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A portfolio optimality test based on the
first-order stochastic dominance criterion

Existing approaches to testing for the efficiency of a given portfolio make
strong parametric assumptions about investor preferences and return distribu-
tions. Stochastic dominance based procedures promise a useful non-parametric
alternative. However, these procedures have been limited to considering binary
choices. In this paper we consider a new approach that considers all diversified
portfolios, and thereby introduce a new concept of first-order stochastic
dominance (FSD) optimality of a given portfolio relative to all possible
portfolios. Using our new test, we show that the US stock market portfolio
is significantly FSD non-optimal relative to benchmark portfolios formed on
market capitalization and book-to-market equity ratios. Without appealing
to parametric assumptions about the return distribution, we conclude that
no nonsatiable investor would hold the market portfolio in the face of the
attractive premia of small caps and value stocks.

I Introduction

Portfolio analysis and asset pricing tests typically focus on the mean-variance criterion.
It is well-known that this criterion implicitly assumes a quadratic utility function or
a normal probability distribution, which is quite restrictive in many cases. A good
illustration of the limitations of the mean-variance criterion comes from (Levy (1998),
p.2):“[Consider] two alternative investments: z providing $1 or $2 with equal probabil-
ity and y providing $2 or $4 with equal probability, with an identical investment of, say,
$1.1. A simple calculation shows that both the mean and the variance of y are greater
than the corresponding parameters of x; hence the mean-variance rule remains silent
regarding the choice between z and y. Yet, any rational investor would (and should)
select y, because the lowest return on y is equal to the largest return on z.”

The criteria of stochastic dominance are useful non-parametric alternatives. Most
notably, first-order stochastic dominance (FSD) is one of the basic concepts of decision
making under uncertainty, relying only on the assumption of nonsatiation, or increasing
utility. It does not require further specification of the shape of the utility function
or the shape of the probability distribution. FSD analysis is generally more difficult
to implement than mean-variance analysis. There exist well-known, simple tests for
establishing FSD relationships between a pair of choice alternatives; see, for example,
(Levy (1998), Section 5.2). Unfortunately, these tests have limited use for portfolio
analysis and asset pricing tests, because investors generally can form a large number



of portfolios by diversifying across individual assets. Therefore, there is a need to
develop a test for establishing if a given portfolio is “FSD efficient” relative to all
possible portfolios. Such a test would be a useful alternative for existing mean-variance
portfolio efficiency tests (for example, Gibbons, Ross and Shanken (1989)), especially
if the return distribution is skewed and fat-tailed.

A complication in testing FSD portfolio efficiency is that we must distinguish be-
tween efficiency criteria based on “admissibility” and “optimality”. There is a subtle
difference between these two concepts. A choice alternative is FSD admissible if and
only if no other alternative is preferred by all nonsatiable decision-makers. A choice
alternative is FSD optimal if and only if it is the optimal choice for at least some
nonsatiable decision-maker. For pairwise comparison, the two concepts are identical;
alternative z; is FSD undominated by alternative x5 if and only if some nonsatiable
decision-maker prefers x; to 2. However, more generally, when multiple choice alter-
natives are available, FSD admissibility is a necessary but not sufficient condition for
FSD optimality. In other words, a choice alternative may be admissible even if it is not
optimal for any increasing utility function.

Bawa et al. (1985) and Kuosmanen (2004) propose FSD tests that apply under
more general conditions than a pairwise test does. The two tests differ in a subtle
way. While Bawa et al. (1985) consider all convex combinations of the distribution
functions of a given set of choice alternatives, Kuosmanen considers the distribution
function for all convex combinations of a given set of choice alternatives. Each of these
two tests captures an important aspect of portfolio choice that is not captured by a
pairwise FSD test. Still, both tests miss some key aspect of a proper FSD portfolio
optimality test and both tests generally give a necessary but not sufficient condition.
The linear programming test of Bawa et al. is based on optimality, but it does not
account for full diversification across the choice alternatives. Bawa et al. use a set
of undiversified base assets as the choice alternatives. In principle, diversification can
enter through the back door by including combinations of the base assets as additional
choice alternatives. However, since the number of possible combinations is infinitely
large, this approach generally gives only a necessary condition and it yields a potentially
very large computation load. The mixed integer linear programming test of Kuosmanen
does account for full diversification, but it relies on admissibility rather than optimality.

In this study, we derive a proper test for FSD optimality of a given portfolio relative
to all portfolios formed from a set of choice alternatives and apply that test to analyze
the US stock market portfolio. In contrast to Bawa et al. (1985), our test considers
all diversified portfolios in addition to the individual, undiversified choice alternatives,
and in contrast to Kuosmanen (2004), it relies on optimality rather than admissibility.
Both features lead to a more powerful FSD test, based on a necessary and sufficient
condition, than is currently available.

The new test contributes to recent methodological developments that make the



stochastic dominance methodology more applicable to problems in financial economics
by improving the statistical power and providing more efficient computation algorithms.
Our test is a natural complement to the second-order stochastic dominance (SSD)
efficiency test of Post (2003). Due to concavity of utility, the analysis of SSD is generally
simpler than that of FSD. First, SSD admissibility and SSD optimality are equivalent
in a portfolio context and the definition of “SSD efficiency” is less ambiguous than
that of “FSD efficiency”.? Second, SSD efficiency can be tested by simply evaluating
the first-order optimality condition for all individual, undiversified choice alternatives.
Third, the representative utility functions have a piecewise-linear shape and the first-
order optimality condition can be checked by searching over these functions using a
single small-scale linear programming problem.

We apply our test to US stock market data in order to analyze the FSD optimality
of the market portfolio relative to portfolios formed on market capitalization and book-
to-market equity ratio. This application seems relevant because a large class of capital
market equilibrium models predict that the market portfolio is FSD optimal. Surpris-
ingly, we find that the market portfolio is significantly FSD non-optimal. Without
appealing to parametric assumptions about the return distribution, we conclude that
no nonsatiable investor would hold the market portfolio in the face of the attractive
premia of small caps and value stocks.

