t ≡ πt, and the model also has implications

for share turnover rates if we interpret it in terms of an overlapping generations economy with a
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continuum of investors: we shall explore this in the following section.

4.1 Turnover in an overlapping generations economy

Consider a steady state overlapping generations economy with a continuum of identical investors,

each of whom maximizes an objective function of the form (4). Denote by x the (τ∗x1) vector of

the mass of investors liquidating τ periods in the future, τ = 1, · · · , τ∗, by µ the mass of investors

liquidating and entering the market each period, and let π denote the (τ∗x1) vector with typical

element πτ . Then the steady state vector of horizon proportions, x must satisfy:

x = Ax + µπ (11)

where the (τ∗xτ∗) matrix A is given by:

A =





01000 · · · · · ·
00100 · · · · · ·
00010 · · · · · ·

· · · · · ·
00 · · · · · ·1
00 · · · · · ·0





Then

x = (I −A)−1µπ (12)

Carrying out the inversion, the ith element of the vector x is given by xi = Στ∗

k=iπk. Then the

Turnover per period, TO, is given by the proportion of investors who liquidate in the current

period, which is the ratio of x1 = Στ∗

k=1πk = 1 to j′x:

TO =
1

Στ∗

i=1[Σ
τ∗

k=iπk]
(13)

We shall use equation (13) to calculate turnover rates from our estimates of the π vector.
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5 Estimation and test of an asset pricing model with stochastic

liquidation

The moment condition corresponding to equation (6) can be written as:

E
{
Στ∗

τ=1φτ (1/τ)(1− bτR
τ
m)(Rτ

j − Rτ
F )

}
= 0 (14)

where φτ = τπτ and τ∗ is the longest possible liquidation horizon. We write the moment

condition in the form (14) so that the returns are all expressed on a monthly basis after the division

by τ . We refer to φτ as the horizon weight to distinguish it from the probability weight, πτ . In order

to specify the horizon weights, φτ , flexibly and parsimoniously, we follow Ghysels, Santa-Clara and

Valkanov (2006) and define,

φ(τ, γ)≡ f( τ
τ∗

, γ1; γ2)∑τ∗

τ=1 f( τ
τ∗

, γ1; γ2)
(15)

where f(z, a, b) ≡ za−1(1− z)b−1/β(a, b) and β(a, b) = Γ(a)Γ(b)/Γ(a + b) where Γ() is the Gamma

function. This specification allows the weights, which sum to one by construction, to take various

patterns: for example, gradually decaying over time or hump-shaped. At the same time the

weighting function requires only two free parameters γ = (γ1, γ2).

In order to limit the number of parameters to be estimated, we set τ∗ = 24, allow for only

7 possible liquidation dates, 1, 4, 8, 12, 16, 20 and 24 months, and set the market risk aversion

parameters, bτ , equal to a constant, b, for all horizons.

Define h(xt, θ) as an Nx1 vector, with jth element:

{
Στ∗

τ=1φ(τ, γ)(1/τ)(1− bRτ
m,t)(R

τ
j,t − Rτ

F,t)
}

where θ is a vector of parameters (γ1, γ2, b), and xt is the vector of market, portfolio, and

risk free returns starting at time t: (R1
j,t, R

τ
j,t, j = 1, ..N, R1

m,t, R
τ
m,t, R

1
F,t, R

τ
F,t).

Define the N × 1 vector:
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gT (θ) ≡ 1

T − τ
ΣT−τ

t=1 h(xt, θ)

The parameters θ are chosen to minimize the weighted sum of squared pricing errors given

by the quadratic form gT (θ)′WgT (θ) where W is a N × N weighting matrix: the identity matrix

in the first step, and inverse of the variance-covariance matrix in the second step.

Define d = ∂gT (θ)
∂θ . Then

d =
1

T − τ





Στ∗

τ=1φγ1(τ, γ)(1/τ)(1− bRτ
m,t)(R

τ
j,t − Rτ

F,t)

Στ∗

τ=1φγ2(τ, γ)(1/τ)(1− bRτ
m,t)(R

τ
j,t − Rτ

F,t)

−Στ∗

τ=1φ(τ, γ)(1/τ)Rτ
m,t(R

τ
j,t − Rτ

F,t)





each row of d is a 1 × N vector. If the matrix d is of full rank, then

√
T (θ̂T − θ) ∼ N (0, V ), (16)

where V = (dW−1d′)−1.

The sample variance-covariance (Ŝ) is calculated following Newey-West to take account of

autocorrelations in long horizon returns. It is

Ŝ =
k∑

j=−k

(
k − |j|

k
)
1

T

T∑

t=1

(utu
′

t−j) (17)

where ut ≡ h(xt, θ) is the vector of pricing errors. We set the number of lags, k, equal to 30.14 To

test the over-identifying restrictions, we compute the J-statistic,

J = TgT (b̂)′Ŝ−1gT (b̂) (18)

which follows a χ2 distribution with degrees of freedom equal of the number of over-identifying

restrictions, (N − 3).

The estimation results are presented in Panel A of Table 8. Panel B reports the horizon

weight, φτ , for each liquidation date implied by the parameters reported in Panel A; Panel C

14Similar results were obtained using 24 to 36 lags.

18



reports the probability weights, πτ , which are shown graphically in Panel A of Figure 2, as well as

the implied average horizon and turnover rate calculated from equation (13). We note first that the

model, which has only three free parameters, is not rejected either for the full sample period or for

either of the two subperiods by the standard J-statistic, although the p-value for the second half of

the sample period is only 0.10. Secondly, a likelihood ratio test is unable to reject the hypothesis of

equality of the risk aversion parameter, bτ across horizons for the whole sample period, and for the

first half: the test statistic for the second half of the sample period is at the margin of significance.

The risk aversion parameter, b, which is highly significant, increases from 1.69 in the first half of

the sample period to 2.06 in the second half: the full sample estimate is 1.57.15

Both parameters of the weighting function are highly significant for all three sample periods.

For all three sample periods the estimated probability of liquidation after 24 months is zero,

providing assurance that our arbitrary 24 month cutoff is not binding. Most significantly, as seen in

Panel C, the estimated probability weighting system assigns zero probability to a liquidation at the

one month horizon for either the whole sample or for the first half, and the estimated probability of

a liquidation at the 4 month horizon is less than 4% in the full sample. In the first half of the sample

period the probability of liquidation is zero for 1,4, and 8 month horizons. In the second half of the

sample period the probability of a liquidation after one month rises to 68.0% and after 4 months to

23.3%. In the first half of the sample period the modal liquidation horizon is 16 months; this falls

to 1 month in the second half, and for the whole sample period the modal liquidation horizon is 12

months. The probability weighted number of months to liquidation is 16.7 in the first half of the

sample, 2.4 in the second half and 12.1 for the whole period. The implied annual turnover rate rises

from 58.0% in the first half of the sample period to 209.6% in the second half,, and for the whole

sample is 74.3%. This reduction in the expected holding period and increase in turnover rate is

consistent with casual empiricism which shows that turnover rates have increased, particularly since

the abandonment of fixed commissions in May 1975. Table 9 reports the estimated average time

to liquidation from the model fit for different 20 year subperiods along the implied turnover rate

and the corresponding estimate of the average turnover rate of NYSE stocks, which is obtained by

averaging the annual turnover rate during the subperiods. The estimated turnover rate is around

3.5 times as great as the estimated average turnover rate of NYSE stocks, and the correlation

between the two series is 0.95.

