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Abstract

A long literature in financial economics implies that the relative performance of firms with

worse access to external financing should forecast aggregate market returns and future real

economic activity. We test this implication with a new variable  (Goliath versus David),

which is the annual change in the weight of the largest firms in the aggregate stock market.

We find that  is the best single predictor of market returns out-of-sample among nine

traditional predictors, predicting quarterly market returns with an out-of-sample R2 of 6.3%

in the 1976-2011 evaluation period. Moreover,  is the only variable among traditional

predictors that forecasts stock returns and investment growth both in-sample and out-of-sample.

 also forecasts returns and investment growth of the Fama-French ten size-sorted portfolios,

with assets we ex-ante expect to be more sensitive to changes in the access to external financing

displaying greater sensitivity to . ’s predictive ability is robust, and not due to

information contained in traditional variables, such as SMB and net payout. Overall, our findings

imply that shocks to access to external financing often precede macroeconomic fluctuations

suggesting that financial markets play an important role in real economic activity.
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The financial accelerator hypothesis (e.g. Bernanke and Gertler (1989), Bernanke, Gertler, and

Gilchrist (1996), Kiyotaki and Moore (1997) and Perez-Quiros and Timmermann (2000)) highlights

the role of financial markets in the magnification of aggregate economic shocks. The hypothesis

states that following aggregate shocks, financially constrained firms find it harder to access external

finance and therefore reduce investment. This results in a reduction in aggregate investment and

thereby amplifies the original shock. A large body of research finds empirical support of this

theory, typically using size as a measure of financial constraints. For example Gertler and Gilchrist

(1994) find that small firms cut their investment more than large firms following macroeconomic

shocks. Prior research however, has not examined whether the relative performance of firms with

worse access to external finance forecasts aggregate economic activity. This is surprising because,

according to the financial accelerator hypothesis, constrained firms are the quintessential "canary

in the coal mine" and hence their relative performance should forecast aggregate economic activity

and should also be correlated with aggregate risk premium. In this paper, we test these forecasting

implications of the financial accelerator hypothesis.

We do so, by proposing a simple forecasting variable, Goliath Versus David (or ).  is

the change in the weight of the stocks of the largest firms in the aggregate market portfolio over a

12-month period. Hence  is a measure of the valuation of the largest and least financially con-

strained firms relative to the entire market. An intuitive way to understand the strong connection

between  and the literature on financial constraints is to notice that  has two compo-

nents and each of these components is strongly related to the literature. The first component is the

difference between the return on existing capital of the largest firms and the return on the market

() and the second is the difference between the net new equity issuances of the largest

firms and the net new equity issuance of the market ( ).
1  is strongly related

to the work of Perez-Quiros and Timmermann (2000), who show that the expected return and risk

of small firms exhibit greater increases than those of large firms during periods of economic stress.

Therefore the results in Perez-Quiros and Timmermann (2000) imply that the realized returns of

the largest firms in the market are larger than those of the smallest firms during periods of finan-

1Note that this decomposition also highlights the way in which  is distinct from the Fama and French (1993)

factor, , since  is only related to  and not to  .
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cial distress and hence  increases during these periods. On the other hand,  is

strongly related to Covas and Den Haan (2011), who find that small firms have much more cyclical

equity issuance than do large firms. As a result,  also increases in periods of financial

distress.  therefore combines the two consequences of aggregate economic shocks for small

and large firms into a single, economically-intuitive and countercyclical variable.2

Once we build , we examine five of the forecasting implications of the financial acceler-

ator theory. First, the models in Bernanke and Gertler (1989) and Kiyotaki and Moore (1997)

imply that the increase in the cost of external financing causes lower aggregate investment, hence

increases in  should predict declines in aggregate investment. Second, the fact that smaller

firms have larger expected returns and risk during recessions (e.g. Perez-Quiros and Timmermann

(2000)) implies that  increases when discount rates are high and should therefore predict

high aggregate stock market returns during such times. Third, as Bernanke, Gertler, and Gilchrist

(1996) and Kashyap, Lamont, and Stein (1994) emphasize, the theory implies that the real ef-

fects of financial constraints are more pronounced during recessions. As such, ’s forecasting

ability should be stronger during economic downturns when credit constraints bind. Fourth, the

financial accelerator hypothesis also implies that macroeconomic shocks are magnified by financing

constraints. Consequently,  should forecast aggregate investment even after controlling for

current market risk premium.3 Lastly, the models in Bernanke and Gertler (1989) and Kiyotaki

and Moore (1997) predict that firms with relatively low collateral will be most impacted by an

economic shock. Hence, small firm investments and returns should be more sensitive to changes in

.

By and large, our results support the financial accelerator theory. In fact, the forecasting ability

of  is quite strong and  performs remarkably well as a predictor of aggregate market

returns and investment growth, both in absolute terms, as well as relative to traditionally used

forecasting variables.4 To the best of our knowledge,  is the only forecasting variable that

2We find that  rises during recessions and has a rank correlation of -24% with contemporaneous  growth.

 also has local maxima during periods of financial market stress.
3This implication highlights the difference between the financial accelerator hypothesis and the Q-theory of in-

vestments, which implies that aggregate investments decrease with market risk premium. Hence according to the

Q-theory of investment  could forecast aggregate investment because it is related to market risk premium.
4The variables we consider are: default spread, term spread, dividend-price ratio, net payout, smoothed price-
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forecasts aggregate market returns and investment growth both in-sample and out-of-sample. In-

sample,  significantly predicts quarterly non-overlapping market returns (2 = 33%) and

quarterly aggregate investment growth (2 = 63%). Out-of-sample,  significantly predicts

quarterly non-overlapping market returns (2 = 64%) and quarterly aggregate investment growth

(2 = 56%). In out-of-sample tests with quarterly forecasting horizon, none of the benchmark

variables have positive 2s in predicting market returns and only the default spread significantly

predicts aggregate investment growth.

Interestingly, ’s forecasting ability arises from the combination of its components. As

discussed above, prior research suggests that economic downturns result in changes in both compo-

nents; we find, however, that although each component by itself is a significant predictor of market

returns and real economic activity, the predictive ability is much greater when the two are com-

bined. Furthermore, using both components to forecast market returns and aggregate investment

growth not only improves overall predictive ability, but also increases the significance of each com-

ponent. This improvement occurs because both components have coefficients of similar magnitudes

in the predicting regressions and have low—in fact negative—correlations with each other. As such,

combining the components results in a predictor with a larger signal to noise ratio.5

In addition to finding that  forecasts aggregate market returns and investment growth,

we also find evidence consistent with all other three forecasting implications that we test. In

particular, ’s coefficient in forecasting market returns when GDP growth is below its median

is five times as large than when GDP growth is above its median.6 We also find that increases in

 forecasts declines in real private fixed-investment growth even after controlling for current

market risk premium. Finally, in regressions predicting the returns or the investment growth of the

Fama-French ten size sorted portfolios using , we find that  coefficients increase as we

move from large to small stocks. Overall, our results are consistent with the literature that argues

to-earnings ratio, book-to-market ratio of the Dow Jones Industrial Average index, consumption-wealth ratio,

investment-to-capital ratio, and changes in the average market illiquidity.
5This perhaps explains why prior research on  has not uncovered its ability to predict market returns, even

though there is a great deal of literature that suggests it should be correlated with discount-rate variation (e.g.

Perez-Quiros and Timmermann (2000) and Fama and French (1996))
6These results are also consistent with Henkel, Martin, and Nardari (2011), who find that the forecasting ability

of common-market return predictors is higher during recessions.
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that financial markets—in particular, access to external finance—have real effects.

’s forecasting ability is robust to the standard critiques in the market-predictability litera-

ture. To finalize our analysis, we examine ’s ability to forecast market returns in greater detail,

since prior research documents several potential statistical pitfalls in predicting market returns. For

instance, Ang and Bekaert (2007) show that the evidence of predictability depends crucially on the

choice of standard errors in overlapping forecasting regressions, while Ferson, Sarkissian, and Simin

(2003) show that more highly-persistent variables are more likely to be found significant in the data

mining for predictor variables.7

Our main contribution is to the empirical literature that examines the financial accelerator

theory. Bernanke, Gertler, and Gilchrist (1996) point out that because of the challenges commonly

encountered in establishing causal relationships, empirical research examines the financial acceler-

ator theory through its cross-sectional implications. For instance Hubbard, Kashyap, and Whited

(1995) and Whited (1992) test this theory by estimating the Euler equation from a formal model

of investment and find that explicitly including financing constraints greatly improves the fit of

the model. Even though the findings in these cross-sectional tests overall support the financial

accelerator hypothesis, the key forecasting implications of the financing accelerator theory have not

yet been established. In fact, the most studied measure of changes in the relative valuation of small

versus large companies, , does not significantly predict market returns by itself, suggesting

that the financial accelerator does not exist. We reconcile this forecasting result with the cross-

sectional results by showing that once we control for  in predicting market returns, the

coefficient on  ( the component of  strongly related to ) becomes significant.

Naturally, the interpretation of our results as tests of Bernanke and Gertler (1989) theory relies

on the working hypothesis that firm size is a proxy for access to external finance. However, there

7 In particular, we focus on predicting quarterly non-overlapping returns to avoid biases in standard errors of

overlapping returns (Ang and Bekaert (2007)). We show that GVD is less likely to be data-mined, since it is less

persistent than standard predictors (Ferson, Sarkissian, and Simin (2003)); that GVD’s predictive ability is robust

to the Stambaugh (1999) bias, excluding influential periods such as the oil shocks and the internet period, and

alternative start dates for the out-of-sample evaluation period (Hansen and Timmermann (2012)). GVD’s predictive

ability is unlikely to arise due to lead-lag relations between small and large firm returns since GVD also predicts

market returns after skipping a quarter between computing GVD and measuring market returns. Similarly, GVD’s

predictive ability is unlikely to arise from persistence in market returns, since GVD continues to predict market

returns after controlling for lagged market returns.
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is debate in the literature with respect to how well firm size proxies capital market access, because

firm size is also related to many other variables such as stock liquidity and foreign exposure. It

could be, for instance, that macroeconomic shocks have a disproportionate effect on aspects of the

business of small firms that are not related to financing constraints, and that small firms respond

by decreasing investment and financing. If this were the case, our results would not be due to a

financing accelerator mechanism. Perhaps because of this, some papers use other proxies of access to

external finance to test the theory’s implications on the cross-section of expected returns. Lamont,

Polk, and Saa-Requejo (2001) use an index based on Kaplan and Zingales (1997) (KZ index) and

conclude that there is no evidence of a financial constraints factor, on the other hand, Whited

and Wu (2006) use an index of access to external finance via an estimation of an investment Euler

equation (WU index) and find that there is some evidence that financial constraints are a priced risk

factor. In a recent study, Hadlock and Pierce (2010) examine a series of proxies for capital market

access including the KZ and the WU indexes. They find that firm size is a particularly useful

predictor of financial constraints, while the KZ index does not seem to reflect financial constraints

well. Our use of firm size as a proxy of access to external finance is therefore consistent with

Hadlock and Pierce (2010) results. Moreover, to eliminate the possibility that our results are due

to aspects of the small firms’ business that are unrelated to financing constraints, we show that our

results hold even if we use the ability of firms to access public credit market rather than firm size

to define .