The remainder of this text is structured as follows. Section IT introduces prelim-
inary notation, assumptions and definitions. Next, Section III reformulates the FSD
optimality criterion in terms of piecewise-constant representative utility functions, in
the spirit of the representative utility functions used by Russell and Seo (1989). Section
TV develops a linear programming test for searching over all representative utility func-
tions in order to test portfolio optimality and suggests several approaches to identifying
the input to this test. Section V uses a numerical example to illustrate our test and
compare it with the two existing tests. Section VI discusses our empirical analysis of
the US stock market portfolio. Finally, Section VII presents concluding remarks and
suggestions for further research.

*Theorem 1 of Post (2003) shows the equivalence using Sion’s (1958) Minimax Theorem. Other
treatments of SSD admissibility and optimality include Peleg and Yaari (1975), Dybvig and Ross
(1982), and Bawa and Goroff (1982, 1983).



IT Preliminaries

Consider N choice alternatives and T scenarios with equal probability. The outcomes
of the choice alternatives in the various scenarios are given by

x
<2
X = .
<7
where x! = (2},2L,... %) is the t-th row of matrix X. Without loss of generality

we can assume that the columns of X are linearly independent. In addition to the indi-
vidual choice alternatives, the decision-maker may also combine the choice alternatives
into a portfolio. We will use A € RY for a vector of portfolio weights and the portfolio
possibilities are given by

A={XeRV1I'A =1, \, >0, n = 1,2,... ,N}3

The evaluated portfolio is denoted by 7 € A and is assumed to be risky 4. Let y*! be
the k-th smallest element among y', y2, ...,y", that is, y!) <yl < ... <y Let
m = I?}anfl, m = n;’%xmfl and k(7) = min{t: (X7)¥ > (X7)1}.

The constants m and m are the minimum and maximum possible return. After ordering
the returns of the tested portfolio 7 from the smallest to the largest one, k(7) determines
the order of the second smallest return. Without ties, we have k(7) = 2, but if the
smallest value occurs multiple times, then k(1) > 2.

Decision-makers obey to the rules of expected utility theory. Their preferences
belong to the class of weakly increasing utility functions U; and their decision-making
problem can be represented as

T

(1) max u(x'X).

®By using the simplex A , we exclude short selling. Short selling typically is difficult to implement in
practice due to margin requirements and explicit or implicit restrictions on short selling for institutional
investors. Still, we may generalize our analysis to include (bounded) short selling. In fact, the analysis
applies to any portfolio set that takes the form of a polytope (roughly speaking, a non-empty and
closed set that is defined by linear restrictions) if we replace the N choice alternatives with the set of
M extreme points of the polytope.

“Testing optimality for a riskless portfolio is trivial, because we then only need to check if there
exists some portfolio that achieves a higher minimum return than the riskless rate. If no such portfolio
exists, the riskless alternative is the optimal solution for extreme risk averters and hence FSD optimal.



Since utility functions are unique up to the level of a positive linear transformation,
without loss of generality, we may focus on the following set of standardized utility
functions:

(2) Un(r) = {uel :ulm)=0; u(X7)T)—u(xXr)EOh =1}

Note that the standardization depends on the evaluated portfolio and hence will
differ for evaluating different portfolios. Furthermore, the standardization requires
utility to be strictly increasing at least somewhere in the interior of the range for the
evaluated portfolio. This requirement is natural, because, testing optimality relative
to all u € Uy is trivial. Specifically, every portfolio A € A is an optimal solution for
ug = I(z > (X)), that is, two-piece constant utility function. Thus U;(7) is the
largest subset of U; for which testing optimality is non-trivial.

Definition 1:

Portfolio T € A is FSD optimal if and only if it is the optimal solution of (1) for at
least some utility function u € Uy(T), that is, there exists u € Uy (1) such that

Zu(xt‘r) - Zu(xt)\) >0 VA €A

t=1 t=1

Otherwise, T is F'SD non-optimal.

The intuition behind FSD optimality is that the evaluated portfolio is of potential
interest to investors if it achieves a higher expected utility than all other portfolios
for some increasing utility function. This concept allows for several variations. Most
notably, we can choose between weakly and strictly increasing utility and we can choose
between weakly and strongly higher expected utility. Empirically, these variations
are often not distinguishable. A weakly increasing utility function u(z) generally is
empirically indistinguishable from the strictly increasing function u(x) + az for some
infinitely small value a > 0. Similarly, infinitely small data perturbations generally
suffice to change a weak inequality to a strong one. In addition, it can be shown
that requiring strictly increasing utility and strong inequality is the same as weakly
increasing utility and weak inequality. This study will not try to answer the question
which type of utility function or inequality is most relevant. Rather, we will focus
on accounting for all possible portfolios in an optimality test that is based on weakly
increasing utility and weak inequality.



III Representative utility functions

This section reformulates the optimality criterion in terms of a set of elementary rep-
resentative utility functions. For pairwise FSD comparisons, Russell and Seo (1989)
show that the set of three-piece linear utility functions is representative for all admis-
sible utility functions. In our portfolio context, with diversification allowed, a class of
piecewise constant utility functions is relevant:

T
B)Ri(r) = {ueluly) = > ally> (X)), acA(r)}
t=1
T
(4) A(r) = {aeRl: > a =1, Xn)ll=Xn)l A t<s=a,=0
t = k(7)
ts=1,2,...,T}
where
Ily>yo) = 1 for y>yo

= 0 otherwise.

This class consists of at most (T'+ 1) - piece constant, upper semi-continuous util-
ity functions. This class is reminiscent of the representative utility functions used by
Russell and Seo (1989) to test pairwise FSD relationship. In fact, our utility functions
can be obtained as a sum of the first derivatives of the Russell and Seo (1989) represen-
tative utility functions on the relevant interval (m,m) .° The utility functions are also
reminiscent of the piecewise linear functions used by Post (2003) to test SSD portfolio
efficiency.

Theorem 1:

Portfolio T € A is FSD optimal if and only if it is the optimal solution of (1) for at
least some utility function u € Ry(T), that is, there exists u € Ri(T) such that

Zu(xt‘r) - Zu(xt)\) >0 VA€eA.

t=1 t=1

Otherwise, T is F'SD non-optimal.

*Russell and Seo (1989) functions are continuous three-piece functions that consist of two constant
pieces and one linear, increasing piece in between. Choose T such functions with increasing pieces
with slopes a1, as, ...,ar for the intervals ((X7)M, (X)), (X7)2, (X7)B),. (XTI (X7)T),
(X 7)1, 7). Our piecewise constant utility function is the sum of the first derivatives on these intervals.