15Fama and French (1992, p 433) report that there is no ‘obvious relation’ between β and average returns over the
period 1963-1990.
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Panel A of Figure 3 plots the estimated horizon weighted average excess returns,

Στ∗

τ=1φτ (1/τ)(Rτ
j − Rτ

F ), against the estimated horizon weighted expected returns from the model,

−Στ∗

τ=1φτ (1/τ) ¯(bRτ
m)(Rτ

j − Rτ
F ). With the exception of the smallest and second smallest firm low

book-to-market portfolios, the points cluster fairly tightly about the line implied by the theoretical

relation. The correlation between the horizon weighted average excess returns and the horizon

weighted predicted excess returns is 0.81. This rises to 0.90 when the small firm low book-to-

market portfolio is excluded.16

To assess the importance of the serial dependence structure of returns for these results, the

parameters were estimated from 10,000 samples obtained by sampling randomly from the joint

vector of market and portfolio returns so as to preserve the cross sectional dependence of returns,

while eliminating any serial dependence. Statistics from these bootstrapped full sample regressions

are reported in Panel D of Table 8. The sample estimates of the 1 and 4 month horizon weights

for the full sample period fall far below the 1st percentile of the bootstrapped regression estimates

while the estimated weights for the 8-24 month horizons fall far above the 99th percentile of the

bootstrapped estimates. Moreover, the sample J − statistic of 28.1 is close to the 2.5 percentile of

the bootstrapped statistics. That is, the success of the model in pricing the 25 portfolios is highly

dependent on the serial dependence structure of returns, which of course is not taken into account

in standard asset pricing tests that use only monthly returns.

6 Further tests

Kothari et al. (1995) have suggested that COMPUSTAT selection biases17 lead to an upward bias

to the measured returns on firms with high book-to-market ratios. Furthermore, firms in the high

book-to-market category are more likely to be past ‘losers’ and to have unusually high returns

because of the reversal effect.18 To mitigate these problems the Size and Book-to-market portfolios

16As Campbell and Vuolteenaho (2003) remark, ‘this small growth portfolio is well known to present a particular
challenge to asset pricing models, for example the 3 factor model of Fama and French (1993) which does not fit this
portfolio well.’

17In particular, in 1978 the database was more than doubled in size, and up to five years of past data were added
for these firms, creating a survivorship bias which is likely to lead to an overstatement of mean returns on portfolios
of firms with relatively low probabilities of survival and high book-to-market ratios. In addition, firms that become
financially distressed are likely to be deleted from the database before they are delisted and, in the event they recover,
the past data are filled in, creating an upward bias for measured returns on distressed firms. (See also Alford et al.

(1994).)
18Jegadeesh and Titman (1993).
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were re-formed using lagged balance sheet data to determine the portfolio allocations. This should

eliminate the short run reversal effect and, when longer lags are used, eliminate also the back-filling

bias. Five lags from one to five years relative to the Fama-French lag of 6 months were used. Table

10 reports the pricing errors for the 25 portfolios for the different lags, as well as the J-statistic for

the model. As anticipated, the pricing errors tend to get smaller as the lag used for the portfolio

formation increases; for example, for the small low book-to-market portfolio the annualized pricing

error shrinks from 4.8% for the original portfolios to 2.9% when the portfolio formation lag is

increased to 5 years. Similarly, the root mean square pricing error shrinks from 3.3% to 1.9%.

The J-statistic also decreases from 29.53 to 10.46 and the p-value increases as the lag is increased,

suggesting that model deviations for these portfolios are related to transient rather than permanent

firm characteristics, which is consistent with the literature on investor over-reaction.

Table 11 reports the parameters estimated by fitting the model to the 30 Fama-French

industry portfolios, and Panel B of Figure 2 shows the estimated probability distribution of

liquidation horizons. The risk aversion coefficient and the parameters of the weighting function

are highly significant in all three sample periods, the J-statistics are well within the acceptance

region, and the estimated average liquidation horizon decreases from 10.0 to 7.5 months between

the two sample subperiods. However, the magnitude of the risk aversion coefficient is in excess of 4

for both the whole sample period and the second half, which is well above the value of 1.6 obtained

using the FF25 portfolios.

Table 12 reports parameter estimates from fitting the model to the combined set of 55 industry

and size and book-to-market sorted portfolios, and Panel C of Figure 2 shows the implied probability

distribution over horizons. The risk aversion coefficient is significant for all three subperiods and is

in the range 1.3−2.3; the J-statistic is far from the rejection region and the average horizon declines

from 12.1 months in the first subperiod to only 1.4 months in the second subperiod. The turnover

rate estimated for the first half of the sample period is 82.8% and this rises in the second half

to 266.4%; the full sample estimate is 74.4% An F-test fails to reject the null hypothesis that the

model parameters are the same across the two sets of portfolios, the size and book-to-market sorted

and industry portfolios. Panel B of Figure 3 shows the relation between (horizon weighted) actual

and predicted returns. The industry portfolios have less dispersion in predicted returns than the

Size and Book-to-market portfolios, reflecting their reduced dispersion in beta, and their returns

exhibit greater dispersion about the predicted return reflecting the lower level of diversification
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achieved by industry portfolios. It is interesting to note that the two industry portfolios whose

returns depart furthest from the 45o line are the two ‘polluting’ industries, Coal and Smoke.

7 Conclusion

In this paper we have shown that the monthly returns on the 25 Fama-French portfolios are not

serially independent and that this has major consequences for tests of the CAPM. Measured average

returns and portfolio betas, and the relation between them, are all strongly affected by the length

of the period over which returns are measured. We show that the ratio of long-horizon (12-month)

betas to short-horizon (1-month) betas depends on such firm characteristics as the number of

analysts following the firm and the seasonality of earnings, as well as firm size and book-to-market

ratio. We also find for the Fama-French Size and Boo-to-Market portfolios that the 12 month

beta is significantly related to the SMB and HML betas but is not significantly related to the

one month market beta, given the other two betas. This raises the possibility that the empirical

success of the Fama-French 3-factor model is due to its ability to capture the long-horizon risk

characteristics of the portfolios.

Using returns on the Fama-French Size and Book-to-Market sorted portfolios from 1926 to

2009, we show the simple CAPM is rejected at the 5% level for all return horizons less than 11

months, but is not rejected at longer horizons. We develop an extended version of the CAPM

with a representative investor who has a stochastic horizon or liquidation date. This gives rise to

a relation between a probability weighted sum of expected returns over different horizons, and the

same probability weighted sum of betas times market risk premia for the corresponding horizons.

When we parameterize the probability weighting function we find that the modified asset pricing

model, which has only three parameters, is not rejected at conventional significance levels for either

the whole sample period or for the two halves of the period. The correlation between the horizon

weighted average excess returns and the horizon weighted predicted excess return is 0.81, and the

correlation rises to 0.90 when the small firm low book-to-market portfolio is excluded. We also find

that the pricing errors of the model are reduced when the Fama-French portfolios are replaced by

portfolios formed on the basis of lagged firm characteristics: in particular, the pricing error of the

small firm low book-to-market portfolio falls from 4.8% p.a. to only 1.3% p.a. when the portfolios

are formed using data lagged by 3 years.
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The model is also not rejected when it is fit to returns on 30 industry portfolios, or to the 55

portfolios that include both the Size and Book-to-market portfolios and we cannot reject the null

that the model parameters are the same across the two sets of portfolios.

Using returns on the 25 Size and Book-to-market portfolios, the estimated probability of

liquidation function implies that for the whole sample period as well as for the first half of the

sample there is a zero probability of liquidation after one month. This contrasts with the implicit

assumption made in the majority of conventional tests of asset pricing models that the probability of

liquidation after one month is 100%. In the second half of the sample the probability of a liquidation

after one month rises to 68%. The probability weighted number of months to liquidation is 12.1

in the first half of the sample, 2.4 in the second half and 12.1 for the whole sample period. The

reduction in the average liquidation horizon is consistent with the reduction in trading commissions

and the increase in turnover that has followed the abandonment of fixed brokerage commissions in

1975 and the further development of competition in trading securities.