Our paper is also related to research that examines market return predictability and especially

to recent research that responds to the Goyal and Welch (2008) critique. In an influential paper,

Goyal and Welch (2008) find that the predictive ability of traditional forecasting variables has

greatly diminished after the oil shocks of the 1970s and, as a result, none of these variables predict

market returns out-of-sample. ’s forecasting ability actually improves in the post oil-shock

sample thereby addressing the Goyal and Welch (2008) critique. Also, our results complement

those in Campbell and Thompson (2008), Rapach, Strauss, and Zhou (2010), van Binsebergen

and Koijen (2010), Ferreira and Santa-Clara (2011), and Kelly and Pruitt (2012), all of whom

develop alternate estimation techniques for expected returns that succeed in predicting market
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returns out-of-sample. The out-of-sample predictability for market returns that we document is

comparable to that in these papers.8 Relative to these papers, our contribution is to develop a new

economically-motivated variable that also predicts macroeconomic variables.

The remainder of the paper proceeds as follows: Section 1 defines . Section 2 describes

the data used throughout the paper along with general summary statistics. Section 3 tests first

two of the forecasting implications of the financial accelerator theory by providing an overview of

’s ability to forecast aggregate market returns and aggregate investment growth. Section 4

tests whether ’s forecasting ability is stronger during contractions and whether ’s ability

to forecast investment growth is robust to controlling to current market risk premium. Section 5

shows that small stocks are more sensitive to changes in . Section 6 discusses the robustness

of our results. Section 7 concludes.

1  (Goliath versus David)

We define  as:


∆ = ln(




)− ln(−∆

−∆
) (1)

where  is the sum of the market capitalization at time  of the  firms with the largest market

capitalization at time  − ∆, −∆ is the sum of the market capitalization at time  − ∆ of
the  firms with the largest market capitalization at time  −∆,  is the sum of the market

capitalization of all firms in the market at time  and −∆ is the sum of the market capitalization

of all firms in the market at time  −∆ That is, 
∆ is the change in the log of the weight

of the  largest firms at time −∆ in the market portfolio.
Note that  is not just the difference between the return of the portfolio of the  largest

firms and the market portfolio. In fact, we show in the appendix that:


∆ = (


∆ −

∆) + (

∆ −

∆) (2)

8For example, Kelly and Pruitt (2012) report that their three-pass regression filter beats other estimators with an

out-of-sample 2 of between 044% and 076% for monthly returns (Table 1 of their paper). For exactly the same

evaluation period (1980-2009), GVD’s out-of-sample 2 is 0.99%.
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where 
∆ is the ex-dividend return (return related to price appreciation only) between  and

 −∆ of the portfolio of the  largest stocks at time  −∆, and 
∆ is the rate of growth of

this portfolio due to new stock issuances. Similarly, 
∆ and 

∆ are the ex-dividend return

and the growth rate of the market portfolio. The exact expressions for the rate of growth and

ex-dividend return are in the Appendix. We refer to (
∆ − 

∆) and to (

∆ −

∆)

as the returns component () and the capital-raising component ( ) of 

respectively.

2 Data and summary statistics

In this section, we describe in detail how we construct  (Section 2.1), the variables we use

to benchmark ’s forecasting performance (Section 2.2), the variables we forecast using 

(Section 2.3), and ’s countercyclical behavior (Section 2.4).

2.1 Computing 

Our implementation of 
∆ sets the period ∆ equal to one year. A shorter period for ∆

may introduce noise to  unrelated to business cycle information, while a longer period may

eliminate variation related to business cycles. We calculate 
1 at the end of every quarter

using data from the Center for Research in Security Prices (CRSP). We only use ordinary shares

(CRSP codes 10 and 11) and returns from 1926:4 to 2011:4 to build our measure.

Any choice of  is inevitably arbitrary because the theory does not provide guidelines about

which firms are much less vulnerable to constraints. We therefore examine the robustness of our

results to different choices of  To guide our choices we plot the number of firms in the database

in Figure 1. As this figure shows we have about 500 firms in the beginning of the sample in 1925.

Our first choice of  is therefore 250. This choice implicitly assumes that the top 50 percentile

of the firms in market capitalization in 1925 are less constrained than the bottom 50. Naturally,

the number of companies in the U.S. stock market has grown over time and is larger than 500 in

the later part of the sample. The top 250 companies in the later part of the sample nonetheless

still have much better access to financing than the rest of the listed firms. 250
∆ consequently

7



captures the differential evaluation of constrained and less constrained companies over the entire

sample. 250
∆ is computed from 1926:4.9

Our second choice of  is based on the Fama and French (1993) definition of the  factor.

Fama and French (1993) use the median market capitalization of NYSE stocks to define .

We follow their criterion and define 
∆  That is, we set  equal to the number of firms

that have market capitalization above the median NYSE listed stock at time −∆.10 As 250
∆

 
∆ is computed from 1926:4.

Our third choice of  is based on a criteria used by Whited (1992) to proxy for companies

with better access to external financing. Whited (1992) argues that firms with access to the public

debt market are less financially constrained than are firms without access to this market. This

motivates the use of the credit rating information as a proxy for financially constrained firms. We

define 
∆ as in Equation 1 where  is the sum of the market capitalization at time 

of the firms with a long-term credit rating at time  −∆, and −∆ is the sum of the market

capitalization at time −∆ of the firms with a long-term credit rating at time −∆ The credit
rating information is the monthly Standard & Poor’s (S&P) Long-Term Domestic Issuer Credit

Rating from Compustat or RatingsXpress. The credit rating information is much sparse before

1964; we have credit information on fewer than 50 firms prior to this date. As a result, we start

the computation of 
∆ in 1964.

Each of the definitions of  has its own merits and limitations, however they are all con-

sistent in the sense that they generate similar implications. 250
∆ is the simplest definition,

however 250
∆ is perhaps the most ad hoc of the three  


∆ is also ad hoc, but it is

based on a criterion that has been extensively used in the literature. Arguably, 
∆ is the

measure that best matches the theory that we test, however, as we mentioned above, 
∆

cannot be computed for the entire sample period because of data limitations. As we show below,

all versions of  are highly correlated and they lead to similar results. Hence for brevity we

focus our discussion on 250 and only discuss results for  and  if they

9Our definition of size is based on CRSP permnos. Our results are robust to using permcos instead of permnos.
10Note that there is a slightly abuse of notation in this case because  is not constant through the entire sample.

We use  instead of  for purposes of simplicity.
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are different from 250.

2.2 Benchmarks and Controls

We compare the forecasting performance of  with the performance of a series of predictors

proposed in the literature. We focus our choice of benchmarks on predictors that are commonly

used and on those that perform well in-sample according to Goyal and Welch (2008). The sources

for each of these predictor variables are described in Table 1. We use three broad sets of predictors:

interest rate variables, valuation ratios, and macroeconomic variables.

• Interest-rate variables: These are the default spread (DS) and the term spread (TS). DS

is the difference between BAA and AAA bond yields, and TS is the difference in the yield

of the 10-year Treasury note and the 3-month bill. Although Goyal and Welch (2008) find

no evidence that these variables forecast aggregate stock returns even in-sample, we include

them because they are commonly used in the literature (e.g. Fama and French (1989)) and

may predict the other independent variables that we consider.

• Valuation ratios: The valuation ratios we use are the dividend-price ratio (DP) examined
in Fama and French (1988), Campbell and Shiller (1988a) and in many other papers, the

cyclically-adjusted price-earnings ratio (CAPE) from Campbell and Shiller (1988b), the book-

to-market ratio of the Dow Jones Industrial Average index (BM) from Pontiff and Schall

(1998), and the net-payment yield of all stocks using the CRSP data (CRSPNPY) from

Boudoukh, Michaely, Richardson, and Roberts (2007).

• Macroeconomic variables: The macroeconomic variables we use are the consumption-wealth
ratio ( ) from Lettau and Lydvigson (2001), and the investment-to-capital ratio (IK)

from Cochrane (1991). Since Goyal and Welch (2008) find that these variables predict stock

returns in-sample, we include all of them as benchmarks for evaluating ’s forecasting

power.

• Liquidity variable: The liquidity variable we use is the quarterly change in the average of the
Amihud (2002) across all the stocks in the sample. We include Amihud illiquidity measure to

9



our set of benchmarks because Bouwman, Sojli, and Tham (2012) and Naes, Skjeltorp, and

Odegaard (2011) show that Amihud illiquidity measure have some ability to forecast bond

returns and investment growth.

In addition to these benchmark variables, some of our analyses also controls for:

• Real  Growth ():  is the change in logs of the quarterly real seasonally-

adjusted  series from FRED, the online database of the St. Louis Federal Reserve.

• Merger activity: We collect all merger announcements from SDC database to create a variable
that measures M&A activity. This variables is called  and it has value equal

to one when the growth in the number of mergers announced in the last twelve months is

above the median growth of announced mergers and has value zero otherwise.

2.3 Dependent variables

We forecast several variables using  in this paper. These include the equity risk premium and

real private fixed investment growth, returns on the ten size sorted Fama-French portfolios and

investment growth of firms with different sizes. All returns are arithmetic.

• The market risk premium ( ):  is the return of the value-weighted CRSP

index over the risk-free rate. We primarily focus on forecasting quarterly non-overlapping

market excess returns, where returns are measured in excess of the three-month risk-free rate

from the CRSP risk-free rate file. For monthly excess returns, we use returns in excess of the

monthly risk-free rate and for annual excess returns we compound the three-month risk-free

rate to the annual frequency.

• Real Private Fixed Investment Growth (): Similarly, PFIG is the change in logs of

quarterly real (quantity series) seasonally-adjusted private non-residential fixed investment

from the Bureau of Economic Analysis.

• Returns on ten Fama-French size sorted portfolios: These returns are from Wharton Research
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Data Services (WRDS). These are arithmetic quarterly returns in excess of the 3 month risk-

free rate for the ten size sorted portfolios.

• Investment growth on ten size sorted portfolios: We first sum the annual capital expenditure

for all firms with December fiscal year end in each size portfolio for each year. The investment

growth is the change in this aggregate annual capital expenditure for each size sorted portfolio.

As in the Fama-French portfolios, we use NYSE size breakpoints.

2.4 Summary Statistics

Table 1, Panel A displays summary statistics for each of the predictor variables used in this paper.

The mean of 250
1 is −24%. The negative sign of this mean is consistent with the increase in

the importance of smaller firms in the stock market during our sample period. Note that since we

measure  as a difference, we are robust to non-stationarity issues related to the increase in

the share of small firms in the sample over time. The autocorrelation of 250
1 when sampled at

the quarterly frequency is 0702, and 0116 when sampled annually. In addition, Dickey-Fuller tests

reject the unit-root null at the usual significance levels. These autocorrelations are smaller than the

autocorrelation of the benchmark predictors in Panel A. At the quarterly frequency, autocorrelations

of all benchmark variables are above 0.9, while at the annual frequency, autocorrelations are above

0.7. This is important, because prior research finds that the high persistence of predictor variables

used in forecasting aggregate market returns can create statistical problems (e.g. Stambaugh (1999)

and Ferson, Sarkissian, and Simin (2003)). Given ’s relatively low persistence, we do not

expect that the issues described in Stambaugh (1999) and Ferson, Sarkissian, and Simin (2003) are

as serious for  as they are for some commonly used forecasting variables such as dividend-

yield. This conjecture is confirmed in Section 6.1. The low persistence of  is also consistent

with recent evidence in Kelly and Pruitt (2012) who find that their predictor is less persistent than

are traditional variables. Also note that the summary statistics of 
1 and of 

1

are similar to those of 250
1 .

