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A portfolio optimality test based on the�rst-order sto
hasti
 dominan
e 
riterionExisting approa
hes to testing for the eÆ
ien
y of a given portfolio makestrong parametri
 assumptions about investor preferen
es and return distribu-tions. Sto
hasti
 dominan
e based pro
edures promise a useful non-parametri
alternative. However, these pro
edures have been limited to 
onsidering binary
hoi
es. In this paper we 
onsider a new approa
h that 
onsiders all diversi�edportfolios, and thereby introdu
e a new 
on
ept of �rst-order sto
hasti
dominan
e (FSD) optimality of a given portfolio relative to all possibleportfolios. Using our new test, we show that the US sto
k market portfoliois signi�
antly FSD non-optimal relative to ben
hmark portfolios formed onmarket 
apitalization and book-to-market equity ratios. Without appealingto parametri
 assumptions about the return distribution, we 
on
lude thatno nonsatiable investor would hold the market portfolio in the fa
e of theattra
tive premia of small 
aps and value sto
ks.I Introdu
tionPortfolio analysis and asset pri
ing tests typi
ally fo
us on the mean-varian
e 
riterion.It is well-known that this 
riterion impli
itly assumes a quadrati
 utility fun
tion ora normal probability distribution, whi
h is quite restri
tive in many 
ases. A goodillustration of the limitations of the mean-varian
e 
riterion 
omes from (Levy (1998),p.2):\[Consider℄ two alternative investments: x providing $1 or $2 with equal probabil-ity and y providing $2 or $4 with equal probability, with an identi
al investment of, say,$1.1. A simple 
al
ulation shows that both the mean and the varian
e of y are greaterthan the 
orresponding parameters of x; hen
e the mean-varian
e rule remains silentregarding the 
hoi
e between x and y. Yet, any rational investor would (and should)sele
t y, be
ause the lowest return on y is equal to the largest return on x."The 
riteria of sto
hasti
 dominan
e are useful non-parametri
 alternatives. Mostnotably, �rst-order sto
hasti
 dominan
e (FSD) is one of the basi
 
on
epts of de
isionmaking under un
ertainty, relying only on the assumption of nonsatiation, or in
reasingutility. It does not require further spe
i�
ation of the shape of the utility fun
tionor the shape of the probability distribution. FSD analysis is generally more diÆ
ultto implement than mean-varian
e analysis. There exist well-known, simple tests forestablishing FSD relationships between a pair of 
hoi
e alternatives; see, for example,(Levy (1998), Se
tion 5.2). Unfortunately, these tests have limited use for portfolioanalysis and asset pri
ing tests, be
ause investors generally 
an form a large number2



of portfolios by diversifying a
ross individual assets. Therefore, there is a need todevelop a test for establishing if a given portfolio is \FSD eÆ
ient" relative to allpossible portfolios. Su
h a test would be a useful alternative for existing mean-varian
eportfolio eÆ
ien
y tests (for example, Gibbons, Ross and Shanken (1989)), espe
iallyif the return distribution is skewed and fat-tailed.A 
ompli
ation in testing FSD portfolio eÆ
ien
y is that we must distinguish be-tween eÆ
ien
y 
riteria based on \admissibility" and \optimality". There is a subtledi�eren
e between these two 
on
epts. A 
hoi
e alternative is FSD admissible if andonly if no other alternative is preferred by all nonsatiable de
ision-makers. A 
hoi
ealternative is FSD optimal if and only if it is the optimal 
hoi
e for at least somenonsatiable de
ision-maker. For pairwise 
omparison, the two 
on
epts are identi
al;alternative x1 is FSD undominated by alternative x2 if and only if some nonsatiablede
ision-maker prefers x1 to x2. However, more generally, when multiple 
hoi
e alter-natives are available, FSD admissibility is a ne
essary but not suÆ
ient 
ondition forFSD optimality. In other words, a 
hoi
e alternative may be admissible even if it is notoptimal for any in
reasing utility fun
tion.Bawa et al. (1985) and Kuosmanen (2004) propose FSD tests that apply undermore general 
onditions than a pairwise test does. The two tests di�er in a subtleway. While Bawa et al. (1985) 
onsider all 
onvex 
ombinations of the distributionfun
tions of a given set of 
hoi
e alternatives, Kuosmanen 
onsiders the distributionfun
tion for all 
onvex 
ombinations of a given set of 
hoi
e alternatives. Ea
h of thesetwo tests 
aptures an important aspe
t of portfolio 
hoi
e that is not 
aptured by apairwise FSD test. Still, both tests miss some key aspe
t of a proper FSD portfoliooptimality test and both tests generally give a ne
essary but not suÆ
ient 
ondition.The linear programming test of Bawa et al. is based on optimality, but it does nota