The model that we have developed and tested is extremely simple. It assumes that all the

assets in the representative investor’s portfolio are liquidated at the same time time. A more

realistic model would allow for the fact that, as Amihud and Mendelson (1986) have pointed out,

investors with short horizons (high probabilities of liquidation) will be likely to hold more liquid

securities, while investors with longer horizons will be likely to hold the more illiquid securities. It

is beyond the scope of this paper to explore these interesting extensions which are left for future

work. Some progress has been made in the paper by Beber et al. cited above, but at the expense

of assuming that returns are iid. The focus of this paper has been on exploring the implications of

non-iid returns.
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Table 1: The effect of the return interval on estimates of betas and mean returns for

the Fama-French 25 portfolios

Panel A shows the ratio of the betas estimated using τ month returns to those estimated using 1 month returns
where the τ month beta, βτ

j , is estimated using monthly overlapping observations from the equation:

Rτ
j,t = ατ + βτ

j Rτ
m,t + eτ

jt

where Rτ
j,t = Πk=τ−1

k=0 (1 + Rj,t+k) − 1 and the τ month market return, Rτ
m,t is similarly defined. Panel B shows the

ratio of the mean annualized returns using a τ month return interval to the mean annualized returns using a 1 month
return interval. The annualized return using a τ month return interval, aR̄τ

j , is defined by aR̄τ
j ≡ (1 + R̄τ

j )(12/τ)
− 1,

where the (non-annualized) average τ month return, R̄τ
j , is defined by R̄τ

j = ΣT−τ
t=1 Πτ−1

k=0(1 + R1
j,t+k).

The sample period is January 1926 to December 2009.

Panel A: 1 month β’s, β1
j , and ratio of beta estimated using τ month returns, βτ

j , to beta estimated using 1 month
returns,β1

j .

Ratio of τ month beta to 1 month beta
Size BM β1

j τ = 3 6 9 12 15 18 21 24
ratio

Small Low 1.654 1.151 0.988 0.915 0.900 0.899 0.815 0.792 0.750
2 1.478 1.175 1.070 0.961 0.995 0.910 0.857 0.846 0.801
3 1.396 1.181 1.149 1.056 1.085 1.088 1.058 1.061 1.037
4 1.309 1.264 1.223 1.139 1.245 1.234 1.178 1.218 1.174
High 1.393 1.248 1.214 1.130 1.258 1.246 1.199 1.220 1.177

2 Low 1.250 1.062 1.112 1.074 1.046 1.027 0.996 0.981 0.967
2 1.276 1.148 1.065 1.005 1.041 1.019 1.007 1.021 1.005
3 1.187 1.184 1.135 1.054 1.121 1.091 1.047 1.052 1.014
4 1.228 1.208 1.146 1.050 1.120 1.106 1.051 1.053 1.008
High 1.362 1.176 1.112 1.012 1.083 1.078 1.012 1.030 0.985

3 Low 1.280 1.117 1.070 1.005 1.056 1.033 0.987 1.002 0.962
2 1.126 1.055 1.074 1.050 1.045 1.033 1.014 1.008 0.988
3 1.149 1.107 1.055 1.005 1.048 1.033 1.018 1.043 1.029
4 1.128 1.141 1.094 1.020 1.062 1.046 1.002 0.999 0.983
High 1.394 1.145 1.013 0.933 1.001 0.969 0.922 0.927 0.880

4 Low 1.073 0.993 1.024 1.019 0.997 0.985 0.971 0.949 0.934
2 1.097 1.058 1.040 1.002 1.015 1.000 0.980 0.982 0.967
3 1.089 1.054 1.052 1.029 1.068 1.057 1.028 1.035 1.012
4 1.174 1.105 1.017 0.960 1.016 1.016 0.978 0.975 0.935
High 1.443 1.150 1.027 0.942 1.011 0.990 0.916 0.913 0.855

Big Low 0.972 0.975 0.988 0.994 0.985 0.991 1.008 1.022 1.038
2 0.924 0.957 0.975 0.994 0.979 0.979 0.988 0.986 0.986
3 0.979 1.033 0.993 0.988 1.024 1.024 1.013 1.016 1.018
4 1.132 1.116 0.988 0.931 1.008 0.993 0.955 0.955 0.925
High 1.152 1.065 1.048 1.026 1.054 1.077 1.058 1.071 1.052
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Panel B: Annualized average 1 month returns and ratio of annualized average τ month returns to annualized
average 1 month returns.

Ratio of annualized τ month return to annualized 1 month return
Size BM 1 month return τ = 3 6 9 12 15 18 21 24

ratio

Small Low 0.091 1.121 0.954 0.899 0.866 0.870 0.843 0.832 0.803
2 0.139 1.083 1.005 0.961 0.983 0.956 0.943 0.944 0.926
3 0.168 1.073 1.047 1.010 1.021 1.029 1.026 1.025 1.010
4 0.190 1.089 1.069 1.041 1.065 1.069 1.061 1.063 1.049
High 0.222 1.076 1.053 1.019 1.032 1.036 1.031 1.029 1.013

2 Low 0.107 1.059 1.049 1.034 1.042 1.037 1.035 1.032 1.021
2 0.157 1.055 1.020 0.999 1.009 1.006 1.003 1.003 0.989
3 0.171 1.056 1.033 1.007 1.019 1.014 1.009 1.007 0.994
4 0.177 1.065 1.046 1.018 1.031 1.033 1.027 1.026 1.012
High 0.196 1.061 1.032 0.990 0.994 0.996 0.984 0.982 0.966

3 Low 0.120 1.073 1.042 1.020 1.040 1.035 1.025 1.026 1.008
2 0.147 1.029 1.023 1.015 1.016 1.014 1.013 1.013 1.003
3 0.163 1.041 1.020 1.002 1.010 1.005 1.001 1.002 0.990
4 0.165 1.044 1.025 0.999 1.002 1.000 0.995 0.994 0.986
High 0.185 1.054 1.011 0.984 0.995 0.989 0.977 0.973 0.953

4 Low 0.122 1.023 1.014 1.007 1.005 0.996 0.990 0.984 0.970
2 0.130 1.035 1.019 1.004 1.005 0.998 0.996 0.996 0.986
3 0.144 1.032 1.027 1.020 1.029 1.027 1.025 1.028 1.020
4 0.158 1.041 1.021 1.001 1.005 1.007 1.002 0.999 0.984
High 0.174 1.064 1.018 0.983 0.987 0.979 0.962 0.957 0.938

Big Low 0.111 1.016 1.009 1.008 1.010 1.008 1.010 1.014 1.008
2 0.112 1.005 0.997 0.997 0.997 0.996 0.998 0.998 0.992
3 0.119 1.027 1.017 1.020 1.032 1.036 1.037 1.039 1.034
4 0.124 1.054 1.014 0.999 1.018 1.016 1.009 1.007 0.993
Low 0.155 1.027 1.013 0.997 0.996 0.995 0.990 0.985 0.967

Table continued from previous page.
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Table 2: Bootstrapped distribution of betas and mean returns

Panel A reports the 10th, 50th and 90th percentiles of the bootstrapped distribution of the ratio of the betas estimated using τ month returns to those
estimated using 1 month returns. The bootstrapped distribution is generated from 10,000 samples constructed by sampling at random with replacement
from each monthly cross-sectional vector of historical returns from 1926 to 2009. Panel B reports percentiles of the bootstrapped distribution of the ratio
of the annualized average returns using a τ month return interval to the annualized average returns using a 1 month return interval.