Proof:

The sufficient condition follows directly from Ry (7) C Ui (7). To establish the necessary
condition, suppose that 7 is optimal for u(y) € U;(7) and let

T
ur(y) = Y ad(y > (X)),
t=1

with a; = w(X7T), 0 = 0, t = S k(r) =1 and a; = u(X7)H — u(X7)E-1,
t = k(r),...,T. By constructlon uR(y) € Ry(7). Furthermore, ugr(y) < u(y),
Yy € (m,m) and ur(y) = u(y), for y = (X7)M, (X7)P, ... (X7)!"]. Therefore,

T T T

ZUR(XtT) - Zu (x'A) > Zu — Zu(xt)\) VA eA.

t=1 t=1 t=1 t=1

Since T is optimal for u(y) € Ui (), the RHS is nonnegative for all A € A , and
hence 7 is also optimal for ur(y) € Ry(7), which completes the proof. O

The proof makes use of the fact that any utility function can be transformed into
a piecewise constant function with increments only at x‘7, t = 1,... ,T. This trans-
formation does not affect the expected utility for the evaluated portfolio but it may
lower the expected utility of other portfolios. Since the objective is to analyze if the
evaluated portfolio is optimal for some utility function, only the representative utility
functions need to be checked; all other utility functions are known to put the evaluated
portfolio in a worse perspective than some representative utility function.

To illustrate the representation theorem, consider the cubic utility function u(y) =
10 + y — 0.1y + 0.05y> and a portfolio with returns (X7)1) = —5, (X7)2 =1
and (X7)P = 6. Figure 1 shows a version of this function that is transformed such
that it belongs to Uy (T): ug(y) = 2.6 4+ 0.04y — 0.004y% 4+ 0.002y> (the solid line). Since
the latter function is obtained after a positive linear transformation, it yields the same
results as the former function. The dashed line gives the piecewise-constant function
ur(y) = 2.087I(y > —5) +0.5461(y > 1) 4+ 0.4541(y > 6). This function is constructed
such that it yields exactly the same utility levels for the evaluated portfolio as wug(y)
does. Furthermore, the utility levels for all other portfolios are smaller than or equal
to those for ug(y). Thus, if the evaluated portfolio is optimal for wug(y), then it is
also optimal for ugr(y). A similar analysis applies for every admissible utility function

u(y) € Uy(1).

[Insert Figure 1 about here]



Apart from replacing U;(7) with Ry(7), we may also replace A with a reduced
portfolio set that considers only portfolios with a higher minimum than the evaluated
portfolio:

A(r) = {)\ e A (xr)ll < (X)\)m} .

Using the representative utility functions and the reduced portfolio set, we can
construct the following FSD non-optimality measure for any Ay C A(7):

(5) E(r, M) = 1 min max (u(x'X) — u(x'T)).

Replacing A with A(7) reduces the parameter space but it causes no harm, because

T T
t t t t
A) — = A) —
I;\lea/)\(; (u(x'A) —u(x'r)) = max (u(x'A) — u(x'r))
for all u € Ry () with sufficiently large a; and we minimize the maximum of expected
utility differences. If the evaluated portfolio has the highest minimum then we can
directly conclude that &(7,A(7)) = 0, that is, the evaluated portfolio is FSD optimal

(see the following Corollary).

Corollary 1:

(i) Portfolio T is FSD optimal if and only if £(T,A(T)) = 0.
Otherwise, £(T,A(T)) > 0.

(1) If Ag C A(T) then &(T,Ag) < &(7,A(T)).

The next section will show that £(7,A(7)) can be computed by solving a linear
programming problem.

IV Mathematical Programming Algorithm

There exist well-known, simple algorithms for establishing FSD-dominance relation-
ships between a pair of choice alternatives; see, for example, (Levy (1998), Section 5.2).
Bawa et al. (1985) derive a linear programming algorithm for FSD optimality relative
to a discrete set of choice alternatives. Kuosmanen’s (2004) test for FSD admissibility
in a portfolio context is computationally more demanding, because we need to account
for changes to the ranking of the portfolio returns as the portfolio weights change, a
task that requires integer programming. A similar complication arises for testing FSD



optimality in a portfolio context. This section develops a linear programming test for
testing portfolio optimality. However, the input to the linear programming test may
require an initial phase of mixed integer linear programming (MILP) or subsampling.
Before presenting the algorithm, we stress that in some cases, simple necessary or
sufficient conditions will suffice to classify the evaluated portfolio as FSD optimal or
FSD non-optimal. For example, a pairwise dominance relationship or a non-optimality
classification by the Bawa et al. suffice to conclude that the portfolio is FSD non-
optimal. Similarly, if the evaluated portfolio is classified as efficient according to a
mean-variance test or a SSD test, we can conclude that the portfolio is FSD optimal.
Let

T
(6) hsA7) = Y IEA> (X)), s=1,....,T
t=1
(7) h()‘a T) = hl()‘a T)a ce 7hT()‘7 T))
(8) H(r) = {he{0,..., T} :h=h(\71), AcA(r)}.
Since hg(A, T) represents the number of returns of portfolio A exceeding the s-th
smallest return of portfolio 7, it can take at most T'+ 1 values (0,1,... ,T) for any
s = 1,...,T. Thus the set H(7) has a finite number of elements. For small-scale

applications, identifying all elements is a fairly trivial task. However, for large-scale
applications, the task is more challenging and can become computationally demanding.
Some computational strategies to identifying the elements of H (1) are discussed below.
Interestingly, given H(7), the test statistic {(7, A(7)) can be computed using simple
linear programming. To see this, consider the following chain of equalities:

A _ 1 : a t)\ t
§rAlr) = 7 min max 2 (u(x'A) — u(x'r))

T
_ : t s t S
= i e 33 e (1A 2 (X)) — T > ()

1 T r

= 1 min max XT: 0 (ZI(xtA>(XT)M)—ZI(xtT>(XT)M))
T aci(r) aehin) 4= 7\ - = -
1 T

= Tl _Z as(hs(X,7) = ho(T, 7))



T

1 — _
= — i 0: hs —h <y VheH
o 4 2 ek <o vReH)

The RHS of the final equality involves the minimization of a linear objective under
a finite set of linear constraints. Thus, testing FSD optimality requires solving a simple
linear programming problem and Corollary 1(i) implies the following sufficient and
necessary condition for FSD optimality.