ount for full diversi�
ation a
ross the 
hoi
e alternatives. Bawa et al. use a setof undiversi�ed base assets as the 
hoi
e alternatives. In prin
iple, diversi�
ation 
anenter through the ba
k door by in
luding 
ombinations of the base assets as additional
hoi
e alternatives. However, sin
e the number of possible 
ombinations is in�nitelylarge, this approa
h generally gives only a ne
essary 
ondition and it yields a potentiallyvery large 
omputation load. The mixed integer linear programming test of Kuosmanendoes a

ount for full diversi�
ation, but it relies on admissibility rather than optimality.In this study, we derive a proper test for FSD optimality of a given portfolio relativeto all portfolios formed from a set of 
hoi
e alternatives and apply that test to analyzethe US sto
k market portfolio. In 
ontrast to Bawa et al. (1985), our test 
onsidersall diversi�ed portfolios in addition to the individual, undiversi�ed 
hoi
e alternatives,and in 
ontrast to Kuosmanen (2004), it relies on optimality rather than admissibility.Both features lead to a more powerful FSD test, based on a ne
essary and suÆ
ient
ondition, than is 
urrently available.The new test 
ontributes to re
ent methodologi
al developments that make the3



sto
hasti
 dominan
e methodology more appli
able to problems in �nan
ial e
onomi
sby improving the statisti
al power and providing more eÆ
ient 
omputation algorithms.Our test is a natural 
omplement to the se
ond-order sto
hasti
 dominan
e (SSD)eÆ
ien
y test of Post (2003). Due to 
on
avity of utility, the analysis of SSD is generallysimpler than that of FSD. First, SSD admissibility and SSD optimality are equivalentin a portfolio 
ontext and the de�nition of \SSD eÆ
ien
y" is less ambiguous thanthat of \FSD eÆ
ien
y".2 Se
ond, SSD eÆ
ien
y 
an be tested by simply evaluatingthe �rst-order optimality 
ondition for all individual, undiversi�ed 
hoi
e alternatives.Third, the representative utility fun
tions have a pie
ewise-linear shape and the �rst-order optimality 
ondition 
an be 
he
ked by sear
hing over these fun
tions using asingle small-s
ale linear programming problem.We apply our test to US sto
k market data in order to analyze the FSD optimalityof the market portfolio relative to portfolios formed on market 
apitalization and book-to-market equity ratio. This appli
ation seems relevant be
ause a large 
lass of 
apitalmarket equilibrium models predi
t that the market portfolio is FSD optimal. Surpris-ingly, we �nd that the market portfolio is signi�
antly FSD non-optimal. Withoutappealing to parametri
 assumptions about the return distribution, we 
on
lude thatno nonsatiable investor would hold the market portfolio in the fa
e of the attra
tivepremia of small 
aps and value sto
ks.The remainder of this text is stru
tured as follows. Se
tion II introdu
es prelim-inary notation, assumptions and de�nitions. Next, Se
tion III reformulates the FSDoptimality 
riterion in terms of pie
ewise-
onstant representative utility fun
tions, inthe spirit of the representative utility fun
tions used by Russell and Seo (1989). Se
tionIV develops a linear programming test for sear
hing over all representative utility fun
-tions in order to test portfolio optimality and suggests several approa
hes to identifyingthe input to this test. Se
tion V uses a numeri
al example to illustrate our test and
ompare it with the two existing tests. Se
tion VI dis
usses our empiri
al analysis ofthe US sto
k market portfolio. Finally, Se
tion VII presents 
on
luding remarks andsuggestions for further resear
h.2Theorem 1 of Post (2003) shows the equivalen
e using Sion's (1958) Minimax Theorem. Othertreatments of SSD admissibility and optimality in
lude Peleg and Yaari (1975), Dybvig and Ross(1982), and Bawa and Goro� (1982, 1983).
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II PreliminariesConsider N 
hoi
e alternatives and T s
enarios with equal probability. The out
omesof the 
hoi
e alternatives in the various s
enarios are given byX = 0BBB� x1x2...xT 1CCCAwhere xt = (xt1; xt2; : : : ; xtN ) is the t-th row of matrix X. Without loss of generalitywe 
an assume that the 
olumns of X are linearly independent. In addition to the indi-vidual 
hoi
e alternatives, the de
ision-maker may also 
ombine the 
hoi
e alternativesinto a portfolio. We will use � 2 RN for a ve
tor of portfolio weights and the portfoliopossibilities are given by� = f� 2 RN j10� = 1; �n � 0; n = 1; 2; : : : ; Ng:3The evaluated portfolio is denoted by � 2 � and is assumed to be risky 4. Let y[k℄ bethe k-th smallest element among y1; y2; :::; yN , that is, y[1℄ � y[2℄ � : : : � y[N ℄. Letm = mint;n xtn; m = maxt;n xtn and k(� ) = minft : (X� )[t℄ > (X� )[1℄g:The 
onstantsm andm are the minimum and maximum possible return. After orderingthe returns of the tested portfolio � from the smallest to the largest one, k(� ) determinesthe order of the se
ond smallest return. Without ties, we have k(� ) = 2, but if thesmallest value o