Panel A: Long horizon betas

τ

Size BM 3 6 9 12 15 18 21 24

Small Low [0.946 0.995 1.05] [0.906 0.989 1.09] [0.874 0.983 1.11] [0.845 0.975 1.14] [ 0.82 0.969 1.16] [0.796 0.959 1.18] [0.772 0.95 1.2] [ 0.75 0.942 1.22]
2 [0.956 1 1.05] [0.927 1.01 1.1] [0.909 1.01 1.13] [0.891 1.01 1.16] [0.878 1.01 1.19] [0.865 1.02 1.22] [ 0.85 1.02 1.24] [0.838 1.02 1.27]
3 [0.971 1.01 1.05] [0.957 1.02 1.09] [0.949 1.03 1.12] [0.941 1.04 1.16] [0.936 1.05 1.19] [0.931 1.06 1.22] [0.926 1.07 1.26] [0.922 1.08 1.29]
4 [0.975 1.01 1.05] [0.965 1.03 1.09] [0.961 1.04 1.13] [0.959 1.06 1.17] [0.959 1.07 1.21] [0.959 1.09 1.25] [ 0.96 1.1 1.29] [ 0.96 1.12 1.32]
High [0.975 1.01 1.06] [0.967 1.04 1.11] [0.968 1.06 1.17] [ 0.97 1.08 1.22] [0.972 1.1 1.27] [0.977 1.13 1.32] [0.982 1.15 1.37] [0.988 1.17 1.42]

2 Low [0.969 0.999 1.03] [0.947 0.999 1.05] [ 0.93 0.997 1.07] [0.913 0.996 1.08] [ 0.9 0.995 1.09] [0.887 0.993 1.11] [0.874 0.992 1.12] [0.861 0.989 1.13]
2 [0.978 1.01 1.03] [0.967 1.01 1.07] [0.962 1.02 1.09] [0.958 1.03 1.12] [0.955 1.04 1.14] [0.953 1.05 1.17] [ 0.95 1.06 1.19] [0.949 1.07 1.21]
3 [0.981 1.01 1.04] [0.973 1.02 1.07] [0.971 1.03 1.1] [ 0.97 1.04 1.13] [0.969 1.05 1.15] [0.969 1.07 1.18] [ 0.97 1.08 1.21] [0.972 1.09 1.23]
4 [0.982 1.01 1.04] [0.975 1.02 1.07] [0.973 1.03 1.1] [0.974 1.05 1.13] [0.974 1.06 1.16] [0.975 1.07 1.19] [0.978 1.09 1.22] [ 0.98 1.1 1.25]
High [ 0.98 1.01 1.05] [0.975 1.03 1.09] [0.973 1.05 1.13] [0.974 1.06 1.17] [0.977 1.08 1.21] [0.979 1.1 1.25] [0.982 1.12 1.28] [0.986 1.13 1.32]

3 Low [0.977 1 1.02] [0.963 1 1.04] [0.952 1 1.06] [0.941 1 1.07] [0.933 1 1.09] [0.926 1.01 1.1] [0.918 1.01 1.11] [ 0.91 1.01 1.12]
2 [0.986 1 1.02] [ 0.98 1.01 1.04] [0.977 1.02 1.06] [0.975 1.03 1.08] [0.975 1.03 1.1] [0.974 1.04 1.11] [0.974 1.05 1.13] [0.973 1.06 1.15]
3 [0.987 1.01 1.03] [0.983 1.02 1.05] [0.982 1.03 1.08] [0.983 1.04 1.1] [0.985 1.05 1.12] [0.986 1.06 1.14] [0.989 1.07 1.16] [0.991 1.08 1.18]
4 [0.984 1.01 1.03] [0.978 1.02 1.06] [0.976 1.03 1.09] [0.975 1.04 1.11] [0.976 1.05 1.13] [0.976 1.06 1.16] [0.978 1.07 1.18] [0.978 1.08 1.2]
High [0.981 1.01 1.04] [0.975 1.02 1.08] [0.973 1.04 1.12] [0.973 1.06 1.15] [0.974 1.07 1.19] [0.977 1.09 1.22] [0.979 1.1 1.26] [0.981 1.12 1.29]

4 Low [0.983 1 1.02] [0.973 1 1.03] [0.966 1 1.04] [ 0.96 1.01 1.05] [0.954 1.01 1.06] [0.948 1.01 1.07] [0.943 1.01 1.08] [0.938 1.01 1.09]
2 [0.986 1 1.02] [0.979 1.01 1.03] [0.973 1.01 1.05] [0.969 1.01 1.06] [0.966 1.01 1.07] [0.963 1.02 1.08] [0.961 1.02 1.09] [0.958 1.02 1.1]
3 [0.986 1 1.02] [0.979 1.01 1.04] [0.975 1.02 1.06] [0.972 1.02 1.08] [0.971 1.03 1.09] [0.969 1.03 1.11] [0.968 1.04 1.12] [0.968 1.05 1.14]
4 [0.983 1.01 1.03] [0.975 1.01 1.06] [0.972 1.02 1.08] [0.971 1.03 1.1] [ 0.97 1.04 1.12] [ 0.97 1.05 1.15] [ 0.97 1.06 1.17] [ 0.97 1.07 1.19]
High [0.978 1.01 1.04] [ 0.97 1.02 1.08] [0.966 1.03 1.11] [0.964 1.05 1.15] [0.962 1.06 1.17] [0.961 1.07 1.21] [0.961 1.08 1.24] [0.961 1.1 1.27]

Big Low [0.986 0.999 1.01] [0.975 0.998 1.02] [0.967 0.997 1.03] [ 0.96 0.996 1.03] [0.953 0.995 1.04] [0.946 0.994 1.04] [ 0.94 0.992 1.05] [0.934 0.991 1.05]
2 [0.985 0.999 1.01] [0.973 0.998 1.02] [0.964 0.997 1.03] [0.956 0.996 1.03] [ 0.95 0.995 1.04] [0.943 0.994 1.04] [0.937 0.993 1.05] [0.931 0.992 1.05]
3 [0.981 1 1.02] [0.969 1 1.03] [ 0.96 1 1.04] [0.952 1 1.05] [0.944 1 1.06] [0.937 1 1.07] [ 0.93 1 1.08] [0.925 1 1.09]
4 [0.976 1 1.03] [ 0.96 1 1.05] [0.947 1 1.06] [0.937 1 1.08] [0.928 1.01 1.09] [0.919 1.01 1.11] [0.911 1.01 1.12] [0.904 1.01 1.13]
Low [0.974 1.01 1.04] [ 0.96 1.01 1.07] [ 0.95 1.02 1.1] [0.942 1.03 1.13] [0.936 1.04 1.15] [0.931 1.05 1.18] [0.928 1.06 1.2] [0.923 1.07 1.23]

Table continued on next page ...
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Panel B: Long horizon returns

τ

Size BM 3 6 9 12 15 18 21 24

Small Low [0.915 0.997 1.08] [0.861 0.993 1.14] [0.823 0.987 1.17] [0.785 0.982 1.2] [0.755 0.976 1.23] [0.725 0.971 1.25] [0.701 0.965 1.27] [0.676 0.958 1.28]
2 [0.964 0.999 1.03] [0.939 0.996 1.06] [0.921 0.994 1.07] [0.905 0.991 1.09] [0.893 0.988 1.09] [0.882 0.985 1.1] [ 0.87 0.982 1.11] [ 0.86 0.979 1.12]
3 [0.976 0.999 1.02] [ 0.96 0.998 1.04] [0.949 0.997 1.05] [0.938 0.995 1.06] [ 0.93 0.993 1.07] [0.922 0.991 1.07] [0.915 0.989 1.08] [0.907 0.987 1.08]
4 [0.982 0.999 1.02] [0.969 0.998 1.03] [ 0.96 0.997 1.04] [0.952 0.996 1.04] [0.945 0.995 1.05] [0.938 0.993 1.06] [0.933 0.992 1.06] [0.928 0.99 1.06]
High [0.981 0.999 1.02] [0.968 0.998 1.03] [0.958 0.997 1.04] [ 0.95 0.995 1.05] [0.942 0.994 1.05] [0.936 0.992 1.06] [ 0.93 0.991 1.06] [0.925 0.989 1.07]