Panel B of Table 1 displays the correlations between250
1   


1 ,

1   250
,
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250
 , annual returns on , and the set of benchmark variables.11 This panel reveals that

the correlation between the three  measures is high, for instance the correlation between


1 and 250

1 is about 0.8. The correlation between 250
1 and  is -0.41.

This relatively high correlation is not surprising because of the conceptual connection between

the returns component of  and the size factor (see Equation 2). This high correlation arises

from the return differential component of , . 250
 has a correlation of -0.79

with , while the capital raising component, 250
 , has a correlation with  of the

opposite sign of 0.39. We show in Section 3.3 that both components are important in forecasting

market returns as well as macroeconomic indicators and that each component by itself is a much

weaker predictor of these variables than is . Also note that 250
 and  are

related but distinct. The difference between the two is that  is the net-payment yield

of all stocks, while 250
 is the difference in net equity issuance between the 250 largest firms

and the market. Covas and Den Haan (2011) show that the latter difference is important for the

cyclical properties of these variables. They find that aggregate issuances for the largest firms are

slightly countercyclical, while small firm issuances are procyclical, with the degree of cyclicality

increasing as size decreases. They also report that issuances by the largest 1% of firms are so large

that they have a significant impact on the aggregate market issuances. Therefore even though

equity issuances are procyclical for an overwhelming majority of firms, they are not procyclical in

aggregate. We see that the correlation between 250
 and  is 0.34. Relative to

other correlations, it is by no means extraordinary; for example,  has higher absolute

correlations with the investment-to-capital ratio .

Figure 2 plots the quarterly time series of 250
1 from 1926:4 to 2011:4 along with NBER

recessions. This plot clearly shows that 250
1 rises during recessions and falls during expansions;

that is, the weight of large firms in the stock market portfolio increases in recessions and decreases

in expansions. The rank correlation of  with quarterly  growth is -24%. This suggests

that in terms of valuations, giant “Goliaths” handle recessions better than small “Davids,” but

that “Davids” outperform “Goliaths” during expansions.

11For purposes of brevity, we do not report the results with 
 , 

   
 , 

 .
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The figure also includes text-boxes that correspond to local maxima or minima of  that are

not in recessions. The text-boxes contain the date of the maxima or minima and proximate events

that had an impact on financial markets. Note that the event may be spread over several months

or occur in a single month proximate to the local maxima or minima. Working chronologically

backwards, the first text-box corresponds to the peak in  in April 2003. The United States

invaded Iraq on March 19, 2003. The next text-box corresponds to a peak in September 1998.

LTCM collapsed in September 1998, and was rescued in a bailout by a group of financial institutions

under the supervision of the Federal Reserve on September 23, 1998. The next peak is in April

1997. In February 1997, the first of many Thai property developers announced a default on a dollar

denominated loan, leading to speculative attacks on the Thai baht, and an eventual lifting of its

peg to the US dollar in July 1997. These events culminated in the “Asian crisis” that impacted

several Asian economies including Indonesia, Malaysia, Singapore and South Korea. The next

box corresponds to a peak in May 1995;  rises from a trough of -9.6% in September 1993

to 0% in January 1994, remaining at that level until its peak of 0.2% in May 1995. This period

corresponds to the “peso crisis” in Mexico. Mexico was forced to allow the peso to float against the

US dollar on December 20, 1994, resulting in a severe devaluation of the peso and a rise in interest

rates on Mexican debt over the next few months. Other notable peaks occur in September 1992

(corresponding to “Black Wednesday” when the United Kingdom withdrew from the Exchange

Rate Mechanism (ERM) due to speculative attacks on the pound), “Black Monday” in October

1987, and August 1939 (on the eve of World War II — Germany invaded Poland on September 1,

1939).

Caballero and Krishnamurthy (2008) present a model in which there is greater “Knightian”

uncertainty in periods of market stress, such as the collapse LTCM and the stock market crash in

October 1987, resulting in a flight to quality. As described above,  has local maxima during

such periods of stock market stress. This suggests that financial market variables such as 

may be better at reflecting discount rate variation than are purely macroeconomic variables, not

only because they are available in real-time, but also because they respond to periods of great

uncertainty, where adverse outcomes may not be eventually realized.

13



Figure 2 also reveals two outliers in 250
1 in 1963 and 1972. These outliers are related to the

creation of the NASDAQ and the AMEX stock exchanges. (Also see the jumps in Figure 1 in these

years.) These events lead to a drop in  as the addition of data from these new exchanges to

the CRSP database increases the total market capitalization of the market. Rather than making

ad-hoc adjustments to  to reflect these events, we leave the  series unchanged and show

in Section 6.1 that ’s forecasting performance is robust to excluding these events.

3 ’s forecasting ability

In this section we document ’s forecasting ability and benchmark it to that of traditional

predictive variables used by prior research. We first examine the ability of  and our benchmark

variables to forecast stock market excess returns and private fixed investment growth. Section 3.1

performs an in-sample analysis, while Section 3.2 performs an out-of-sample analysis. These sections

examine univariate forecasting regressions with no controls and allows us to compare the forecasting

ability of  with that of the benchmark variables. Section 3.3 analyzes which component of

 drives its forecasting ability.

3.1 In-sample forecasting

We run the following forecasting regression:

+∆ = +  ×  + +∆ (3)

where +∆ is one of the following: the excess return of the value-weighted market portfolio from

 or investment growth. All predictor variables are known prior to the start of month . The

predictor variables are described in Panel A of Table 1.

We run the regression above for quarterly (∆ = 3 months) and annual (∆ = 12 months) fore-

casting periods. We forecast at the quarterly horizon to follow Rapach, Strauss, and Zhou (2010)

in estimating this regression with non-overlapping returns. This is important because Ang and

Bekaert (2007) show that the evidence of predictability with overlapping dependent variables de-
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pends crucially on the choice of standard errors in forecasting regressions. (We use Newey-West

standard errors with 3 lags for our non-overlapping quarterly regressions.) We therefore estimate

the forecasting regression at the quarterly non-overlapping frequency, as they is the cleanest setup

in terms of statistical tests. We also forecast at the annual forecasting horizon because although

longer horizon regressions do not help in establishing predictability statistical significance, they help

in understanding the economic significance of predictability (see Cochrane (2001)). We use Newey-

West standard errors with 6 lags for our annual forecasting regression with quarterly overlapping.

We perform robustness tests such as alternative specifications for standard errors in Section 6.1 .

Table 2 shows the results of the regression above. Overall,  is the only variable that

significantly forecasts both aggregate market returns and Real Private Fixed Investment Growth

at the quarterly horizon at 5% significance. The next best predictor in terms of the number of

series forecasted is the CAPE, which predicts market returns and investment growth at 10%. 

also forecasts both aggregate market returns and investment growth at the annual forecasting

frequency. The only predictors that forecast both dependent variables at the annual frequency are

the investment-to-capital ratio () and the term spread ().

The results in Panel A of this table indicate that 250 is a significant predictor of market

excess returns at the quarterly non-overlapping frequency, with an 2 of 3.3%. Campbell and

Thompson (2008) present a simple metric to gauge the economic significance of return predictability:

the increase in expected returns of a mean-variance investor from observing the predictor variable.

Using this metric, a quarterly 2 of 3.3% results in an increase in expected returns of 2.8% per year

for an investor with a risk aversion coefficient of 5.12 The 2s of 250’s forecasting regressions

for market returns are generally higher than those of regressions that use the benchmark variables.

The only exception is  from Pontiff and Schall (1998).13. This result is also consistent with

the findings in Perez-Quiros and Timmermann (2000), which imply that  increases in

economic downturns when discount rates are high and should therefore predict high aggregate

12Note that although investor utility increases, the increase is less than that implied by the increase in expected

returns alone, since there is also an increase in volatility due to greater investment in the risky asset.
13The results in this panel for the benchmark variables are, in general, consistent with those in Goyal and Welch

(2008), except for the results related to  , where our 2s are lower. However, we find similar results using 

as those in Goyal and Welch (2008) if we use the same period as they do.
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stock market returns in such times.

250 predicts investment growth with2s of 6.9%. This result is consistent with the financial

accelerator theory which predicts that investment will decline following an increase in credit con-

straints. The default spread (DS) and Amihud illiquidity (AMI) are the only benchmark variables

that predict investment growth, with 2s of 12.5% and 4.3% respectively. Our results regarding

the Amihud illiquidity are consistent with those in Naes, Skjeltorp, and Odegaard (2011), while

the results regarding the default spread are consistent with the financial accelerator hypothesis. It

is also interesting to notice that  is a strong predictor of investment growth with a 2s

of 18.4%.

3.2 Out-of-sample forecasting

Goyal and Welch (2008) argue that it is important to examine whether models forecast out-of-

sample for two reasons. First, out-of-sample regressions allow us to investigate whether forecasting

relationships are stable over time, and second, they also help determine whether an investor could

have used these relationships profitably in real-time. Table 3 reports results for out-of-sample pre-

dictions for aggregate market returns and investment growth using  and each of the benchmark

variables in univariate predictions. These are based on expanding window estimations, with the

evaluation period starting in 1975:1 and rolling forward quarterly for the two series. We do this

analysis at the quarterly and yearly forecasting horizons. We choose 1975 as our initial start date

so that we would have at least 20 years for the initial estimation of all predictive regressions, as

well as to eliminate any effect that the 1973-1974 oil crisis might have had in the out-of-sample

forecasting. We report the out-of-sample 2 as constructed in Campbell and Thompson (2008).

The out-of-sample 2 for variable  in Table 3 is given by  2 = 1 −
P

=( − b)
2 P

=(−)
2, where  is one quarter (year) after the end of the sample of predictor variable

 for the quarterly (annual) forecasting horizon, b is the forecasted market returns based on

variable ,  is the mean of the equity premium from the beginning of the sample until −1, and
 is 1975:1. Section 6.2 shows that the forecasting ability of  for the market is robust to

alternate start dates. We follow Goyal and Welch (2008) in using the McCracken (2007) MSE-F to
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evaluate the statistical significance of out-of-sample predictive ability.

Table 3 shows that  is a far better out-of-sample predictor than any of the benchmarks.

All  measures (250   as well as ) forecast the two series out-of-

sample at the annual and quarterly forecasting horizon. The next best predictor is the default

spread that predicts investment growth and stock returns at the annual forecasting horizon at ten

percent statistical significance. However, the default spread does not predict market returns at

the quarterly horizon. Specifically, 250’s out-of-sample 2 for market returns is 6.4% and

none of the benchmarks have positive out-of-sample 2 in predicting quarterly market returns. Of

the benchmark variables. All versions of  successfully predict quarterly investment growth

with OOS 2 of 5.6% for 250, 10.0% for  and 18.3% for . In the

set of benchmark predictors, only the default spread has positive OOS 2 (14.1%). At the annual

forecasting horizon, all the versions of  forecast both investment growth and aggregate market

returns. 250’s out-of-sample 2 for market returns is 7.3% and for investment growth is 10.3%,

both of which are statistically significant at 1% level. DS’s out-of-sample 2 for market returns is

2.0% and for investment growth is 2.7% and they are statistically significant at 10% level. The

illiquidity measure (AMI) also forecasts investment growth at annual frequency with an out-of-

sample 2 equal to 2.4% significant at 1% level.