Theorem 2:

Let Hy C H(T). Let

9 §*(Hy) = mi h)

(9) (Ho) i
T

(10) st. Y as(hs—hs(r,7)) < & Vhe H.
s=k(T)

Portfolio T is FSD optimal if and only if 6*(H(7)) = 0. If 6*(Hy) > 0 for some
Hy C H(7) then T is FSD non-optimal.

The idea of this result is to find a representative utility function for which 7
maximizes expected utility. Note that (7, A(7)) = §*/T. Since a € A(T) and
h e {0,...,T}7" for all h € H(7), using Corollary 1(i), we have 0 < ¢(7,A(T)) < 1.

Among other things, the theorem implies the following about the relationship be-
tween the efficiency concepts of optimality and admissibility.

Corollary 2:
If (T < 4) then FSD optimality is equivalent to FSD admissibility.

Proof:

Without loss of generality, let T' = 4 and let 7 be FSD admissible. Consider all
possible h(\,7) which are not dominated by each otherf: h'(\, 7) = (4,2,2,2),
h%(X\,7) = (4,3,3,0), h3(\, 7) = (4,4,2,0) and h*(\,7) = (4,4,1,1). Entering these
candidates in the linear programming test in Theorem 2. we can see that 7 is the opti-
mal portfolio for a representative utility function with as = a3 = a4 = 1/3, and hence
T is FSD optimal.

®A dominated h(X, T) can not change the solution of (9)-(10).

11



The numerical example in the next section shows that the two efficiency concepts
diverge for T' > 5.

A remaining problem is identifying the elements of the set H(7). We may adopt
several strategies for this task. The appendix provides a mixed integer linear program-
ming (MILP) algorithm that identifies a set of candidate vectors H(r) 2 H(T), and
checks if h € H(7) for every candidate h € H(7). A drawback of this approach is
that the number of candidates increases exponentially with the number of scenarios
(T'). Hence, for large numbers of scenarios, this strategy may become computationally
prohibitive and some sort of approximation may then be required.

For example, we may form a sample H¢(7) of elements h(X, 7) by using a sample
A € A(7) and constructing the associated values for h(X, 7). The test procedure is
then applied to the sample H,(7) instead of the complete set H(7). 7 According to
Corollary 1(ii), this will lead to a necessary condition for FSD optimality. There exist
various techniques for performing the sampling task, including a regular grid, Monte
Carlo methods or Quasi-Monte Carlo methods; see, for example, Jackel (2002) and
Glasserman (2004).

While the MILP algorithm starts from a large set of candidate vectors and checks
feasibility for every candidate, sampling from the portfolio space avoids searching over
infeasible candidates. Of course, the limitation of this strategy is that the critical
sample size needed to obtain an accurate approximation increases exponentially as the
number of individual choice alternatives (N) increases. Still, this approach can yield
an accurate approximation in an efficient manner if N is low. This is true especially
when the correlation between the individual choice alternatives is high and hence small
changes in the portfolio weights do not lead to large changes in the values of h(A, 7).

An alternative approach is to enrich the Bawa et al. test by including the same
sample of diversified portfolios A; as additional choice alternatives. This will lead to a
more powerful necessary condition for FSD optimality than considering the undiversi-
fied choice alternatives only. However, using the sample A, in our test generally leads
to a more favorouble trade-off between computation time and numerical accuracy.

Specifically, if we apply the Bawa et al. test to a grid with step size s, the relevant
linear program has M - T columns and M rows, see (Bawa et al. (1985), Section IC,
LP problem at the bottom of p. 423), or dimensions M - T' x M, while the dimensions
of our linear program (9)-(10) are T" x M, where

N—-1 1
M = 14+ —
H( +—)

Since every h(X, 7) is known to be feasible, we can skip Step 2-5 of the algorithm and take only
Step 1 and Step 6. Step 1 in this case boils down to performing pairwise dominance tests between every
sampled portfolio and the evaluated portfolio. The computational burden of the step can be ignored.

12



is the number of portfolios from the grid. For example, if we use T' = 120 time-series
observations, N = 10 base assets and grid step size s = 0.1, the Bawa et al. test has
dimensions 1.11 - 107 x 9.24 - 10*, while our program has dimensions 120 x 9.24 - 10*.

V  Numerical example

A numerical example can illustrate our test and the difference with the Bawa et al. test
and Kuosmanen test. We focus on an example with five scenarios (T' = 5), because
FSD optimality is equivalent to FSD admissibility for (7" < 4) (see Corollary 2).

Table 1 shows the returns to three choice alternatives (X3, X9, X3) and the tested
portfolio Z = 0.16 X7 + 0.21 X5 + 0.63X3 in the five scenarios (1,2,3,4,5).

[Insert Table 1 about here]

One can immediately see that no individual choice alternative (Xi, X9 and X3)
FSD dominates Z; no other alternative involves a 100% chance of a return above —2%
and a 20% chance of a return above 7%. However, this does not mean that Z is an
optimal portfolio. Therefore, it is interesting to employ the three efficiency tests.

To implement the Kuosmanen test, we need to solve the following LP problem for
each of the 5! = 120 permutations of Z, say y; = (yjl.,y?,y]??,y;l,y?), j=1,2,...,120,
or an equivalent mixed integer linear problem:

5
Z(Alfpﬁ + Xozh + A3zh — yﬁ)
t=1
s.t. Alxﬁ + )\gxé + Agxé > y§ t=1,2,3,4,5
AM+X+A3 = 1
>‘17>‘2a)‘3 Z 0

ot]| =

¥; = max
>\1 7A29A3

We find \I/;‘ =0 for every j = 1,2,...,120, and hence Z is in the FSD admissible set
(not FSD dominated by any convex combination of Xy, X5 and X3).

To test FSD optimality according to Bawa et al., we need to establish if some convex
combination of the CDFs of X, X5 and X3 dominates the CDF of Z, see (Bawa et al.,
(1985), p. 421, Eq. 5). Table 2 shows the CDF's of the three choice alternatives (®x,,
dy,, Px,) and the CDF of Z (Pz). Note that these CDFs need to be evaluated only
at the observed return levels: {z; }}9:1.