2 Low [ 0.97 0.999 1.03] [0.951 0.998 1.05] [0.937 0.996 1.06] [0.925 0.994 1.07] [0.914 0.992 1.08] [0.904 0.99 1.09] [0.895 0.989 1.09] [0.886 0.988 1.1]
2 [0.981 1 1.02] [0.968 0.999 1.03] [0.959 0.998 1.04] [0.951 0.996 1.05] [0.944 0.995 1.05] [0.938 0.994 1.06] [0.931 0.992 1.06] [0.926 0.991 1.07]
3 [0.985 1 1.01] [0.974 0.999 1.02] [0.966 0.998 1.03] [ 0.96 0.997 1.04] [0.954 0.996 1.04] [0.949 0.995 1.05] [0.945 0.994 1.05] [0.941 0.993 1.05]
4 [0.984 1 1.02] [0.974 0.999 1.03] [0.965 0.998 1.03] [0.958 0.997 1.04] [0.953 0.996 1.04] [0.947 0.995 1.05] [0.942 0.993 1.05] [0.938 0.992 1.06]
High [0.981 0.999 1.02] [0.969 0.998 1.03] [ 0.96 0.997 1.04] [0.952 0.996 1.05] [0.945 0.994 1.05] [0.939 0.993 1.06] [0.933 0.991 1.06] [0.928 0.99 1.06]

3 Low [0.976 1 1.02] [ 0.96 0.998 1.04] [0.948 0.997 1.05] [0.938 0.996 1.06] [0.929 0.994 1.07] [0.921 0.992 1.07] [0.914 0.991 1.08] [0.908 0.989 1.08]
2 [0.985 1 1.01] [0.975 0.999 1.02] [0.967 0.998 1.03] [0.961 0.997 1.04] [0.956 0.996 1.04] [0.951 0.995 1.05] [0.946 0.994 1.05] [0.942 0.994 1.05]
3 [0.986 1 1.01] [0.976 0.999 1.02] [ 0.97 0.998 1.03] [0.964 0.998 1.03] [0.958 0.996 1.04] [0.954 0.996 1.04] [ 0.95 0.995 1.05] [0.946 0.994 1.05]
4 [0.986 1 1.01] [0.976 0.999 1.02] [0.969 0.999 1.03] [0.964 0.998 1.03] [0.959 0.996 1.04] [0.954 0.995 1.04] [ 0.95 0.994 1.05] [0.945 0.994 1.05]
High [0.981 0.999 1.02] [0.968 0.998 1.03] [0.958 0.998 1.04] [ 0.95 0.996 1.05] [0.943 0.995 1.05] [0.937 0.993 1.06] [0.931 0.992 1.06] [0.926 0.99 1.07]

4 Low [0.983 1 1.02] [0.973 0.999 1.03] [0.965 0.998 1.03] [0.958 0.997 1.04] [0.952 0.996 1.04] [0.946 0.995 1.05] [0.941 0.995 1.05] [0.936 0.994 1.06]
2 [0.985 1 1.02] [0.974 0.999 1.02] [0.967 0.998 1.03] [ 0.96 0.998 1.04] [0.954 0.997 1.04] [0.949 0.995 1.05] [0.944 0.994 1.05] [0.939 0.994 1.05]
3 [0.986 1 1.01] [0.976 0.999 1.02] [0.969 0.998 1.03] [0.963 0.998 1.03] [0.958 0.997 1.04] [0.953 0.995 1.04] [0.949 0.994 1.05] [0.944 0.993 1.05]
4 [0.985 1 1.01] [0.975 0.999 1.02] [0.967 0.999 1.03] [0.961 0.998 1.04] [0.955 0.996 1.04] [ 0.95 0.995 1.05] [0.946 0.994 1.05] [0.941 0.993 1.05]
High [0.978 0.999 1.02] [0.964 0.998 1.03] [0.953 0.997 1.04] [0.943 0.995 1.05] [0.934 0.994 1.06] [0.928 0.992 1.07] [0.921 0.991 1.07] [0.915 0.988 1.08]

Big Low [0.986 1 1.01] [0.976 0.999 1.02] [0.969 0.998 1.03] [0.963 0.998 1.04] [0.957 0.997 1.04] [0.952 0.996 1.04] [0.948 0.995 1.05] [0.944 0.994 1.05]
2 [0.987 1 1.01] [0.978 0.999 1.02] [0.971 0.999 1.03] [0.965 0.998 1.03] [0.961 0.997 1.04] [0.956 0.996 1.04] [0.952 0.996 1.04] [0.948 0.995 1.05]
3 [0.986 1 1.01] [0.976 0.999 1.02] [0.969 0.998 1.03] [0.963 0.998 1.03] [0.958 0.997 1.04] [0.953 0.996 1.04] [0.948 0.995 1.05] [0.945 0.994 1.05]
4 [0.981 1 1.02] [0.969 0.999 1.03] [ 0.96 0.998 1.04] [0.951 0.997 1.05] [0.944 0.996 1.05] [0.938 0.994 1.06] [0.932 0.993 1.06] [0.926 0.991 1.07]
Low [0.982 1 1.02] [ 0.97 0.999 1.03] [0.961 0.998 1.04] [0.953 0.996 1.04] [0.947 0.995 1.05] [0.941 0.994 1.05] [0.935 0.993 1.06] [ 0.93 0.991 1.06]

Table continued from previous page.
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Table 3: Long Horizon Market βs and Firm Characteristics

Panel A presents Fama-MacBeth regression estimates of:

log(
β6,i,t

β1,i,t
) = a+b1log(Sizei,t)+b2log(BMi,t)+b3log(Seasonalityi,t)+b4log(1+Analystsi,t)+b5β̂1+b61β̂1>1+b7β̂11β̂1>1+εi,t

β1,i,t (β6,i,t) is estimated using monthly (6-month compounded) returns over the last 5 years (at least 36 observations
required). Sizei,t, BMi,t, and Analystsi,t are all normalized by their cross-sectional average at time t. Seasonalityi,t

is measured by the average over the past five years of the ratio of the highest quarterly EPS over the average EPS for
the year. β̂1 is the predicted value of β1 using size, book-to-market, book leverage and past 5-year return volatility.
1β̂1>1 is a dummy variable which is equal to 1 if β̂1 is larger than 1. In Panel B the dependent variable is log(

β12,i,t

β1,i,t
)

where β12,i,t is estimated using 12-month compounded) returns over the last 5 years (at least 36 observations required).
All standard errors are adjusted for serial correlation using Newey-West with 6 lags. The sample period is 1983 to
2009 for regressions controlling for analyst coverage and 1968 to 2009 for other specifications.