urs multiple times, then k(� ) > 2.De
ision-makers obey to the rules of expe
ted utility theory. Their preferen
esbelong to the 
lass of weakly in
reasing utility fun
tions U1 and their de
ision-makingproblem 
an be represented as max�2� TXt=1 u(xt�):(1)3By using the simplex � , we ex
lude short selling. Short selling typi
ally is diÆ
ult to implement inpra
ti
e due to margin requirements and expli
it or impli
it restri
tions on short selling for institutionalinvestors. Still, we may generalize our analysis to in
lude (bounded) short selling. In fa
t, the analysisapplies to any portfolio set that takes the form of a polytope (roughly speaking, a non-empty and
losed set that is de�ned by linear restri
tions) if we repla
e the N 
hoi
e alternatives with the set ofM extreme points of the polytope.4Testing optimality for a riskless portfolio is trivial, be
ause we then only need to 
he
k if thereexists some portfolio that a
hieves a higher minimum return than the riskless rate. If no su
h portfolioexists, the riskless alternative is the optimal solution for extreme risk averters and hen
e FSD optimal.5



Sin
e utility fun
tions are unique up to the level of a positive linear transformation,without loss of generality, we may fo
us on the following set of standardized utilityfun
tions:U1(� ) = fu 2 U1 : u(m) = 0; u((X� )[T ℄)� u((X� )[k(� )℄) = 1g:(2) Note that the standardization depends on the evaluated portfolio and hen
e willdi�er for evaluating di�erent portfolios. Furthermore, the standardization requiresutility to be stri
tly in
reasing at least somewhere in the interior of the range for theevaluated portfolio. This requirement is natural, be
ause, testing optimality relativeto all u 2 U1 is trivial. Spe
i�
ally, every portfolio � 2 � is an optimal solution foru0 = I(x � (X� )[1℄), that is, two-pie
e 
onstant utility fun
tion. Thus U1(� ) is thelargest subset of U1 for whi
h testing optimality is non-trivial.De�nition 1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of (1) for atleast some utility fun
tion u 2 U1(� ), that is, there exists u 2 U1(� ) su
h thatTXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.The intuition behind FSD optimality is that the evaluated portfolio is of potentialinterest to investors if it a
hieves a higher expe
ted utility than all other portfoliosfor some in
reasing utility fun
tion. This 
on
ept allows for several variations. Mostnotably, we 
an 
hoose between weakly and stri
tly in
reasing utility and we 
an 
hoosebetween weakly and strongly higher expe
ted utility. Empiri
ally, these variationsare often not distinguishable. A weakly in
reasing utility fun
tion u(x) generally isempiri
ally indistinguishable from the stri
tly in
reasing fun
tion u(x) + ax for somein�nitely small value a > 0. Similarly, in�nitely small data perturbations generallysuÆ
e to 
hange a weak inequality to a strong one. In addition, it 
an be shownthat requiring stri
tly in
reasing utility and strong inequality is the same as weaklyin
reasing utility and weak inequality. This study will not try to answer the questionwhi
h type of utility fun
tion or inequality is most relevant. Rather, we will fo
uson a

ounting for all possible portfolios in an optimality test that is based on weaklyin
reasing utility and weak inequality.
6