[Insert Table 2 about here]
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To implement the test, we need to solve the following LP problem, see (Bawa et al.
(1985), Section IC, LP problem at the bottom of p. 423):

19

n = max (Pz(z;) — MPx,(25) — AaPx,(2j) — A3Px,(25))
A1,A2,A3 ]

s.t. )\1@){1 (z]) + )\QCP)Q(ZJ‘) + )\3(I)X3(Zj) < @Z(Zj) j =1, , 19
M+ X+ A3 =
Ala)‘Qa)‘3 Z 0

Solving this problem, we find n* = 0, and hence 7 is classified as optimal; not every
nonsatiable decision-maker will prefer X; or X9 or X3 to Z. Based on the positive
outcomes of the two tests, we may be tempted to conclude that Z is the optimal
portfolio for some increasing utility function. Perhaps surprisingly, this conclusion is
wrong. The application of our MILP algorithm will demonstrate this. We will follow
the steps outlines in the Appendix.

Since we have already tested FSD admissibility, we start with the second step of
identifying the initial candidates for H(7). For j = 2,3,4,5, we solve (11), where
k() =2, T =5 m=—4, m =10 and X7 = Z. (Recall that the constants m and
m are the minimal and maximal possible returns, and k() is the order of the second
smallest return of 7.) Table 3 shows the optimal solutions for h(X, 7) and A. It follows
that h™* = (5,5,4,3,2).

[Insert Table 3 about here]

In this example, we find A; = {(0.1483,0.8517,0), (0.1187,0.8813,0), (0.9266, 0.0734,
0) }, and H; = {(5,5,4,2,0), (5,5,3,3,0), (5,3,3,2,2)} for the set of corresponding
values of h*.

In the third step, we apply the stopping rules for the initial candidates. Since
h(r,7) = (5,4,3,2,1), h"*® > hy(r,7) for all t = k(7),...,T, hence the sufficient
condition of FSD optimality is not fulfilled. Since £(7, A1) = 0, the necessary condition
of FSD optimality is also not fulfilled; there exists a decision-maker who prefers T to
all portfolios in A;.

Thus, we proceed with the fourth step of constructing and reducing the candidate
set H. Since h™% = (5,5,4,3,2), the candidate set consists of 6 * 6 x 5 * 4 + 3 = 2160
elements. We exclude candidates for which a corresponding portfolios can not exist,
that is, the members of the sets H= H1 U Hg U H3 U Hy. The remaining candidates
are:
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h! = (55,4,1,1)
h? = (5,5,2,2,2)
h = (55,2,2,1)
h! = (5,5,2,1,1)
h’ = (55,1,1,1)
h (5,4,4,1,1)
h = (5,4,2,2,2)
n® = (5,3,3,3,1).

Finally, we employ the last two steps of our algorithm. Step 5 tests feasibility of
a remaining candidate using (12). If the candidate is infeasible then we choose the
next one. If the candidate is feasible then we add it to H; and we recompute &(7, Hy).
Let us start with h! = (5,5,4,1,1). This candidate is feasible as it corresponds to
A = (0.265,0.735,0). Adding this candidate, we consider Ay = A; U (0.265,0.735,0)
and Hy = H1U(5,5,4,1,1). Applying Theorem 2, we solve the following linear problem:

min §
s.t. as +as —a; < 0
as +as —as < 0
—a9 +as S )
as a3 —ay < 4
as +as “Hag “Ha; = 1

We find 6* = 1/9, {(7,A2) = 0*/5 = 1/45 > 0. This means that we can not find a
representative utility function that rationalizes the evaluated portfolio. Thus, adding
portfolio (0.265,0.735,0) to Ay suffices to demonstrate non-optimality in this case. Note
that this portfolio does not dominate the evaluated portfolio, as the evaluated portfolio
is FSD admissible. However, we do know that every well-behaved investor will prefer
(0.265,0.735,0) or an element of Ay to the evaluated portfolio. Since the evaluated
portfolio is classified as FSD non-optimal, the algorithm is complete. Thus, in this
example, Z is classified as optimal according to Bawa et al. and Kuosmanen tests.
Still, it can be demonstrated to be non-optimal for any increasing utility function.

We may repeat this exercise for more portfolios 7 € AN {0,0.01,... ,1}3, that is,
when using a grid with step size 0.01 for the portfolio weights. Figure 2 illustrates the
comparison between FSD admissibility and FSD optimality.

[Insert Figure 2 about here]
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The Kuosmanen test recognizes that many diversified portfolios are FSD dominated
by other diversified portfolio, most notably those that assign a high weight to X3. In
this example, only 22 % of the considered portfolios are FSD admissible (the union of
the grey and black dots). The FSD optimal set is even smaller than the admissible set.
The set of grey dots, including 7, is now excluded, leaving only the black dots. The
reduction in the efficient set to 16 % of all considered portfolios ( a 26 % reduction)
is possible because the optimality test acknowledges that a choice alternative may not
be optimal for all investors even if no single other choice is preferred by all. Note that
the efficient regions are not convex, witness for example the small isolated optimal area
near A = (0,0.7,0.3).

A similar analysis can be done for FSD optimality according to Bawa et al. (1985).
Figure 3 shows that 93 % of all portfolios is classified as optimal. Only 17 % of these
portfolios are FSD optimal. The optimal set is substantially larger than ours, because
the Bawa optimality test does not account for full diversification.

[Insert Figure 3 about here]

As discussed in Section 3, we can increase the power of the Bawa et al. test by
adding a grid of diversified portfolios to the individual choice alternatives. Of course,
this approach will still yield only a necessary condition, because it is computationally
impossible to include all infinitely many relevant portfolios. In addition, using the same
grid of diversified portfolios in our test will lead to a smaller linear program. Figure
4 shows the set of portfolios which are not classified as FSD non-optimal using the
enriched Bawa et al. test and our test using the same grid step size.

[Insert Figure 4 about here]

There are only small differences in the power of the two tests for s = 0.1. However,
our test is roughly 120 times faster than the enriched Bawa et al. test. For s = 0.01,
our test is very powerful: 97% of non-optimal portfolios are correctly classified as non-
optimal. Unfortunately, we were unable to implement the enriched Bawa et al. test for
this step size due to the excessive computation load. The differences in computation
load will be even larger for real-life applications with higher dimensions.