Panel A: 6-month β over 1-month β

log(Size) -0.059 -0.061 -0.059 -0.055 -0.057 -0.053 -0.050
(-6.87) (-7.02) (-11.74) (-9.93) (-9.32) (-7.78) (-7.25)

log(BM) -0.031 -0.031 -0.052 -0.050 -0.050 -0.047 -0.047
(-1.50) (-1.44) (-4.25) (-3.45) (-3.64) (-3.15) (-2.92)

log(Seasonality) 0.009 0.010 0.011 0.011 0.011 0.011
(2.63) (1.89) (2.44) (2.51) (2.38) (2.23)

log(1 + Analysts) -0.044 -0.047 -0.048 -0.048 -0.041
(-7.37) (-5.51) (-5.46) (-5.32) (-4.55)

β̂1 0.037 -0.081 -0.306
(0.70) (-1.13) (-3.04)

1β̂1>1 0.044 -0.374

(1.31) (-4.07)

β̂11β̂1>1 0.084 0.447

(2.12) (4.48)

Ave. Adj. R2 0.039 0.040 0.042 0.047 0.046 0.049 0.053
T 43 43 27 27 27 27 27
Ave N 2959 2959 3582 3554 3554 3554 3554

Panel B: 12-month β over 1-month β

log(Size) -0.055 -0.059 -0.053 -0.051 -0.053 -0.048 -0.044
(-5.29) (-5.48) (-6.22) (-5.63) (-5.74) (-4.67) (-4.26)

log(BM) -0.035 -0.035 -0.061 -0.060 -0.060 -0.056 -0.056
(-1.56) (-1.51) (-4.31) (-4.11) (-4.29) (-3.86) (-3.60)

log(Seasonality) 0.022 0.027 0.021 0.022 0.021 0.020
(4.46) (4.4) (4.94) (5.60) (4.85) (4.50)

log(1 + Analysts) -0.049 -0.048 -0.052 -0.050 -0.042
(-5.91) (-5.11) (-5.22) (-4.93) (-3.89)

β̂1 0.001 -0.204 -0.452
(0.01) (-1.62) (-2.44)

1β̂1>1 0.03 -0.460

(0.57) (-3.11)

β̂11β̂1>1 0.145 0.578

(2.55) (3.50)

Ave. Adj. R2 0.032 0.033 0.031 0.042 0.038 0.045 0.050
T 43 43 27 27 27 27 27
Ave N 2760 2760 3351 3324 3324 3324 3324
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Table 4: Long Horizon Market βs and HML SMB βs

Panel A reports Fama-MacBeth estimates of:

β12,i,t = a + b1log(Sizei,t) + b2log(BMi,t) + b3β1,i,t + b4βsmb,i,t + b4βhml,i,t + εi,t

using firm level data for the period 1963-2009. β1,i,t (β12,i,t) is estimated using monthly (12-month compounded)
returns over the last 5 years (at least 36 observations required). Sizei,t and BMi,t are normalized by their cross-
sectional average at time t. 1β1>1 is a dummy variable which is equal to 1 if β1 is larger than 1. Panel B reports
Fama-MacBeth estimates for the 25 Fama-French Size and Book-to-market portfolios of:

β12,i = a + b1β1,i + b2βrmrf,i + b3βsmb,i + b4βhml,i + εi,

where β12 (β1) is the 12-month (1-month) CAPM β, and βrmrf , βsmb, and βhml are the Fama-French 3-factor βs).
The sample period is 1927 to 2009 in Panel B.Standard errors are adjusted for serial correlation using Newey-West
with 6 lags.

Panel A: Firm-level Results

β1 0.952*** 0.903*** 0.907*** 0.714***
(11.77) (12.08) (12.21) (14.56)

1β̂1>1 -0.558***

(-3.77)
β11β1>1 0.113*** 0.116*** 0.103*** 0.529***

(2.72) (2.89) (3.06) (4.77)
log(Size) -0.051*** -0.020 -0.011

(-2.80) (-1.64) (-0.99)
log(BM) -0.098*** -0.073*** -0.068***

(-3.45) (-3.01) (-2.87)
βsmb,1 0.135** 0.123** 0.124**

(2.52) (2.44) (2.47)
βhml,1 -0.101** -0.092** -0.087**

(-2.60) (-2.34) (-2.15)

Ave. Adj. R2 0.241 0.278 0.285 0.291
T 43 43 43 43
Ave N 3428 3428 3428 3428

Panel B: Portfolio Results

β1 1.045 0.192
(8.634) (1.227)

βrmrf 0.726 0.194
(1.498) (1.243)

βsmb 0.293 0.287 0.248
(12.186) (11.787) (5.683)

βhml 0.242 0.238 0.210
(7.281) (7.250) (5.004)

Const 0.005 0.523 1.022 0.824 0.826
(0.035) (1.028) (47.489) (5.110) (5.116)

Adj. R2 0.754 0.049 0.904 0.906 0.906
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Table 5: Cross-sectional CAPM regressions using monthly and annual data

This table reports the results of ordinary least squares cross-sectional regressions of mean excess returns on betas for
the 25 Fama-French portfolios for the period January 1926 to December 2009.

Rj − RF = a + λβj

t-statistics, which were calculated using the Shanken (1992) correction, are in parentheses. For regressions that
use monthly returns the returns are annualized by multiplying by 12. p-values in brackets are computed from
bootstrapped samples that ensure that returns are serially independent.

a λ Adjusted Mean
R2 Absolute

Error

Monthly Returns and βs
0.040 0.052 0.099 0.026
(0.106) (1.185)

[0.51] [0.51]

Monthly Returns and Annual βs
0.003 0.072 0.484 0.015
(0.023) (1.679)

[0.43] [0.11]

Annual Returns and Monthly βs
0.031 0.078 0.130 0.027
(0.081) (1.654)

[0.37] [0.43]

Annual Returns and βs
-0.017 0.102 0.564 0.017
(0.142) (2.235)

[0.29] [0.07]

32



Table 6: Estimation and test of CAPM pricing kernel for different horizons

This table reports GMM estimates of the parameter bτ from the equation:

E
˘

(1− bτ Rτ
m)(Rτ

j − Rτ
F )

¯

= 0, j = 1, 25

where Rτ
m is the τ month return on the market portfolio and Rτ

j , j = 1, · · · , 25 are the τ month returns on the
Fama-French 25 Size and Book-to-market portfolios, and Rτ

F is the τ month risk free rate. In Panel A the returns are
overlapping and, to take account of this the weighting matrix, S, is calculated following Newey-West with number
of lags equal to horizon plus 12 months. In Panel B the returns are non-overlapping December to December returns.
J which is distributed χ2(24) is a test of the over-identifying restrictions. t-statistics are shown in parentheses and
p-values in brackets.

Panel A: Overlapping returns

1926-2009 1926-1962 1963-2009

τ bτ J Mean bτ J Mean bτ J Mean
(months) Abs. Abs. Abs.

Error Error Error

1 2.156 78.121 0.026 1.827 40.615 0.023 2.030 72.115 0.041
(4.329) [0.000] (2.852) [0.018] (2.082) [0.000]

2 2.006 75.833 0.018 1.421 39.774 0.028 3.322 56.326 0.027
(5.043) [0.000] (4.746) [0.023] (3.976) [0.000]

3 1.863 68.218 0.017 1.312 38.638 0.029 3.194 46.551 0.026
(5.383) [0.000] (6.414) [0.030] (4.358) [0.004]

4 1.918 61.329 0.018 1.382 35.774 0.028 3.101 40.349 0.026
(5.731) [0.000] (6.069) [0.058] (4.884) [0.020]

5 1.972 55.665 0.018 1.609 32.790 0.019 3.045 36.520 0.026
(5.362) [0.000] (5.616) [0.109] (5.481) [0.049]

6 1.956 50.070 0.018 1.778 29.639 0.018 2.940 33.454 0.025
(5.612) [0.001] (6.452) [0.197] (6.265) [0.095]

7 1.960 45.671 0.018 1.808 26.859 0.018 2.857 31.401 0.025
(6.037) [0.005] (8.208) [0.311] (7.151) [0.143]