Overall, the results in this section are consistent with Perez-Quiros and Timmermann (2000)

results, along with Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) models. That

is, the relative valuation of large companies with respect to the market portfolio () captures

time-variation in business conditions and therefore predicts time-variation in discount rates and

investment growth.

3.3 The source of ’s strong forecasting ability

As described in Section 1,  can be written as the sum of two components. The first com-

ponent, , is the difference in returns (excluding dividends) of the largest firms and the

entire market. The second component,  , is the difference between the growth in the

capitalization of the largest firms due to new capital raised and the growth in the entire market
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capitalization due to capital raising. Net new capital is calculated implicitly. For example, net new

capital for the largest firms is the aggregate market capitalization at time  of largest firms at the

end of month − 12, minus the sum of the market capitalizations of these firms at the end of − 12
grown by their respective returns in the period excluding dividends.

In this section, we test to see whether ’s forecasting ability arises solely from one of these

components or whether both components are required. This question is important in understanding

the mechanism underlying’s forecasting power, particularly in light of the fact that  does

not forecast aggregate market returns. Moreover, if only one of the components is important, we can

refine  to reflect only that component. Note that the financial accelerator hypothesis suggests

that both components should predict future economic activity and market returns. Positive values

for  mean that small firms have had lower returns than large firms, potentially indicating

that the market expects access to external finance to be more difficult; similarly, high values for

 imply that small firms have raised less net new capital as compared with large firms,

consistent with external finance becoming more expensive for these firms.

The first panel of Table 4 shows that both components are important in predicting quarterly

market returns. Each component is significant when both are used together to predict market

returns. Also, imposing equal coefficients, as we implicitly do when using , does not hurt

predictive power. A formal test of the hypothesis that the coefficients of 250
 and 250



are equal is not rejected (p-value 0.24). The 2 is 3.3% with  and 3.5% when both components

are used separately. The coefficient on each component in univariate forecasting regressions is not

as large as when both components are used together. The coefficient on 250
 rises from 0.67

to 0.92 when 250
 is added. Similarly, the coefficient on 

250
 goes from 0.36 to 0.65 when

250
 is added. Overall, these results indicate that the functional form of  is appropriate.

In the final specification, we find that the coefficient on  is insignificant when used to

predict market returns by itself. Note that although  is correlated with 250
, 

250


has significant forecasting ability by itself, whereas  does not. This suggests that focusing on

the largest stocks like 250 does, helps in predicting market returns relative to  which is
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based on the median NYSE firm.14 The final specification shows that  significantly predicts

market returns when we also include the capital-raising component of ,  . This

reinforces the importance of using both components in forecasting market returns. This result may

explain why prior research on  has not uncovered its forecasting ability for market returns.

The second panel of Table 4 shows that both components are important in predicting quarterly

investment growth. The forecasting results in Panel B of Table 4 are qualitatively similar to those

in Panel A. The only clear difference is that  does not forecast investment growth by

itself (t-statistic equal to -1.37). However, in the same way as in Panel A,  help the

forecasting investment growth when it is combined with 

One intuitive explanation for these results is that both components of  capture different

aspects of the same underlying phenomenon and therefore reinforce each other. When small firms

have lower returns than large firms it possibly indicates that the market expects a period of economic

stress, with costly external capital. When this is combined with lower net capital raised by small

firms relative to large firms, this further confirms that capital is costly and that the low relative

returns are not because of other reasons.

An interesting feature of  and  is their covariance structure. Panel C of

Table 4 shows that the coefficient of  on a regression of  on  is

negative and statistically significant (t-statistic equal to −552) indicating that the covariance be-
tween  and  is negative. This negative covariance is the econometric reason

for the increase in coefficients going from univariate to bivariate prediction regressions. The fact

that both components forecast market returns and investments in the same direction suggests that

news about economic distress affects them in the same way. Therefore, the negative correlation

must arise from effects that are not related to future aggregate economic activity but are per-

haps related to firm or industry specific news. For example, larger firms may raise more capital

for investments as a response to large positive returns of smaller companies. In this case, the

covariance between  and  is negative because the difference in covariances,

14 In untabled results, we find that 
 and 

 do not predict market returns by itself either. The

point estimate of 
 coefficient predicting market returns by itself is 0.64 with a t-statistic of 1.4. The

point estimate of 
 coefficient predicting market returns by itself is 0.22 with a t-statistic of 1.12 for a

sample period starting in 1964
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[
∆   ] − [

∆  ] is negative. Another related example is the

one of a consolidation wave in an industry that may cause potential acquirers (large firms) to raise

capital at same time that the returns of targets (small firms) are high. This would lead to a

negative correlation between  and  even when both are positively correlated

with future market returns.

A full exploration of the economic reasons behind the negative sign of the covariance between

 and  is not the objective of this paper. We however offer some preliminary

evidence that this negative covariance has an underlying economic rational. We do so, by examining

whether the coefficient of  in the regression of  on  changes during

periods of high M&A activity.15 Specifically, we measure M&A activity with a dummy variable

called  which has value equal to one when the growth in the number of mergers

announced in the last twelve months is above the median growth of announced mergers. Then we

regress  on  and interacted with   The third column

of Panel C of Table 4 shows the results of this regression. These results indicate that in fact the

negative coefficient of  is largely driven by periods in which  is one.

4 Is ’s forecasting ability countercyclical?

We have shown in Section 3.1 that  significantly predicts investment growth in univariate

forecasting regressions; in this section we examine whether ’s forecasting ability survives

additional controls. In particular, the Bernanke and Gertler (1989) model implies that an increase

in  is correlated with greater difficulty in accessing external finance and should therefore

predict lower aggregate investment even when we control for current economic conditions, including

expected market returns. This implication highlights the difference between the financial accelerator

hypothesis and the Q-Theory of investments. In fact, the Q-Theory of investments implies that

higher expected returns should be associated with lower aggregate investment. Consequently, it is

possible that  forecasts investment growth because it forecasts aggregate market returns. As

a result it is interesting to analyze whether  ability to forecast investment growth is due to

15The sample period for this regression starts in 1985 because data on merge activity before this date is sparse.
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its ability to forecast market returns. In addition, the Bernanke and Gertler (1989) model implies

that the financing constraints bind in recessions. We therefore examine whether ’s effect on

market returns is asymmetric in recessions versus expansions.

Table 5, Panel A shows the regressions predicting investment growth and market returns using

. The Bernanke and Gertler (1989) model also implies that credit constraints bind during

periods of low economic growth, which in turn implies that 0s forecasting ability should be

higher during such times. We test this hypothesis using a dummy variable, LowGDP. LowGDP

is one if the prior quarter’s (quarter  when predicting returns for quarter  + 1) GDP growth is

below its time-series median and zero otherwise. We include LowGDP, as well as an interaction

of LowGDP with  as predictive variables to forecast the two dependent variables we consider

in this paper. We find that the interaction is of the expected sign and is statistically significant

for both investment growth and market returns. In particular, the coefficient for predicting market

returns on  is 0.264 (t-value 1.26) and that on the interaction of  with LowGDP is 1.113

(t-value 2.99). That is in periods of low GDP growth, the impact of a change in  on future

market returns is 1.377, which is more than five times the coefficient on  when GDP growth

is above its median. Thus, expected market returns are only sensitive to changes in  in bad

times. This asymmetry is predicted by the Bernanke and Gertler (1989) model, since financing

constraints bind during downturns in the model. Similarly, the interaction term is significant in

predicting investment growth. Overall, these results strongly support the hypothesis that ’s

forecasting ability is more pronounced in recessions than in expansions.

Table 5, Panel B examines whether ’s ability to predict quarterly and annual investment

growth is related to time-variation in risk premium. We use two methodologies to address this

question. The first methodology is to decompose  into two components:  is the value

of  predicted by future market return and  is the component of  orthogonal

to  We then regress future investment growth on these two components. Specification 1

Table 5, Panel B shows the results of this regression done at both quarterly and annual forecasting

horizon. The results indicate that  forecasts investment growth while  does not.

The second methodology is to predict the market risk premium with the regression:
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+1+∆ = + ×  + ×  + ×  + +∆ (4)

 is the predicted market risk premium and  is the residual. We then regress invest-

ment growth on  ,  and  The results indicate that the predicted market risk

risk premium does not forecast investment growth at quarterly frequency, it forecasts investment

growth however at ten percent significance using annual forecasting frequency. The results also

show that neither  nor  subsumes 0 ability to forecast market returns. Over-

all, the results of both methodologies indicate that 0 ability to forecast investment growth is

not due to its ability to forecast market risk premium. This is interesting because an alternative

to the financial accelerator hypothesis to explain the relation between financial market shocks and

investment growth is the Q-Theory of investment. Specifically, the Q-Theory indicates that invest-

ment decreases when market risk premium increases, the financial accelerator hypothesis, on the

other hand, implies that investment decreases because some firms are financially constrained during

downturns. The results in Table 5, Panel B are consistent with the implications of the financial

accelerator hypothesis but they are not consistent with the Q-Theory of investments.

5 Are small firms more sensitive to changes in ?

Both the Kiyotaki and Moore (1997), and Bernanke and Gertler (1989) models predict that small

firms are likely to be more financially constrained than large firms. Credit constraints impact

investment through the value of collateral in these models. As Bernanke and Gertler (1989) and

Kiyotaki and Moore (1997) note, firms with a high fraction of assets that are difficult to collateralize

will find it harder to access external capital during downturns. This suggests that small firms will

be more sensitive to changes in , as compared to large firms that have a greater fractions of

assets in place.

Table 6, Panel A presents results of predicting quarterly excess returns for ten size sorted

portfolios using GVD. Portfolios are formed based on NYSE size breakpoints. The results indicate

that the coefficients on  increase from large to small stocks portfolios. Note that since large
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stocks are less volatile than small stocks, the2 in regressions predicting returns of the largest stocks

portfolio is amongst the highest of the ten size sorted portfolios at 3.2%. This indicates ’s

success in predicting value-weighted market returns stems from its ability to predict the largest

stocks in the economy. A possible way to explain 0 ability to forecast the returns of size-

sorted portfolios is that 0 forecasts market returns. To address if this is indeed the case, we

forecast the returns of size-sorted portfolios with the component of  that is related to future

market returns ( ) and with the component of  that is orthogonal to future market

returns () The results indicate that  forecasts the returns of size-sorted portfolios

because it forecasts market returns.

Table 6, Panel B shows the results of forecasting investment growth for firms in each size decile.

The results indicate that small firms investments are more sensitive to changes in  consistent

with the hypothesis that firm size is related to access to external sources of finance. Interestingly,

the results with respect to investment growth contrast with those related to returns because the

component of  that forecasts investment growth is the one orthogonal to market risk premium

()

6 Robustness

In this section, we provide a detailed analysis of ’s ability to predict market returns. There is a

long literature that highlights statistical issues related to aggregate stock market return predictabil-

ity. We examine whether ’s ability to predict market returns is robust to these critiques, as

well as other possible critiques specific to . Section 6.1 examines in-sample prediction of

market returns, while Section 6.2 examines out-of-sample prediction.