V1 Empirical application

To further illustrate our test, we apply it to US stock market data in order to an-
alyze FSD optimality of the market portfolio relative to portfolios formed on mar-
ket capitalization of equity (size) and book-to-market equity ratio (B/M). This test
seems relevant for asset pricing theory, because all single-period, portfolio-oriented,
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representative-investor models of capital market equilibrium predict that the market
portfolio is optimal for a representative investor with well-behaved preferences.

The investment universe of stocks is proxied by the well-known six value-weighted
Fama and French portfolios constructed as the intersection of two groups formed on size
(small caps and large caps) and three groups formed on B/M (growth stock, neutral
stocks and value stocks). We proxy the market portfolio by the CRSP all-share index,
a value weighted average of common stocks listed on NYSE, AMEX, and NADAQ, and
the riskless asset by the one-year US government bond index from Ibbotson Associates.
We consider yearly (January-December) excess returns from 1963 to 2002 (40 annual
observations).®? Excess returns are computed by subtracting the riskless rate from the
nominal returns, that is, the riskless asset always has a return of zero.

Table 4 shows some descriptive statistics for our data set. Particularly puzzling is
the value premium in the small cap segment. The small value stocks earned an average
annual excess return of 13.86 percent, 8.55 percent in excess of the 5.31 percent for
small growth stocks. It seems difficult to explain away this premium with risk because
the small growth stocks actually have a higher standard deviation than the small value
stocks. Indeed, the market portfolio is SSD inefficient, as shown before by Post (2003).
This means that in the face of attractive premiums from investing in small caps stocks
and value stocks, investing in the market portfolio seems not optimal for any risk averse
investor.

[Insert Table 4 about here]

Still, the market portfolio may be FSD optimal, for example, it may be optimal
for investors who are risk seeking for losses and risk averse for gains. Our first step
to analysing FSD optimality is to apply the Bawa et al. test. This test classifies the
market portfolio as optimal, meaning that some investors prefer the market portfolio
to all of the 7 benchmark portfolios (six Fama and French, and the riskless asset).
However, as discussed before, the test does not account for diversification between the
seven portfolios. To analyze the effect of diversification, we can enrich the Bawa et

8 As discussed in Benartzi and Thaler (1995, p.83), one year is a plausible choice for the investor’s
evaluation period, because ”individual investors file taxes annually, receive their most comprehensive
reports from their brokers, mutual funds, and retirement accounts once a year, and institutional in-
vestors also take the annual reports most seriously.” Excess returns are computed by subtracting the
riskless rate from the nominal returns.

9There are two reasons for starting in 1963 and omitting the pre-1963 data. First, prior to 1963,
the Compustat database is affected by survivorship bias caused by the backfilling procedure excluding
delisted firms, which typically are less successful (Kothari, Shanken and Sloan (1995)). Further, from
June 1962, AMEX-listed stocks are added to the CRSP database, which includes only NYSE-listed
stocks before this month. Since AMEX stocks generally are smaller than NYSE stocks, the relative
number of small caps in the analysis increases from June 1962. Since the value effect is most pronounced
in the small-cap segment, the post-1962 data set is most challenging.
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al. test by adding diversified portfolios or apply the Kuosmanen test. Using the grid
Ay = A(1) N {0,0.1,... ,1}7 the enriched Bawa et al. test already leads to linear
program with more than 320,000 constrains and 8,000 variables. We therefore apply
the Kuosmanen test, which involves solving a mixed-integer program with 1,600 integer
variables. Interestingly, this test classifies the market portfolio as FSD inadmissible and
identifies the dominating portfolio shown in Figure 5.

[Insert Figure 5 about here]

Since FSD inadmissibility implies FSD non-optimality there is no need to apply our
test in this case. Still, it is useful to apply our test for the purpose of illustration and
comparison of the complexity of these three tests.

Since the number of choice alternatives (7) is small in comparison to the number
of scenarios (40), we apply the method of sampling portfolios using the grid: A, =
A(T) N {0,0.1,... ,1}7. The associating vectors h(\, ) are collected in H, and H,
is used to proxy for H(7) in the linear programming problem (9)-(10). This linear
program has only 8,000 constrains and 40 variables. Therefore our test is much more
faster than both the Kuosmanen test and enriched Bawa et al. test for the same
grid. Interestingly, the non-optimality measure is strictly positive; £(7,Ay) = 0.00275.
According to Corollary 1(ii), this implies that the market portfolio is not optimal for
any increasing utility function.

Table 5 illustrates the non-optimality classification. It shows 9 combinations of the
7 benchmark portfolios. For the vectors h(A, 7) associated with these combinations, the
restrictions in (9)-(10) are binding. This means that the value of the non-optimality
measure critically depends on these vectors. By contrast, the other vectors can be
excluded without affecting the non-optimality measure. None of these 9 combinations
FSD dominates the evaluated portfolio. Still, for every increasing utility function, at
least one of these combinations is better than the market portfolio. Not surprisingly,
each of these portfolios assigns a substantial weight to small cap stocks and/or value
stocks.

[Insert Table 5 about here]

The above analysis focuses on sample optimality. It is desirable to account for
sampling error and establish the statistical confidence we have in population optimality.
For mean-variance efficiency tests, the sampling distribution is well-known, see, for
example Gibbons, Ross and Shanken (1989). The sampling distribution for SD tests
is more difficult to derive, because the shape of the population return distribution is
not restricted. We therefore resort to the bootstrap method, a well-established tool to
analyze the sensitivity of empirical estimators to sampling variation in situation where
the sampling distribution is difficult to obtain analytically.
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Under the assumption of serially IID returns, the empirical return distribution is a
consistent estimator of the population return distribution, and bootstrapping samples
can simply be obtained by randomly sampling with replacement from the empirical
return distribution. Nelson and Pope (1991) demonstrated in a convincing way that
this approach can quantify the sensitivity of the empirical return distribution to sam-
pling variation, and that SD analysis based on the bootstrapped return distribution is
more powerful that analysis based on the original empirical return distribution. We
implement this method by generating 10,000 random pseudo-samples and apply our
tests for each pseudo-sample. We do not apply the enriched Bawa et al. test or the
Kuosmanen test, because of the associated computational burden. Rather, we apply
our LP necessary test (9)-(10) using the 9 combinations from Table 5. In 97.9 % of
the pseudo-samples, the market portfolio did not pass this necessary test. Then, for
the remaining 2.1% of the pseudo-samples, we apply our LP necessary test (9)-(10)
using the grid A, = A(7)N{0,0.1,... ,1}7. In 0.8% of the pseudo-samples, the market
portfolio failed this necessary test. For the remaining 1.3% of the pseudo-samples, we
applied our necessary and sufficient test. The market portfolio was classified as FSD
optimal in all of these pseudo-samples. Thus, bootstrap p-value is 1.3% and the market
portfolio can be classified as significantly FSD non-optimal with 98.7% confidence.