8 1.947 41.958 0.018 1.809 24.743 0.018 2.536 30.079 0.025
(6.308) [0.013] (9.755) [0.420] (6.942) [0.182]

9 1.906 38.934 0.017 1.766 23.203 0.018 2.490 28.881 0.025
(6.539) [0.028] (10.706) [0.508] (7.756) [0.225]

10 1.815 36.514 0.017 1.513 22.231 0.016 2.431 28.472 0.024
(6.924) [0.049] (11.629) [0.565] (8.620) [0.241]

11 1.692 34.509 0.016 1.248 21.316 0.025 2.129 28.217 0.026
(7.201) [0.076] (12.990) [0.620] (7.890) [0.251]

12 1.602 32.791 0.016 1.167 23.131 0.026 2.082 30.190 0.025
(7.409) [0.109] (15.568) [0.512] (8.796) [0.179]

18 1.490 25.437 0.015 1.362 24.785 0.018 2.062 28.789 0.027
(15.052) [0.382] (37.753) [1.000] (12.695) [0.231]

24 1.405 23.141 0.015 1.237 25.424 0.016 1.815 37.316 0.021
(19.939) [0.511] (29.183) [0.383] (42.520) [0.041]

Panel B: Non-overlapping December to December returns

1926-2009 1926 to 1962 1963 to 2009

b J b J b J
2.985 33.596 2.364 26.191 3.846 26.927
(11.99) [0.092] (12.25) [0.344] (9.69) [0.308]
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Table 7: CAPM pricing errors at different horizons

This table shows the pricing errors for the 25 Fama-French Size and Book-to-market portfolios from the CAPM
pricing kernel whose estimates are given in Table 6 for the period January 1926 to December 2009. All pricing errors
are annualized by multiplying by 12/τ . RMSE is the root mean square pricing error.

τ

Size BM 1 6 12 18 24

Small Low -0.071 -0.065 -0.074 -0.058 -0.054
2 -0.017 -0.016 -0.026 -0.011 -0.010
3 0.016 0.014 0.001 0.011 0.008
4 0.041 0.038 0.019 0.031 0.027
High 0.061 0.056 0.032 0.047 0.043

2 Low -0.029 -0.026 -0.033 -0.024 -0.023
2 0.014 0.017 0.004 0.012 0.008
3 0.031 0.030 0.016 0.026 0.024
4 0.037 0.036 0.020 0.031 0.028
High 0.040 0.041 0.024 0.035 0.031

3 Low -0.018 -0.013 -0.026 -0.015 -0.016
2 0.018 0.019 0.007 0.014 0.012
3 0.027 0.031 0.017 0.024 0.019
4 0.032 0.033 0.019 0.027 0.024
High 0.026 0.033 0.018 0.029 0.027

4 Low -0.002 0.003 -0.008 -0.003 -0.005
2 0.005 0.009 -0.003 0.003 0.001
3 0.020 0.023 0.008 0.015 0.012
4 0.024 0.030 0.015 0.022 0.019
High 0.018 0.024 0.006 0.018 0.017

Big Low -0.004 0.002 -0.008 -0.006 -0.010
2 0.002 0.007 -0.004 -0.002 -0.005
3 0.006 0.011 -0.001 0.003 0.000
4 0.000 0.006 -0.008 -0.001 -0.003
High 0.023 0.025 0.009 0.013 0.008

RMSE 0.030 0.029 0.022 0.024 0.022
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Table 8: Asset Pricing with Stochastic Liquidation

The table reports GMM estimates of the moment conditions (14). The system is estimated assuming the probability
of liquidation takes a specific form as explained below using monthly returns on the Fama-French 25 Size and
Book-to-market sorted portfolios for the period 1926-2009. The moment condition is E[

PK
τ=1 wτXτ ] = 0 where

wτ = w(τ, γ) =
f( τ

K
,γ1 ;γ2)

P

K
i=1

f( i
K

,γ1 ;γ2)
for τ = 1 to K , where f(z, a, b) = za−1(1 − z)b−1/β(a, b) and β(a, b) is based on the

Gamma function, or β(a, b) = Γ(a)Γ(b)/Γ(a+ b), and Xτ ≡ (1− bRτ
m)(Rτ

j −Rτ
F ). A likelihood ratio test is performed

against the unrestricted model where each horizon is allowed to have a different risk premium, bτ . The likelihood ratio,
LR, is reported and the p-values are based on χ2 distribution with 6 d.f. t-statistics for b are reported in parentheses;
standard errors of the γ coefficients are reported in italics, and p-values for the J -statistic and likelihood ratio are
in square brackets. Panel A presents the estimation results. Panel B reports the horizon weights, φ(τi) ≡ wi and
Panel C reports the probability of liquidation at each horizon date, π(τi) = (φ(τi)/τi) /ΣK

j=1φ(τj)/τj , the estimated
Mean Horizon and the estimated Turnover Rate. Panel D reports the distribution of bootstrapped horizon weights
and J -statistics.

Panel A: Parameters

Full Sample 1926 to 1962 1963 to 2009

γ1 6.000 37.110 8.465
0.24 0.35 2.17

γ2 5.291 16.880 15.274
0.26 0.40 3.18

b 1.572 1.687 2.062
(3.55) (7.82) (4.35)

J 28.066 30.483 29.525
[0.17] [0.11] [0.10]

LR 5.989 10.583 11.697
[0.424] [0.102] [0.07]

Panel B: Horizon Weights (φτ )

Horizon (months) 1 4 8 12 16 20 24

Full Sample 0.000 0.013 0.164 0.395 0.344 0.084 0.000
1926 to 1962 0.000 0.000 0.000 0.008 0.775 0.216 0.000
1963 to 2009 0.283 0.388 0.227 0.083 0.017 0.001 0.000

Panel C: Probability Weights (πτ ) , Mean Horizon, and Turnover Rate

Horizon (months) 1 4 8 12 16 20 24 Mean Horizon Turnover
(months) (%)

Full Sample 0.000 0.039 0.250 0.400 0.261 0.051 0.000 12.1 74.3
1926 to 1962 0.000 0.000 0.000 0.011 0.808 0.180 0.000 16.7 58.0
1963 to 2009 0.680 0.233 0.068 0.017 0.003 0.000 0.000 2.4 209.6

Panel D: Bootstrapped Horizon Weights and Test Statistics

Horizon (months) 1 4 8 12 16 20 24 J -stat

2.5 percentile 0.067 0.079 0.002 0.000 0.000 0.000 0.000 28.843
5 percentile 0.445 0.086 0.002 0.000 0.000 0.000 0.000 29.648
25 percentile 0.871 0.099 0.003 0.000 0.000 0.000 0.000 31.967
50 percentile 0.888 0.109 0.004 0.000 0.000 0.000 0.000 33.266
75 percentile 0.898 0.123 0.006 0.001 0.000 0.000 0.000 34.387
95 percentile 0.912 0.151 0.043 0.065 0.024 0.008 0.005 36.022

97.5 percentile 0.915 0.210 0.158 0.110 0.108 0.099 0.050 36.520
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Table 9: Probability weights, Estimated Average Horizon and Turnover Rate, and

Reported Turnover on NYSE stocks

This table reports the probability weights for different horizons estimated for different sample periods using the Fama-
French 25 Size and Book-to-market portfolios. The Turnover Rate is calculated using equation (13). The Reported
Turnover Rate for New York Stock Exchange stocks is taken from the New York Stock Exchange Factbook.