6.1 Predicting market returns in-sample

As another test of ’s forecasting power, we analyze whether  merely summarizes the

information that is already contained in predictor variables that are traditionally used in the litera-

ture. To do so, we run multivariate, in-sample, quarterly, non-overlapping regressions of aggregate

stock market returns and investment growth on our set of benchmark predictors and  The
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results of these regressions are in Table 7. We examine three groups of predictor variables: interest

rates, valuation ratios, and macroeconomic variables. We also combine these predictors into two

“Kitchen-sink” regressions. The first one contains all variables for which we have a long sample of

data (1927:2 onwards) and the second contains all variables, thereby shortening its sample (1952:2

onwards). The hypothesis that the coefficient on  is equal to zero is rejected at the usual

significance levels in all regressions in Table 7. The coefficient on  changes very little across

specifications as well. These results confirm that  contains information relevant for forecasting

aggregate returns and investment growth that is not in the usual predictors in the literature.16

Table 8 reports results of regressions predicting market excess returns with. Panel A shows

that ’s statistical significance in forecasting quarterly market returns is robust to alternative

specifications of standard errors. We report Ordinary Least Squares (OLS), Stambaugh bias-

corrected (coefficients and standard errors) as well as Newey-West standard errors. We use the

Amihud and Hurvich (2004) method to correct for the Stambaugh bias. The results in this panel

reveal that there is only a small difference between the point estimates and the standard errors

obtained with OLS compared to those obtained with the Stambaugh correction. This contrasts

strongly with the results in Stambaugh (1999) using dividend-yield as the equity premium predictor.

To understand the difference, note that this bias is due to the fact that [+∆|+∆ ] 6= 0 in
the regressions +∆ = +  ×  + +∆ and +∆ =  + ×  + +∆, where  is either the

dividend-yield or 250
1 . The relatively large bias in the forecasting regression when dividend-

yield is the predictor is because  is relatively large and variations in the dividend-yield are mostly

due to variations in prices rather than in dividends, hence [+∆|+∆ ] is further away from

zero. On the other hand,  is not as persistent as aggregate dividend-yield, and variations in

 are due to variations in both the market-price level and the valuations of large firms, thereby

reducing the bias considerably.

Panel B of Table 8 shows the results of the forecasting regression above for different sample

periods. Goyal and Welch (2008) note that many of the equity premium forecasting regressions

16 In unreported results we find the ’s forecasting performance is unaffected by controlling for two other

variables evaluated by Goyal and Welch (2008), net equity expansion () and the cross-sectional premium ()

from Polk, Thompson, and Vuolteenaho (2006).
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commonly described in the literature are not robust to different sample periods. We therefore look

to see if this is the case with  and find that ’s forecasting power for the early sample

period (1927:1 to 1955:2) is weaker than that for later periods. The coefficient on  in the

early sample period is borderline insignificant with a t-statistic of 143 and a p-value of 15% while

the 2 is 25% compared with 68% and 38% for the periods from 1955:3 to 1983:3 and 1983:4

to 2011:4, respectively. The improvement in the forecasting ability of  over time is perhaps

related to the change in the sample composition of publicly listed firms documented by Fama and

French (2004). Over the later part of the sample, smaller, less profitable firms have been able to list

on public equity markets. The valuations of these firms are likely to be more sensitive to shocks to

financial access, thereby improving the performance of  in capturing discount rate variation.

Panel C examines whether all three versions of  also forecast monthly market returns. We

find that all three versions are significant, with slightly higher 20s for 250 and 

as compared to that of .

Panel D presents an analysis of the robustness of ’s forecasting power. To do this, we

estimate different variations of the regression forecasting quarterly market excess returns. The

first two specifications explore robustness to the inclusion of data from new exchanges. In the

first year of the NASDAQ and the AMEX, the denominator of  increases substantially, as

the capitalization of the overall market increases with the inclusion of new firms; however, the

numerator is unaffected, leading to drops in . The first specification includes a dummy

variable (NEWEX) that has a value of one in the years in which NASDAQ and AMEX stocks

are included in the CRSP database. The next specification excludes the two years in which these

exchanges are included in the CRSP universe. The coefficient on  is virtually unaffected

across these specifications. Specification “Ex-1970s” excludes the 1970s to examine the importance

of the oil shocks, and specification “Ex-Internet” ends the sample in 1997:1 to remove the influence

of the Internet period. These specifications show that ’s forecasting ability is not driven by

these influential periods. Specification “FF” adds returns on the three Fama-French factors, the

market, , and  over the prior year. The annual horizon is chosen to mimic the period

used in computing . We include the market to examine whether persistence in market returns
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(as in Connolly and Stivers (2003)) or lead-lag relations between small and large stocks (as in

Lo and MacKinlay (1990)) drives our results. The coefficient on  is unaffected—and in fact

increases slightly—in this specification and none of the annual returns on the Fama-French factors

are significant. Finally, we skip a quarter between measuring  and forecasting returns: 

is computed from month  − 12 to  − 1, and market returns are from  + 2 to  + 5, skipping a

quarter. This provides another method of ruling out the hypothesis that lead-lag effects or other

microstructure biases affect our results. The coefficient on  drops from 0.76 to 0.55, but

retains its statistical and economic significance in this specification.17

Overall, these regressions show that the forecasting power of  is robust:  remains

a significant predictor of market excess returns in all specifications. ’s forecasting power

is robust to alternate definitions for , monthly and annual horizons, and is not due to the

inclusion of new exchanges in the CRSP universe, the oil crisis, the internet period, or lead-lag

relations between large and small stock returns.

6.2 Predicting market returns out-of-sample

To analyze ’s out-of-sample forecasting power, we follow the Goyal and Welch (2008) method-

ology. Specifically, for each quarter ( ), we calculate∆ =
P

=(−)
2−P

=(−b)
2 where  is the mean of the equity premium from the beginning of the sample (1927:1) until

 − 1 b is the equity premium forecasted with an OLS regression of aggregate market returns on

, which is estimated with the sample from 1927:1 to  − 1, and  is the beginning of the

out-of-sample period.

Figure 3 plots ∆ as a function of time  , for quarterly predictions in Panel A, and annual

predictions (with quarterly overlap) in Panel B. We set tOOS=1947:1, allowing for a 20-year initial

training sample. Negative values of ∆ in this figure imply that  is worse than the

running-mean equity premium in forecasting market excess returns out-of-sample. On the other

hand, positive values of ∆ imply that  has a better forecasting performance than the

running-mean equity premium. This figure shows that the out-of-sample forecasting performance

17 In unreported tests, we find that  is significant in predicting quarterly market returns even after skipping

up to three quarters, though the coefficients diminish in magnitude.
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of  has been better than that of the running mean since the 1970s. Note that in 1962 the

forecasting performance of  deteriorates substantially due to the inclusion of AMEX stocks

in the CRSP universe. On the other hand, the 1973-1974 oil crisis along with the inclusion of

NASDAQ stocks in 1972 improves ’s forecasting performance. We therefore investigate the

statistical significance and robustness of our out-of-sample results to different start dates for the

evaluation period in Table 9.

Table 9 reports out-of-sample 2 for evaluation periods beginning every decade from 1947:1 to

1987:1.18 Although out-of-sample 2s vary across periods, they are uniformly positive for, 250

and  in quarterly predictions in Panel A and annual (with quarterly overlap) predictions

in Panel B. In order to evaluate the statistical significance of these results, we report p-values for

the MSE-F test of equal predictive ability in McCracken (2007). The null hypothesis in this test is

that two nested models have equal predictive ability out-of-sample, and the one-sided alternative

is that the more complex model has better predictive ability. We test whether  (the historical

market mean) and b (the prediction from ) have equal predictive ability for market excess

returns. Both out-of-sample forecasts utilize expanding-window estimation periods. The p-values in

Panel A are asymptotic values from McCracken (2007). P-values in Panel B are from a bootstrap

procedure, similar to that in Goyal and Welch (2008), except that we use a block bootstrap to

account for the quarterly overlap in annual market returns.19 We can reject the hypothesis that

 and the running-mean have equal predictive ability, in favor of , for all specifications.

7 Conclusion

We show that the relative valuation of small and large firms is a real-time indicator of aggregate

economic conditions. Large firms are able to withstand recessions better than small firms, and their

valuations reduce by less during such times. This is consistent with the implications of financial

accelerator hypothesis, which states that following adverse economic shocks, the decline in value

of small firm balance-sheets makes it harder for small firms to access external finance leading to a

18Table 9 does not report out-of-sample 2 using  because  time series is shorter.
19We use a block length of 4, which is of the order of magnitude of 025 (see Hall, Horowitz, and Jing (1995)). We

get similar results for block lengths between 1 and 8.
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decrease in aggregate investment and an amplification of the original shock.

’s forecasting performance is impressive. We show that  predicts market returns

and investment growth. We find that all the usual predictors of quarterly aggregate stock market

returns have negative out-of-sample 2s, while  is the only predictor that has a positive out-

of-sample 2. In fact, ’s out-of-sample 2 is not only positive but is also economically highly

significant. Moreover,  is the only predictor that forecasts market returns and investment

growth both in sample and out-of-sample at annual and quarterly forecasting horizon.

 has two components, one component is the difference in the returns of large firms and of

the market, the other component is the difference in the growth of large firms and of the market due

to capital raising.  strong forecasting ability stems from the combination of its components.

Each of 0 components can be seen as a forecast of future economic activity plus some noise.

The combination of both components in  has higher signal-to-noise ratio because the noise

pieces in each of the 0 components are negatively correlated.

The results of our tests support the financial accelerator theory. We show that  pre-

dicts returns and investment growth of size sorted portfolios, and that  forecasting ability is

countercyclical. Moreover, consistent with the financial accelerator hypothesis, 0 ability to

forecast investment growth is robust to controlling for the predicted equity premium. This result

highlights that  ability to forecasting investment growth is not explained by the Q-Theory

of investment, which implies that investment growth decreases with market risk premium. We

also show that ’s ability to forecast market returns is robust to standard critiques in the

predictability literature and is not due to information contained in traditional variables, such as

 and net payout.

In conclusion, ’s strong forecasting ability along with the extent to which our results are

consistent with the financial accelerator hypothesis indicate that shocks to financial access and

fluctuations in real economic activity are strongly tied.
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Appendix A - Decomposing 

In this appendix we show that 
∆ can be decomposed in two components. One component

is the difference in ex-dividend returns of the portfolio with  stocks and of the market portfolio.