The classification of the market portfolio as FSD non-optimal reinforces Post’s
(2003) finding that the market portfolio is SSD inefficient. This finding is potentially
important for asset pricing theory. All single-period, portfolio-oriented, representative-
investor models predict FSD optimality. FSD non-optimality would contradict all
these models and may call for multi-period models, consumption-oriented models or
heterogeneous-investor models. However, we stress that this application serves only to
illustrate our non-optimality test. Among other things, the choice of the benchmark
portfolios and market portfolio, investment horizon and sample period requires more
analysis than is possible here.

VII Conclusions

We have developed a test for “FSD efficiency” of a given portfolio that is more powerful
than currently available. In contrast to Bawa et al. (1985), our test compares the
evaluated portfolio not only with the finite set of individual choice alternatives, but
also with all portfolios formed by combining the individual alternatives. In contrast
to Kuosmanen (2004), our efficiency test is based on the criterion of FSD optimality
rather than the weaker criterion of FSD admissibility.

The test can be performed by solving a simple linear programming problem. How-
ever, the input to the linear programming problem may require an initial phase of mixed
integer linear programming (MILP). For large numbers of scenarios, this strategy may
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become computationally prohibitive and we may have to resort to an approximation
based on sampling portfolios from the portfolio possibilities set. This subsampling
approach improves the trade-off between computational complexity and numerical ac-
curacy compared with enriching the Bawa et al. test with diversified choice alternatives.

Using our new test, we showed that the US stock market portfolio is significantly
FSD non-optimal relative to benchmark portfolios formed on market capitalization and
book-to-market equity ratio; no nonsatiable investor would hold the market portfolio in
the face of the small cap premium and the value stock premium. FSD non-optimality
would contradict all single-period, portfolio-oriented, representative-investor models
of capital market equilibrium and would call for multi-period models, consumption-
oriented models or heterogeneous-investor models. The focus of our study is however
on methodology and a rejection of market portfolio optimality requires a more rigorous
empirical analysis than is possible in this study.

Appendix

This appendix provides a MILP algorithm for identifying the elements of H(7) and
suggests some stopping rules for testing FSD optimality.
STEP 1: Perform a FSD admissibility test

As an initial stopping rule, test FSD admissibility of 7, for example using the MILP
test of Kuosmanen (2004). If 7 is FSD inadmissible then stop the algorithm; 7 is FSD
non-optimal.

STEP 2: Identify initial candidates for H(T)

For all j = k(1),...,T solve the following MILP problem:

(11) max hj+ 75 30 = ey b
st (vey—D@—m) < xA— (X <o, (@m-—m) s =1,...,T;
t = k(r),...,T
he = I v t = k(r),...,T
vsy € {0,1} s = 1,....,T;
t = k(r),...,T

A € A7)

The problem is solved only for j >= k(7); solving it for j < k(7) will identify no
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new candidates, because the optimal solutions of (11) for any j < k(7) is equal to that
for j = k().

Use (b7, A1 v t) for the optimal solution of this problem. Let A; € A(7) be a set
of pairwise different A*/ (all redundancies are removed). Set

h"** = maxh;’

J
H, = {h(A,T)Z AEAl}

STEP 3: Stopping rules

Consider h(7,7) as defined by (6)-(7). If there exists ¢ € {k(7),...,T} such that
hi"® < hy(7,7) then stop the algorithm; 7 is FSD optimal. Otherwise, solve problem
(9)-(10) for Hy = H;. If §*(H;) > 0 then stop the algorithm; 7 is FSD non-optimal.

STEP 4: Construct and reduce the candidate set H
Let H; = {0,1,... ,h"*}. Use H for the cartesian product H = ®k H,. Clearly

H(t) C H, and hence H is a candidate set. Exclude the candidates H H; U H,
UH3 U H4, where

H, = {h € H|hy <hy for some t; <t}
Hy = {neHh>h(r,7) Vte{k(r),... ,T}}
Hy = {h € FEIE €Hy: hy>h Vie {k(7),...,T} with at least one

strict inequality}

T
Hy = (SheHh<th(rr)+(1-8 > nh’, Ve {k(r),... T},
j = k(r)

T
VhY € Hy, 0<¢<1, Y m =1, 9 >0, Vje{k(r),... T}
j = k(r)

The elements of H are not feasible, that is, there exist no corresponding portfolios.
The elements of Hy contradict the definition of vector h(X, ), see (6)-(7). In step 1,
we have found that 7 is FSD admissible. Feasibility of an element of Hy implies FSD
inadmissibility of 7. Every element of Hj gives a strictly higher value of the objective
function in (11) for at least one initial candidate. Thus it can not be a feasible candidate.

Adding the elements of Hy4 to H; does not affect the solution of (9)-(10).

Set p=1.
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STEP 5: Check feasibility of the remaining candidates

If H\ H is empty, that is, all possible h € H have been considered, then stop the
algorithm; portfolio 7 is FSD optimal. Otherwise, choose h € H \ H and add it to H.
Let p=p+1, Hy, = H,_; Uh and go to the next step if there exists a feasible solution
of the system:

(12) st (vg—D@m-m) < xA-Xn<og,@m-m) s =1,...,T;
t = ti,...,T

he = SI_va t = ty,...,T

vsy € {0,1} s = 1,...,T;

t = t1,...,T

A € A7)
Otherwise, repeat this step.

STEP 6: Test optimality using the feasible candidates

Solve problem (9)-(10) for Hy = H,. If §*(H,) > 0 then stop the algorithm; 7 is FSD
non-optimal. Otherwise, go to Step 5.
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Table 1: Ezample showing that the Bawa et al. test and the Kuosmanen test
do not give a sufficient condition for FSD optimality.