Horizon (months) 1 4 8 12 16 20 24 Estimated Estimated Reported
Mean Horizon Turnover NYSE Turnover

1927 to 1946 0.002 0.156 0.794 0.049 0.000 0.000 0.000 7.6 103.7% 40.8%
1947 to 1966 0.000 0.000 0.000 0.005 0.183 0.797 0.015 19.3 51.5 15.2
1967 to 1986 0.099 0.562 0.300 0.027 0.005 0.004 0.003 5.3 130.3 30.8
1987 to 2006 0.948 0.042 0.004 0.002 0.002 0.001 0.001 1.2 279.1 68.3
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Table 10: Pricing errors of portfolios sorted by lagged BM ratio

This table reports the the pricing errors from the CAPM with stochastic liquidation of the 25 Fama-French Size and
Book-to-market sorted portfolios (FF25) along with portfolios sorted by Size and (1- to 5- year) lagged Book-to-
market ratios (BM Lag1 - BM Lag5). The sample period from 1963 to 2009. The model predicted return is based
on the probability weights estimated in Table 8. All pricing errors are annualized.

Size BM FF25 BM Lag1 BM Lag2 BM Lag3 BM Lag4 BM Lag5

Small Low -0.048 -0.029 -0.023 -0.013 -0.024 -0.029
2 0.022 0.016 0.024 0.025 0.011 0.018
3 0.030 0.048 0.039 0.032 0.028 0.012
4 0.058 0.043 0.039 0.041 0.043 0.027
High 0.066 0.054 0.048 0.048 0.037 0.035

2 Low -0.028 -0.018 -0.017 -0.016 -0.017 -0.017
2 0.013 0.018 0.013 0.021 0.013 0.008
3 0.044 0.033 0.028 0.030 0.031 0.019
4 0.049 0.046 0.032 0.040 0.040 0.038
High 0.053 0.039 0.040 0.042 0.028 0.026

3 Low -0.023 -0.026 -0.027 -0.026 -0.025 -0.024
2 0.019 0.024 0.009 0.013 0.017 0.018
3 0.031 0.019 0.024 0.030 0.023 0.021
4 0.041 0.036 0.037 0.035 0.036 0.030
High 0.065 0.050 0.042 0.036 0.025 0.015

4 Low -0.005 -0.003 -0.005 -0.008 -0.005 -0.003
2 0.000 0.009 0.006 0.007 0.004 -0.001
3 0.020 0.016 0.013 0.010 0.007 0.013
4 0.036 0.018 0.017 0.015 0.018 0.018
High 0.035 0.034 0.025 0.030 0.019 -0.007

Big Low -0.011 -0.011 -0.012 -0.012 -0.018 -0.016
2 -0.001 -0.006 -0.006 -0.007 -0.006 -0.013
3 -0.001 0.003 -0.007 0.003 0.004 0.002
4 0.010 0.012 0.011 0.010 0.005 0.004
High 0.016 0.016 0.001 -0.001 0.010 -0.004

RMSE 0.033 0.029 0.026 0.026 0.023 0.019
J 29.525 28.650 28.850 20.039 17.581 10.459
p [0.10] [0.12] [0.12] [0.52] [0.68] [0.97]
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Table 11: Pricing Industry Portfolios

The table reports GMM estimates of the moment conditions (14). The system is estimated using monthly returns
on the Fama-French 30 Industry portfolios for the period 1926-2009. See note to Table 8.

Panel A: Parameters

Full Sample 1926 to 1962 1963 to 2009

γ1 13.184 28.094 2.602
0.15 0.67 1.32

γ2 35.040 7.914 2.971
0.13 0.50 1.15

b 4.577 1.901 4.705
(7.459) (19.160) (15.972)

J 28.895 13.100 20.109
[0.32] [0.98] [0.79]

Panel B: Horizon Weights

Horizon (months) 1 4 8 12 16 20 24

Full Sample 0.058 0.189 0.515 0.065 0.058 0.058 0.058
1926 to 1962 0.039 0.039 0.039 0.040 0.127 0.675 0.041
1963 to 2009 0.028 0.127 0.242 0.272 0.212 0.102 0.017

Panel C: Probability Weights (πτ ), Mean Horizon and Turnover Rate

Horizon (months) 1 4 8 12 16 20 24 Mean Horizon Turnover
(months) (%)

Full Sample 0.315 0.257 0.351 0.029 0.020 0.016 0.013 5.5 131.4
1926 to 1962 0.390 0.097 0.049 0.033 0.079 0.336 0.017 10.0 88.5
1963 to 2009 0.215 0.240 0.229 0.171 0.100 0.038 0.005 7.5 105.8
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Table 12: Pricing 30 Industry Portfolios and 25 Size and Book-to-market sorted

Portfolios

The table reports GMM estimates of the moment conditions (14). The system is estimated using monthly returns
on the Fama-French 25 Size and Book-to-market portfolios and 30 Industry portfolios for the period 1926-2009. See
note to Table 8.

Panel A: Parameters

Full Sample 1926 to 1962 1963 to 2009

γ1 6.303 9.486 1.004
0.50 0.16 0.40

γ2 5.624 8.013 11.673
0.65 0.17 0.50

b 1.662 1.279 2.304
(3.876) (5.455) (2.787)

J 32.183 12.267 17.786
[0.98] [1.00] [1.00]

Panel B: Horizon Weights

Horizon (months) 1 4 8 12 16 20 24

Full Sample 0.000 0.011 0.164 0.408 0.343 0.074 0.000
1926 to 1962 0.015 0.016 0.101 0.426 0.373 0.054 0.015
1963 to 2009 0.645 0.180 0.047 0.033 0.032 0.032 0.032

Panel C: Probability Weights (πτ ), Mean Horizon and Turnover Rate

Horizon (months) 1 4 8 12 16 20 24 Mean Horizon Turnover
(months) (%)

Full Sample 0.000 0.034 0.249 0.412 0.260 0.045 0.000 12.1 74.4
1926 to 1962 0.161 0.043 0.135 0.378 0.248 0.029 0.007 10.6 82.8
1963 to 2009 0.917 0.064 0.008 0.004 0.003 0.002 0.002 1.4 266.4
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Figure 1: Actual and Predicted Returns

The plots show different measures of average excess return against CAPM predicted returns for the Fama-French 25 Size and Book-to-market
sorted portfolios for the period 1926-2009. The average excess returns are either average annual excess returns (Annual returns) or annualized
average monthly excess returns (Monthly returns). The CAPM predicted return is provided by the CAPM cross-sectional regressions using annual
or monthly returns for the period 1926-2009 whose parameters are reported in Table 5.
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Figure 2: Estimated probability distributions of liquidation dates for Fama-French Size and Book-
to-market and industry portfolios 1926-2009

41



b

b c b d

b c e

f g h i

b c j

b c j d

b b c b d b c e b c e d b c j b c j d

kl
mno
pm
mq
mrr
nms
tn
u

v w x y z { | x y x } { x ~ ~ w x | � w �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � �

b

b c b d

b c e

b c e d

b c j

b c j d

b b c b d b c e b c e d b c j b c j d

� 
¡¢£
¤¡
¡¥
¦¡
§§
¢¡¨
©¢
ª

v w x y z { | x y x } { x ~ ~ w x | � w �

« ¬  ® ¯ ® °  � ± ² ³ ´ µ ¶ · � ¸ ± ® ² ¹ « � � º ° � � ° ¯ ® � º ± � � � � � ± ¹
� � � � � � � � � � ® ² ¹ » ¼ ½ ² ¹ ¾ � � � ¿ � � � � � � � � � �

À Á Â Ã Ä Å Æ Ç
È È É i

Figure 3: Actual and Stochastic Liquidation CAPM Predicted Returns
Horizon weighted annualized average excess returns and horizon weighted annualized predicted returns from the stochastic liquidation CAPM for
the Fama-French Size and Book-to-market portfolios and industry portfolios 1926-2009
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