The second component is the difference in capital raised by the  largest firms in −∆ and the
capital raised by the rest of the market. To see this note that:


∆ = ln(




)− ln(−∆

−∆
) (5)

Where  is equal to sum of the market capitalization at time  of the  largest firms in the

market portfolio at time  −∆ and  is the sum of the market capitalization at time  of all

the firms in the market portfolio. 
∆ can be rewritten as:


∆ = ln − ln−∆ − (ln − ln−∆) (6)

Note that  =
P

=1(

−∆+∆


 )


 ,  =  or where  

−∆ is the number of shares of the i


firm in the portfolio, ∆ 
 is change in the number of shares between  and −∆  is the price of

the i firm at time , and  is the number of stocks in the portfolio. An algebraic manipulation of

 implies that ln() is equal to ln(
P

=1

−∆


) plus ln(

P

=1(

−∆+∆


 )



P

=1

−∆


)

Substituting this expression for  in the equation above, we get:


∆ = (ln

P
=1


−∆


P

=1

−∆


−∆

− ln
P

=1

−∆


P

=1

−∆


−∆

) + (7)

(ln

P
=1(


−∆ +∆


 )


P

=1

−∆




− ln
P

=1(

−∆ +∆


 )


P

=1

−∆




)

The term within the first parentheses of the equation above is the difference between the ex-

dividend return of the portfolio of large stocks and of the market portfolio. The term within the

second parentheses is the difference between the growth due to share issuance of the portfolio of

large stocks and of the market portfolio. Call 

∆ = ln

P

=1

−∆



P

=1

−∆


−∆ and

29





∆ = ln(

P

=1(

−∆ +∆


 )



P

=1

−∆


) to write:


∆ = (

∆ −
∆) + (


∆ −

∆) (8)


∆ =  + (9)

We implement this decomposition in the data using returns excluding dividends from CRSP,

−12. We first compute the value of capital at time , that existed at time − 12,  
 as:


 =

X
=1

−12(1 + −12) (10)



∆ = ln(




−12
) (11)

where  =  orWe compute  from 
∆ and 


∆We compute net new capital

as:


 =  − 

 (12)

where  =  or  We compute  from 
 and  as described above.
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Table 1: Summary statistics

Panel A: Summary statistics
Start End Source Mean Std Min Max ρ1 Qtr ρ1 Ann

GVD250 1926:4 2011:4 This paper -0.02 0.03 -0.12 0.07 0.70 0.11

GVDMedian 1926:4 2011:4 This paper -0.02 0.02 -0.14 0.02 0.72 0.10
GVDCredit 1926:4 2011:4 This paper -0.02 0.04 -0.16 0.14 0.73 -0.05
DS 1926:3 2011:4 FRED 0.01 0.01 0.00 0.06 0.90 0.71
TS 1926:3 2011:4 Shiller 0.02 0.01 -0.04 0.05 0.85 0.60
DP 1926:3 2011:4 Shiller -3.33 0.45 -4.50 -1.98 0.97 0.88
CAPE 1926:3 2011:4 Shiller 17.46 7.22 5.57 44.20 0.97 0.88
CAY 1952:1 2011:4 Lettau 0.00 0.02 -0.04 0.04 0.92 0.72
IK 1947:1 2011:4 Goyal 0.04 0.00 0.03 0.04 0.96 0.73
BM 1926:3 2011:4 Goyal 0.59 0.27 0.13 2.03 0.94 0.84
CRSPNPY 1927:1 2010:4 Roberts -2.14 0.22 -3.14 -1.53 0.95 0.73
AMI 1926:4 2011:4 This paper -0.01 0.44 -1.56 1.14 -0.11 -0.09

This table presents statistics for GVD250, GVDMedian, GVDCredit, and our set of benchmark predictors
for market excess returns. GVD is the change in the log weight of the least constrained firms in the
aggregate market portfolio over the last 12 months. The least constrained firms are the largest 250
firms (GVD250), firms larger than the NYSE median (GVDMedian ), or firms that have a credit rating
(GVDCredit). The benchmark predictors include interest rate variables, DS and TS (default and term
spreads); valuation ratios, DP, CAPE, BM, CRSPNPY (dividend to price, cyclically adjusted price to
earnings, book-to-market of the DJIA, and log net payout of all CRSP stocks); macro variables, CAY
and IK (consumption-wealth ratio, and investment-to-capital ratio); and AMI (quarterly changes in
the average of the Amihud illiquidity measure across all stocks). Panel A presents summary statistics.
These include mean, standard deviation, minimum and maximum. Panel A also presents
autocorrelations at quarterly (overlapping for GVD) and annual (non-overlapping) horizons. Panel B
presents correlations between GVD250, GVD500, GVDOLD, GVDNEW, annual returns on the Fama-
French factors, MKTRF12, SMB12, HML12, and the benchmark predictors. GVDOLD and GVDNEW
are the two components of GVD. GVDOLD is the difference in returns on existing capital between the
top 250 firms and market, and GVDNEW is the difference in net equity issuance between the top 250
firms and the market. Web addresses for the sources of each of the benchmark predictors are:
FRED: http://research.stlouisfed.org/fred2/
Shiller: http://www.econ.yale.edu/~shiller/data.htm
Goyal: http://www.hec.unil.ch/agoyal/
Roberts: http://finance.wharton.upenn.edu/~mrrobert/



Table 1: Summary statistics (contd.)

Panel B: Correlations
GVD250GVDMedian GVDCredit

GVDOLD GVDNEWMKTRF12SMB12 HML12 DS TS DP CAPE CAY IK BM NPY AMI

GVD250 1.00 0.89 0.62 0.61 0.38 -0.27 -0.51 -0.21 0.26 -0.09 0.18 -0.17 0.12 -0.05 0.14 0.26 0.10

GVDMedian 0.89 1.00 0.69 0.39 0.67 -0.26 -0.31 -0.15 0.19 0.01 0.21 -0.26 0.03 -0.20 0.24 0.32 0.10

GVDCredit 0.62 0.69 1.00 0.37 0.39 -0.39 -0.42 0.34 0.19 0.06 0.18 -0.20 0.15 -0.11 0.10 0.23 0.13
GVDOLD 0.61 0.39 0.37 1.00 -0.31 -0.33 -0.89 -0.21 0.34 -0.17 -0.09 0.11 0.21 0.11 -0.19 -0.10 0.29

GVDNEW 0.38 0.67 0.39 -0.31 1.00 -0.07 0.30 0.07 -0.06 0.08 0.34 -0.39 -0.22 -0.26 0.45 0.42 -0.10
MKTRF12 -0.27 -0.26 -0.39 -0.33 -0.07 1.00 0.26 0.05 -0.46 -0.03 -0.17 0.18 -0.03 -0.19 -0.17 -0.08 -0.33
SMB12 -0.51 -0.31 -0.42 -0.89 0.30 0.26 1.00 0.03 -0.28 0.25 0.02 -0.10 -0.21 -0.03 0.15 0.08 -0.23
HML12 -0.21 -0.15 0.34 -0.21 0.07 0.05 0.03 1.00 -0.33 0.07 0.03 -0.08 0.05 0.06 0.11 0.10 -0.08
DS 0.26 0.19 0.19 0.34 -0.06 -0.46 -0.28 -0.33 1.00 -0.25 0.06 0.02 -0.03 0.18 -0.02 -0.13 0.22
TS -0.09 0.01 0.06 -0.17 0.08 -0.03 0.25 0.07 -0.25 1.00 -0.07 -0.09 0.18 -0.45 -0.04 0.05 -0.08
DP 0.18 0.21 0.18 -0.09 0.34 -0.17 0.02 0.03 0.06 -0.07 1.00 -0.85 0.04 -0.17 0.84 0.80 0.12
CAPE -0.17 -0.26 -0.20 0.11 -0.39 0.18 -0.10 -0.08 0.02 -0.09 -0.85 1.00 0.00 0.17 -0.91 -0.74 -0.09
CAY 0.12 0.03 0.15 0.21 -0.22 -0.03 -0.21 0.05 -0.03 0.18 0.04 0.00 1.00 -0.09 -0.16 0.04 0.06
IK -0.05 -0.20 -0.11 0.11 -0.26 -0.19 -0.03 0.06 0.18 -0.45 -0.17 0.17 -0.09 1.00 -0.05 -0.25 0.17
BM 0.14 0.24 0.10 -0.19 0.45 -0.17 0.15 0.11 -0.02 -0.04 0.84 -0.91 -0.16 -0.05 1.00 0.73 0.07
CRSPNPY 0.26 0.32 0.23 -0.10 0.42 -0.08 0.08 0.10 -0.13 0.05 0.80 -0.74 0.04 -0.25 0.73 1.00 0.05
AMI 0.16 0.10 0.13 0.29 -0.10 -0.33 -0.23 -0.08 0.22 -0.08 0.12 -0.09 0.06 0.17 0.07 0.05 1.00



Table 2: Predicting stock market returns and investment growth in sample

Panel A: Predicting market excess returns

a b R2 N a b R2 N
GVD250 0.038*** 0.757*** 3.3% 340 0.136*** 2.283*** 7.2% 337

GVDMedian 0.042*** 1.021*** 3.2% 340 0.156*** 3.468*** 9.2% 337

GVDCredit 0.021** 0.376** 3.3% 191 0.081*** 1.188** 7.6% 188
DS -0.005 2.170 1.9% 340 0.016 5.733 3.2% 338
TS 0.010 0.594 0.5% 340 0.036 2.810** 2.6% 338
DP 0.133** 0.034* 1.8% 340 0.528*** 0.134** 6.9% 338
CAPE 0.059*** -0.002** 2.1% 340 0.247*** -0.009*** 8.8% 338
BM -0.030 0.084** 4.0% 340 -0.087 0.286*** 11.1% 338
NPY 0.188*** 0.079** 2.4% 336 0.819*** 0.345*** 11.2% 336
CAY 0.017*** 0.826*** 2.7% 239 0.069*** 3.190*** 8.4% 236
IK 0.160*** -3.996*** 3.0% 259 0.554*** -13.431** 7.1% 256
AMI 0.020*** 0.007 0.1% 340 0.082*** 0.013 0.1% 337

Quarterly (non-overlapping) Annual (quarterly overlap)

This table presents results of regressions of the type:

Yt+t = a + b Predictort + t+t
The dependent variables are: (1) Quarterly arithmetic excess returns of the CRSP value-weighted
index over the monthly risk-free rate, (2) Quarterly real Private Fixed Non-Residential Investment
Growth (PFIG). All regressions have non-overlapping dependent variables. The predictor variables
include interest rate variables, DS and TS (default and term spreads); valuation ratios, DP, CAPE,
BM, CRSPNPY (dividend to price, cyclically adjusted price to earnings, book-to-market of the
DJIA, and log net payout of all CRSP stocks); macro variables, CAY and IK (consumption-wealth
ratio and investment-to-capital ratio); and AMI, (quarterly changes in the average of the Amihud
illiquidity measure across all stocks) . These are described in greater detail in Table 1. All standard
errors are Newey-West (with 3 lags for quarterly and 6 lags for annual regressions). The symbols
***, **, and * represent statistical significance at the 1%, 5% and 10% levels, respectively.



Table 2: Predicting stock market returns and investment growth in sample (contd.)