The table shows the returns in five scenarios to three choice individual alterna-
tives (X, X» and X3) and the tested portfolio Z = 0.16X; +0.21 X5 + 0.63X3.
No convex combination of X;, X, and X3 FSD dominates Z and hence Z is
FSD admissible.

X; | Xo| X3 VA
-1 6 -4 -1.42
-2 1 5.90 2| 2.18

3.50 | 2.20 31 291
8.70 2 5| 4.96
10 71750 | 7.80

QY x| W N | =+
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Table 2: Example showing that the Bawa et al. test and Kuosmanen test do
not give a sufficient condition for FSD optimality—continued.

The table shows the CDFs of the three individual choice alternatives
(X1, X2, X3) and the tested portfolio Z for all observed return levels. No
convex combination of ®x,, ®x,, ®x, dominates & and hence Z is classified
as optimal.

Zj <I)X1 <I)X2 <I)X3 D,
4 0| 0 |1/5]0
2 [[1/5] 0 |[1/5] 0
142 1/5 | 0 [1/5 | 1/5
1 [[2/5] 0 |1/5]1/5
2 [ 2/5 ] 1/5 | 2/5 |1/5
2/5 [ 1/5 | 2/5 | 2/5
22 | 2/5 | 2/5 | 2/5 | 2/5
2.91 | 2/5 | 2/5 | 2/5 | 3/5
3 | 2/5 | 2/53/5]3/5
35 | 3/5 | 2/5 ]| 3/5 | 3/5
4962 | 3/5 | 2/5 | 3/5 | 4/5

—| =
,_‘O@OO\]O}CN%COL\DH%.
v
—_

oo

12| 5 | 3/5 ] 2/5 | 4/5 | 4/5
13| 59 | 3/5 | 3/5 | 4/5 | 4/5
14| 6 | 3/5]4/5 | 4/5 | 4/5
15| 7 |[3/5] 1 |4/5]4/5
16 75 | 3/5] 1 | 1 |4/5
177795 [ 3/5 | 1 | 1 | I
18] 87 [[4/5] 1 | 1 | 1
19 10 1 | 1 | 1 |1
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Table 3: Initial candidates.
The table presents the initial candidates H; and the associated A (7) obtained

in Step 2 of our algorithm.

J Py [y [ hy | by hs || A Ay A3
25 5[4 [2[0]0.1483 | 08517 | 0
355 [4]2]0]01483 08517 0
451533 ]0]o01187]08813] 0
5533 ]2]2]09266]00734] 0
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Table 4: Descriptive statistics.

The table shows descriptive statistics for the annual (January-December)
excess returns of the six Fama and French stock portfolios formed on market
capitalization of equity and book-to-market equity ratio (SG=small growth,
SN=small neutral, SV=small value, BG=big growth, BN=big neutral and
BV=big value), and the CRSP all-equity index (CRSP). Excess returns are
computed by subtracting the return to the one-year US government bond
from the nominal returns. The sample period is from 1963 to 2002 (40 annual
observations). Equity data are from Kenneth French and bond data are from

Ibbotson Associates.

Mean | St.dev. | Skew. | Kurt. Min. | Max.
SG 5.309 | 28.520 | 0.323 | 0.175 | -49.28 | 83.68
SN 11.301 | 22.728 | -0.308 | 0.062 | -37.38 | 65.48
SV 13.861 | 23.158 | -0.373 | -0.222 | -33.86 | 61.14
BG 5.303 | 18.820 | -0.317 | -0.537 | -40.49 | 34.67
BN 6.340 | 16.120 | -0.241 | -0.090 | -34.13 | 34.73
BV 8.946 | 17.723 | -0.690 | -0.026 | -34.24 | 40.34
CRSP 5.536 | 17.191 | -0.602 | -0.404 | -39.19 | 31.89
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Table 5:
portfolio.

The table shows the portfolio weights of 9 combinations of the six Fama and
French stock portfolios formed on size and B/M (SG=small growth, SN=small
neutral, SV=small value, BG=big growth, BN=big neutral and BV=big
value), and the riskless alternative (RL). For every increasing utility function,

at least one of these nine combinations is preferred to the market portfolio,

and hence the market portfolio is FSD non-optimal.

Nine combinations showing FSD non-optimality of the market

Combination | SG | SN | SV | BG | BN | BV | RL
1 0 0/01}03|01]04]0.1
2 0 0]03] 02 0] 0203
3 0 0]04 0 0] 03] 0.3
4 0 0]04 0] 0103102
o 0 01]0.6 0] 0.1 0] 0.3
6 0 0]06] 02 0] 0.1]0.1
7 0/01}05)01]01)01]0.1
8 0]01109 0 0 0 0
9 0]021038 0 0 0 0
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Figure 1: Representative utility function.
The figure shows the original utility function ug and the associated represen-
tative utility function u;.
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Figure 2: Admissibility and optimality.

The figure shows the efficiency classification according to the FSD admissibility
test and our FSD optimality test. We applied these tests to all portfolios
T € An{0,0.01,...,1}3, that is, when using a grid with step size 0.01 for
the portfolio weights. Our optimal set is represented by the black dots. The
admissible set is the union of the black dots and the grey dots.
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Figure 3: Bawa et al. optimality and FSD optimality.

This figure shows the optimality classification according to the Bawa et al. test
and our test for FSD optimality. Our optimal set is represented by the black
dots. The Bawa et al. optimal set is the union of the black dots and the grey
dots.
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Bawa et al. test Our test

s=01
0 0.2 0.4 0.6 0.8 1 0] 0.2 ' 0.4 0.6 0.8 1
56 % power 55 % power
1,
0.8
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s =0.01

0.4}
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0 L : N
0 0.2 04 0.6 0.8 1

97 % power

Figure 4: Subsampling approach.

The figure shows the outcomes of the Bawa et al. test and our test when
applied to a grid of portfolios with step size s=0.1 or s=0.01. The grey dots
are portfolios that passed the necessary test; the other portfolios failed the test
and are classified as FSD non-optimal. The percentages of FSD non-optimal
portfolios that are detected using the necessary tests are given below every
graph.
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Figure 5: Pairwise FSD dominance.

This figure shows the CDF of the stock market portfolio (black line) and the
dominating portfolio (grey line): Ay = (0,0.04,0.43,0.37,0.04,0,0.13). Since
the dominating portfolio is preferred by all investors, the market portfolio is
FSD inadmissible.
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