Panel B: Predicting investment

a b R2 N a b R2 N
GVD250 0.005* -0.216*** 6.3% 260 0.012 -1.033*** 9.6% 256

GVDMedian 0.004 -0.331*** 7.1% 260 0.010 -1.262** 7.0% 256

GVDCredit 0.006** -0.221*** 18.4% 192 0.017 -0.777*** 15.1% 191
DS 0.029*** -1.949*** 12.5% 260 0.085*** -5.171** 5.9% 256
TS 0.010*** 0.006 0.0% 260 0.012 1.473** 4.6% 256
DP -0.014 -0.007 1.5% 260 -0.016 -0.015 0.5% 256
CAPE 0.001 0.000* 2.2% 260 0.018 0.001 0.6% 256
BM 0.016*** -0.010 1.0% 260 0.052* -0.029 0.6% 256
NPY -0.005 -0.007 0.4% 256 0.008 -0.012 0.1% 253
CAY 0.011*** -0.018 0.0% 239 0.036*** 0.709 2.0% 239
IK 0.007 0.101 0.0% 260 0.211** -4.934** 3.5% 256
AMI 0.010*** -0.014*** 0.043 260 0.035*** -0.074*** 8.5% 256

Quarterly (non-overlapping) Annual (quarterly overlap)



Table 3: Predicting stock returns and investment growth out-of-sample

Panel A: Predicting market returns

Variable OOS R2 N OOS R2 N

GVD250 6.4%*** 148 7.3%*** 145

GVDMedian 5.8%*** 148 8.8%*** 145

GVDCredit 3.3%*** 148 6.0%*** 145
DS -0.3% 148 2.0%* 145

TS -2.3% 148 -5.1% 145
DP -5.3% 148 -20.7% 145
CAPE -8.8% 148 -47.1% 145
BM -15.2% 148 -41.3% 145
CRSPNPY -10.6% 145 -49.9% 145
CAY -2.2% 148 -9.3% 145
IK -1.4% 148 -3.8% 145
AMI -0.6% 148 -0.1% 145

Quarterly Annual

This table presents results of out-of-sample predictions of a set of dependent variables using a set of
predictor variables. The dependent variables include: (1) Quarterly arithmetic excess returns of the
CRSP value-weighted index over the monthly risk-free rate, (2) Quarterly real Private Fixed Non-
Residential Investment Growth (PFIG). The predictor variables include versions of GVD, GVD250,
GVDMedian, and GVDCredit, interest rate variables, DS and TS (default and term spreads);
valuation ratios, DP, CAPE, BM, CRSPNPY (dividend to price, cyclically adjusted price to
earnings, book-to-market of the DJIA, and log net payout of all CRSP stocks); macro variables,
CAY and IK (consumption-wealth ratio and investment-to-capital ratio); and AMI (quarterly
changes in the average Amihud liquidity measure across all stocks). These are described in greater
detail in Table 1.We report out-of-sample R2s from expanding window estimations, with the start
date for the evaluation period beginning in 1975:1. Statistical significance is assessed based on
MSE-F tests (McCracken (2007)) of equal predictive ability between using the historical mean
market excess return and the predictor variable. The symbols ***, **, and * represent statistical
significance at the 1%, 5% and 10% levels, respectively.



Table 3: Predicting stock returns and investment growth out-of-sample (contd.)

Panel B: Predicting investment growth

Variable OOS R2 N OOS R2 N

GVD250 5.6%*** 148 10.3%*** 145

GVDMedian 10.0%*** 148 10.4%*** 145

GVDCredit 18.3%*** 148 9.1%*** 145
DS 14.1%*** 148 2.7%* 145
TS -1.9% 148 -9.0% 145
DP -6.2% 148 -6.6% 145
CAPE -9.7% 148 -11.0% 145
BM -13.6% 148 -14.4% 145
CRSPNPY -5.3% 145 -9.4% 145
CAY -2.1% 148 -3.1% 145
IK -0.7% 148 -1.4% 145
AMI -1.7% 148 2.4%*** 145

Quarterly Annual



Table 4: The components of GVD

Panel A: Predicting MKTRF
(1) (2) (3) (4) (5) (6)

Intercept 0.038*** 0.042*** 0.019*** 0.036*** 0.021*** 0.044***
(4.15) (4.14) (3.17) (3.94) (3.17) (4.03)

GVD250 0.757***
(3.74)

GVDOLD 0.645*** 0.361*
(3.16) (1.87)

GVDNEW 0.916*** 0.666*** 0.869***
(3.47) (2.86) (3.25)

LNSMB12 -0.039 -0.101**
(-0.83) (-2.34)

R2 3.3% 3.5% 0.6% 1.7% 0.2% 2.7%
N 340 340 340 340 340 340

Panel B: Predicting PFIG
(1) (2) (3) (4) (5) (6)

Intercept 0.005* 0.004 0.010*** 0.005 0.010*** 0.003
(1.74) (1.09) (4.95) (1.62) (4.52) (0.91)

GVD250 -0.216***
(-3.07)

GVDOLD -0.183** -0.102
(-2.24) (-1.37)

GVDNEW -0.285*** -0.204*** -0.267***
(-4.00) (-3.10) (-4.16)

LNSMB12 0.029* 0.045***
(1.73) (2.66)

R2 6.3% 7.0% 1.3% 3.3% 1.5% 6.7%
N 260 260 260 260 260 260

This table presents results for regressions that predict: (1) Quarterly arithmetic excess returns of the
CRSP value-weighted index over the monthly risk-free rate, (2) Quarterly real Private Non-Residential
Fixed Investment Growth (PFIG). The predictor variables include GVD250 and its two components,
GVDOLD and GVDNEW. GVDOLD is the difference in returns (excluding dividends) between of the top
250 firms and the market over the last year, while GVDNEW is the difference in net new equity capital
issuance between the top 250 firms and the market over the past year. LNSMB12 is the log return on
SMB over the past 12 months. All standard errors are Newey-West (with 3 lags). The symbols ***, **,
and * represent statistical significance at the 1%, 5% and 10% levels, respectively. T-statistics are in
parentheses.



Table 5: Cyclical variations in GVD

Panel A: Forecasting with GDP growth interaction
MKTRF PFIG

Intercept 0.027*** 0.013***
(3.52) (4.32)

GVD 0.264 -0.166**
(1.29) (-2.18)

GVD*LowGDP 1.113*** -0.302**
(2.99) (-2.10)

Low GDP 0.013 -0.020***
(1.05) (-4.26)

R2 6.2% 15.6%
N 258 259

Panel B: Risk premia and investment growth

(1) (2) (3) (1) (2) (3)
Intercept 0.009 0.012*** 0.006 0.047 0.021 -0.005

(0.71) (4.42) (1.64) (1.17) (1.45) (-0.24)
GVDP -0.068 0.458

(-0.13) (0.29)
GVDR -0.222*** -1.135***

(-3.01) (-3.53)
MKTP -0.045 -0.025 0.207* 0.236**

(-0.56) (-0.31) (1.66) (2.00)
MKTR -0.008 0.008 -0.065 -0.013

(-0.33) (0.33) (-1.16) (-0.25)
GVD -0.201** -1.007***

(-2.60) (-2.75)
Rsquare 6.4% 0.2% 6.3% 10.5% 5.2% 16.2%
N 259 239 239 253 236 236

Quarterly Annual

Panel A examines whether GVDs forecasting ability for market excess returns (MKTRF) and real
Non Residential Private Fixed Investment growth (PFIG) is stronger during periods of low GDP
growth. LowGDP is a dummy equal 1 if this quarter’s GDP growth is below its full-sample time-
series median. We predict the next quarter’s MKTRF and INV using GVD and an interaction
between GVD and LowGDP. Panel B examines whether GVD's ability to predict quarterly and
annual INV is related to time-variation in risk premia. We decompose GVD into two components:

GVDt-11,t= a + b Mktrft+1,t+q + ut

where q=3 (12) in quarterly (annual) specifications. GVDP is the predicted value of GVD and
GVDR is the residual. We also predict the market risk premium:

Mktrft+1,t+q = a +b CAYt +c CAPEt + d IKt + vt

MKTP is the predicted market risk premium and MKTR is the residual. Panel B examines whether
GVDP, GVDR, MKTP, and MKTR predict quarterly and annual PFIG. All standard errors are
Newey-West (with 3 lags). The symbols ***, **, and * represent statistical significance at the 1%,
5% and 10% levels, respectively. T-statistics are in parentheses.



Table 6: Predicting returns and investments of size sorted portfolios

Panel A: Quarterly non-overlapping returns (1926-2011)
Small 2 3 4 5 6 7 8 9 BigSm- Big

Specification 1
Intercept 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

(3.28) (3.28) (3.28) (3.28) (3.28) (3.28) (3.28) (3.28) (3.28) (3.28) (3.28)
GVD 1.17 1.13 1.12 1.07 1.07 0.91 0.95 0.86 0.80 0.69 0.49

(2.64) (3.04) (3.22) (3.43) (3.61) (3.27) (3.66) (3.53) (3.51) (3.67) (1.49)
Rsquare 1.5% 1.9% 2.2% 2.7% 2.7% 2.5% 3.2% 3.1% 2.9% 3.2% 0.5%
N 341 341 341 341 341 341 341 341 341 341 341
Specification 2
Intercept 1.12 0.99 0.95 0.84 0.83 0.77 0.72 0.66 0.64 0.52 0.60

(6.86) (7.66) (7.92) (10.51) (9.89) (13.07) (20.97) (30.87) (33.92) (62.62) (3.75)
GVDP 44.98 39.93 38.02 33.61 33.54 30.90 28.78 26.60 25.56 20.93 24.05

(6.78) (7.57) (7.83) (10.35) (9.75) (12.86) (20.66) (30.92) (33.52) (62.08) (3.69)
GVDR -0.31 -0.18 -0.13 -0.04 -0.03 -0.10 0.01 -0.02 -0.05 -0.01 -0.31

(-1.20) (-0.91) (-0.75) (-0.25) (-0.26) (-0.99) (0.08) (-0.23) (-1.08) (-0.18) (-1.07)
Rsquare 71.7% 78.5% 83.0% 85.9% 88.0% 90.9% 94.1% 95.5% 97.2% 97.6% 38.7%
N 340 340 340 340 340 340 340 340 340 340 340

Panel B: Annual non-overlapping CAPEX growth (1974-2011)
Small 2 3 4 5 6 7 8 9 BigSm- Big

Specification 1
Intercept -0.16 -0.07 -0.009 -0.028 -0.004 -0.004 0.006 0.03 0.025 0.05 0.21

(-3.85) (-1.86) (-0.19) (-0.81) (-0.22) (-0.14) (0.30) (1.78) (1.10) (2.77) (7.36)
GVD -2.49 -1.67 -1.46 -1.27 -1.28 -0.96 -0.82 -0.58 -0.48 0.09 -2.59

(-2.28) (-1.72) (-1.26) (-1.37) (-1.76) (-1.94) (-1.86) (-2.22) (-1.01) (0.20) (-3.12)
Rsquare 11.0% 5.6% 4.2% 5.1% 6.5% 3.9% 4.3% 3.4% 1.6% 0.1% 19.2%
N 38 38 38 38 38 38 38 38 38 38 38
Specification 2
Intercept -0.11 -0.04 0.04 -0.03 -0.05 -0.06 -0.14 -0.02 -0.08 0.00 0.11

(-0.36) (-0.12) (0.15) (-0.12) (-0.28) (-0.33) (-0.92) (-0.23) (-0.54) (0.01) (0.47)
GVDP -0.23 -0.30 0.73 -1.06 -2.94 -3.31 -6.72 -2.56 -4.55 -1.93 -1.69

(-0.02) (-0.02) -0.06 (-0.11) (-0.40) (-0.42) (-1.09) (-0.77) (-0.81) (-0.44) (-0.17)
GVDR -2.68 -1.83 -1.66 -1.41 -1.38 -0.88 -0.69 -0.60 -0.417 0.132 2.82

(-2.90) (-2.49) (-1.77) (-1.72) (-2.00) (-1.86) (-1.76) (-2.40) (-0.96) (0.32) (4.08)
Rsquare 11.7% 6.3% 5.0% 6.0% 8.1% 4.3% 9.0% 5.1% 4.2% 0.6% 20.6%
N 37 37 37 37 37 37 37 37 37 37 37

This table presents results of predicting quarterly excess returns (Panel A) and annual investment
growth (Panel B) for 10 size sorted portfolios using GVD. Portfolios are formed based on NYSE size
breakpoints. Investment is annual capital expenditure from January to December, and the sample for
investment growth is restricted to firms with fiscal year ending in December. GVDP and GVDR are
defined as in Table 5. All standard errors are Newey-West (with 3 lags). T-statistics are in parentheses.



Table 7: Multivariate prediction

Panel A: Predicting quarterly non-overlapping market returns
Lags Interest Rate Valuation Macro KS-1 KS-2

Intercept 0.034*** 0.011 -0.099 0.163*** -0.114 0.102
(4.36) (0.58) (-0.64) (3.22) (-0.73) (0.58)

GVD250 0.665*** 0.721*** 0.645*** 0.617*** 0.671*** 0.669***
(3.98) (3.89) (3.21) (3.49) (3.42) (3.92)

L.MKT 0.084 0.071
(1.27) (1.04)

L.PFIG -0.167 -0.086
(-0.77) (-0.31)

TS 0.396 0.977* 0.828*
(0.79) (1.65) (1.79)

DS 1.673 -0.111 0.376
(0.77) (-0.06) (0.18)

NPY 0.039 0.025 -0.025
(0.88) (0.56) (-0.48)

CAPE 0.001 0.002 0.003
(0.28) (0.71) (0.95)

DP 0.126 0.141 0.079
(1.28) (1.56) (1.21)

BM -0.038 -0.021 0.032
(-0.92) (-0.50) (0.55)

CAY 0.682** 0.602
(2.26) (1.48)

IK -3.692*** -3.489
(-2.64) (-1.50)

R2 0.064 0.049 0.070 0.099 0.081 0.128
N 258 340 336 239 336 236
Start date 1947:3 1927:1 1927:2 1952:2 1927:2 1952:2
End date 2011:4 2011:4 2010:4 2011:4 2010:4 2010:4

This table presents results of multivariate regressions that predict the quarterly equity premium
(excess returns of the value-weighted market index over the Treasury bill rate), and quarterly real
private non-residential fixed investment growth, with GVD250 and our set of benchmark
predictors. The benchmark predictors are interest rate variables, DS and TS (default and term
spreads); valuation ratios, DP, CAPE, BM, CRSPNPY (dividend to price, cyclically adjusted
price to earnings, book-to-market of the DJIA, and log net payout of all CRSP stocks); macro
variables, CAY and IK (consumption-wealth ratio and investment-to-capital ratio). We also
include one lag of each right hand side variable. KS refers to 'kitchen-sink' regressions that
include all available risk premium predictors. KS-1 includes all variables available from 1926
and KS-2 includes all variables from 1952 (since the start of the availability of quarterly CAY).
The table also reports the start and end dates for the dependent variable in each regression. The
symbols ***, **, and * represent statistical significance at the 1%, 5% and 10% levels,
respectively. T-statistics are in parentheses.



Table 7:  Multivariate prediction (contd.)

Panel B: Predicting quarterly non-overlapping investment growth
Lags Interest Rate Valuation Macro KS-1 KS-2

Intercept 0.002 0.023*** 0.053 0.001 -0.029 -0.014
(1.06) (5.11) (1.05) (0.03) (-0.58) (-0.30)

GVD250 -0.135*** -0.213*** -0.243*** -0.199*** -0.196*** -0.117**
(-2.83) (-3.09) (-3.67) (-2.83) (-2.70) (-2.09)

L.MKT 0.042** 0.036**
(2.54) (2.54)

L.PFIG 0.427*** 0.322**
(4.62) (2.56)

TS 0.115 0.124 0.123
(0.94) (0.80) (0.85)

DS -2.069*** -2.350*** -1.598***
(-4.97) (-5.20) (-3.13)

NPY 0.028 0.016 0.007
(1.62) (0.86) (0.51)

CAPE 0.002** -0.000 0.000
(2.27) (-0.20) (0.25)

DP 0.007 0.025 0.026*
(0.34) (1.41) (1.67)

BM 0.006 -0.023* -0.014
(0.46) (-1.70) (-0.93)

CAY 0.025 0.050
(0.30) (0.59)

IK 0.156 -0.458
(0.29) (-1.02)

R2 0.255 0.195 0.108 0.063 0.215 0.341
N 259 260 256 239 256 236
Start date 1947:3 1947:3 1947:3 1952:2 1947:3 1952:2
End date 2011:4 2011:4 2010:4 2011:4 2010:4 2010:4



Table 8: Predicting the equity premium using GVD: robustness tests

Panel A: Full-sample regressions: OLS, Stambaugh bias corrected, and Newey West (3 lags)
OLS OLS-Stam OLS-NW

Intercept 0.038*** 0.038*** 0.038***
(4.67) (4.86) (4.15)

GVD250 0.757*** 0.742*** 0.757***
(3.37) (3.30) (3.74)

R2 3.3% 3.3% 3.3%
N 340 340 340

Panel B: Sub-samples

1927:1-1955:2 1955:3-1983:3 1983:4-2011:4
Intercept 0.056*** 0.033*** 0.029***

(2.89) (3.32) (3.03)
GVD250 1.018 0.780*** 0.486*

(1.43) (2.74) (1.92)

R2 2.5% 6.8% 3.8%
N 114 113 113

This table presents results of regressions predicting excess returns of the CRSP value-weighted market
index over the 3-month Treasury bill rate with an intercept and GVD. Panel A presents full-sample
regressions predicting quarterly, non-overlapping excess market returns with GVD250 and includes
specifications with OLS, Newey-West, and Stambaugh bias-corrected standard errors. The Stambaugh
correction is done using the method in Amihud and Hurvich (2004). Panel B shows results of these
regressions for three approximately equal sub-samples, 1927:1-1955:2, 1955:3-1983:3, 1983:4-2011:4.
All regressions in Panel B are with non-overlapping returns and Stambaugh bias-corrected standard
errors. Panel C displays results for monthly market risk premium predictions using all three versions of
GVD--GVD250, GVDMedian, GVDCredit. Panel D displays the results of additional robustness tests.
'NEWEX dum' controls for the creation of the NASDAQ and the AMEX by including a dummy
variable NEWEX equal to one in the first year of each of these exchanges, zero otherwise. 'Ex-
NEWEX' excludes the two years where NEWEX equals one. 'Ex-Internet' ends the sample in 1996, to
exclude the internet period, and 'Ex-1970s' excludes the 1970s, in order to exclude the oil shocks. 'FF'
controls for annual returns of the market, HML, and SMB over the past year. 'Skip' skips a quarter
between measuring GVD and forecasting market returns. The symbols ***, **, and * represent
statistical significance at the 1%, 5% and 10% levels, respectively. T-statistics are in parentheses.



Table 8: Predicting the equity premium using GVD: Robustness tests (contd.)

Panel C: Predicting monthly market excess returns with different versions of GVD
Monthly Monthly Monthly

Intercept 0.010*** 0.012*** 0.006**
(4.52) (4.09) (2.11)

GVD250 0.171***
(2.65)

GVDMedian 0.264***
(2.94)

GVDCredit 0.070
(1.15)

R2 0.7% 0.9% 0.4%
N 1020 1020 575

Panel D: Robustness to new exchanges, Internet years, 1970s, and Fama-French factors

NEWEX dum Ex-NEWEX Ex-Internet Ex-1970s FF Skip
Intercept 0.038*** 0.037*** 0.040*** 0.039*** 0.039*** 0.038***

(4.68) (4.54) (4.22) (4.50) (4.02) (4.21)

GVD250 0.787*** 0.750*** 0.778*** 0.748*** 0.820*** 0.546***
(3.35) (3.15) (2.88) (2.99) (3.79) (3.08)

NEWEX 0.018
(0.44)

MKTRF12 -0.016
(-0.28)

HML12 -0.016
(-0.32)

SMB12 0.050
(0.89)

R2 3.3% 2.9% 2.9% 2.9% 3.6% 2.9%
N 340 332 281 304 338 339



Table 9: Out-of-sample robustness tests for equity premium prediction

Panel A: Quarterly (non-overlapping) market excess returns

OOS R2 p-value OOS R2 p-value
1947:1 3.9% <0.01 4.1% <0.01
1957:1 5.0% <0.01 4.9% <0.01
1967:1 6.0% <0.01 6.6% <0.01
1977:1 5.5% <0.01 5.9% <0.01
1987:1 2.3% 0.05 3.7% <0.01

Panel B: Annual (with quarterly overlap) market excess returns

OOS R2 p-value OOS R2 p-value
1947:1 5.3% <0.01 8.4% <0.01
1957:1 6.2% <0.01 9.3% <0.01
1967:1 9.3% <0.01 15.2% <0.01
1977:1 6.8% <0.01 9.7% <0.01
1987:1 2.1% 0.08 4.2% 0.027

Start

Start
GVD250

GVDMedian

GVDMedian

GVD250

This table presents results of out-of-sample predictions of the market risk premium
(excess returns of the value-weighted market index over the treasury bill rate) using
GVD250 and GVDMedian. These are from expanding window estimations, with different
start dates for the evaluation period. P-values are for MSE-F tests (McCracken (2007))
of equal predictive ability between using the historical mean market excess return and
GVD to forecast the market risk premium. Panel A presents results for quarterly (non-
overlapping) predictions. P-values in Panel A are from critical values in McCracken
(2007). Panel B presents results for annual predictions (with quarterly overlap). P-
values in Panel B are for the MSE-F statistic from a block bootstrap procedure with a
block length of four.



Figure 1: Number of firms in the sample
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This figure plots the total number of firms in the CRSP universe over our sample period.



Figure 2: Time series of  GVD250
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This figure shows the time-series of GVD250, which is the change in the log weight of the top 250 firms in the aggregate market portfolio over
the last 12 months. NBER dated recessions are shaded in gray. Local maxima/minima that are not in or near recessions are indicated by text
boxes, that include the date corresponding to the maxima/minima, and the proximate financial market-related event. The symbol "*s" indicates
that the maxima/minima does not exactly correspond with the date of the event, or that it is difficult to pinpoint an exact date as the event
extends for several months. These events are discussed in the text in greater detail.
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Figure 3: Out-of-sample prediction errors for GVD250

Panel A: Quarterly, non-overlapping prediction errors

Panel B: Annual, with quarterly overlap prediction errors
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This figure assesses the performance of out-of-sample forecasts of the market risk
premium (excess returns of the value-weighted CRSP index over the Treasury bill rate)
made with GVD250 relative to a simple benchmark, the historical average equity risk
premium. The figure plots the difference in cumulative sum of squared errors (SSEs)
between forecasts made with GVD250 and the historical average equity premium. Both
predictions are from expanding window estimation periods, beginning in 1926, with the
first estimation window having 20 years of data. Panel A plots differences in SSEs of
forecasts of quarterly market excess returns, while Panel B does so for annual market
excess returns, with quarterly overlap.
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