III Representative utility fun
tionsThis se
tion reformulates the optimality 
riterion in terms of a set of elementary rep-resentative utility fun
tions. For pairwise FSD 
omparisons, Russell and Seo (1989)show that the set of three-pie
e linear utility fun
tions is representative for all admis-sible utility fun
tions. In our portfolio 
ontext, with diversi�
ation allowed, a 
lass ofpie
ewise 
onstant utility fun
tions is relevant:R1(� ) = fu 2 U1ju(y) = TXt = 1 atI(y � (X� )[t℄); a 2 A(� )g(3) A(� ) = fa 2 RT+ : TXt = k(� ) at = 1; (X� )[t℄ = (X� )[s℄ ^ t < s) as = 0;(4) t; s = 1; 2; : : : ; Tgwhere I(y � y0) = 1 for y � y0= 0 otherwise:This 
lass 
onsists of at most (T + 1) - pie
e 
onstant, upper semi-
ontinuous util-ity fun
tions. This 
lass is reminis
ent of the representative utility fun
tions used byRussell and Seo (1989) to test pairwise FSD relationship. In fa
t, our utility fun
tions
an be obtained as a sum of the �rst derivatives of the Russell and Seo (1989) represen-tative utility fun
tions on the relevant interval (m;m) .5 The utility fun
tions are alsoreminis
ent of the pie
ewise linear fun
tions used by Post (2003) to test SSD portfolioeÆ
ien
y.Theorem 1:Portfolio � 2 � is FSD optimal if and only if it is the optimal solution of (1) for atleast some utility fun
tion u 2 R1(� ), that is, there exists u 2 R1(� ) su
h thatTXt=1 u(xt� )� TXt=1 u(xt�) � 0 8� 2 �:Otherwise, � is FSD non-optimal.5Russell and Seo (1989) fun
tions are 
ontinuous three-pie
e fun
tions that 
onsist of two 
onstantpie
es and one linear, in
reasing pie
e in between. Choose T su
h fun
tions with in
reasing pie
eswith slopes a1; a2; :::; aT for the intervals ((X�)[1℄; (X�)[2℄), ((X�)[2℄; (X�)[3℄),...,((X�)[T�1℄; (X�)[T ℄),((X�)[T ℄;m). Our pie
ewise 
onstant utility fun
tion is the sum of the �rst derivatives on these intervals.7



Proof:The suÆ
ient 
ondition follows dire
tly from R1(� ) � U1(� ). To establish the ne
essary
ondition, suppose that � is optimal for u(y) 2 U1(� ) and letuR(y) = TXt = 1 atI(y � (X� )[t℄);with a1 = u(X� )[1℄, at = 0, t = 2; : : : ; k(� ) � 1 and at = u(X� )[t℄ � u(X� )[t�1℄,t = k(� ); : : : ; T . By 
onstru
tion, uR(y) 2 R1(� ). Furthermore, uR(y) � u(y),8y 2 hm;mi and uR(y) = u(y), for y = (X� )[1℄; (X� )[2℄; : : : ; (X� )[T ℄. Therefore,TXt=1 uR(xt� )� TXt=1 uR(xt�) � TXt=1 u(xt� )� TXt=1 u(xt�) 8� 2 �:Sin
e � is optimal for u(y) 2 U1(� ), the RHS is nonnegative for all � 2 � , andhen
e � is also optimal for uR(y) 2 R1(� ), whi
h 
ompletes the proof. �The proof makes use of the fa
t that any utility fun
tion 
an be transformed intoa pie
ewise 
onstant fun
tion with in
rements only at xt� , t = 1; : : : ; T . This trans-formation does not a�e
t the expe
ted utility for the evaluated portfolio but it maylower the expe
ted utility of other portfolios. Sin
e the obje
tive is to analyze if theevaluated portfolio is optimal for some utility fun
tion, only the representative utilityfun
tions need to be 
he
ked; all other utility fun
tions are known to put the evaluatedportfolio in a worse perspe
tive than some representative utility fun
tion.To illustrate the representation theorem, 
onsider the 
ubi
 utility fun
tion u(y) =10 + y � 0:1y2 + 0:05y3 and a portfolio with returns (X� )[1℄ = �5, (X� )[2℄ = 1and (X� )[3℄ = 6. Figure 1 shows a version of this fun
tion that is transformed su
hthat it belongs to U1(� ): u0(y) = 2:6+0:04y� 0:004y2+0:002y3 (the solid line). Sin
ethe latter fun
tion is obtained after a positive linear transformation, it yields the sameresults as the former fun
tion. The dashed line gives the pie
ewise-
onstant fun
tionuR(y) = 2:087I(y � �5) + 0:546I(y � 1) + 0:454I(y � 6). This fun
tion is 
onstru
tedsu
h that it yields exa
tly the same utility levels for the evaluated portfolio as u0(y)does. Furthermore, the utility levels for all other portfolios are smaller than or equalto those for u0(y). Thus, if the evaluated portfolio is optimal for u0(y), then it isalso optimal for uR(y). A similar analysis applies for every admissible utility fun
tionu(y) 2 U1(� ). [Insert Figure 1 about here℄8



Apart from repla
ing U1(� ) with R1(� ), we may also repla
e � with a redu
edportfolio set that 
onsiders only portfolios with a higher minimum than the evaluatedportfolio: �(� ) = n� 2 � : (X� )[1℄ � (X�)[1℄o :Using the representative utility fun
tions and the redu
ed portfolio set, we 
an
onstru
t the following FSD non-optimality measure for any �0 � �(� ):�(� ;�0) = 1T minu2R1(� )max�2�0 TXt=1 �u(xt�)� u(xt� )� :(5)Repla
ing � with �(� ) redu
es the parameter spa
e but it 
auses no harm, be
ausemax�2� TXt=1 �u(xt�)� u(xt� )� = max�2�(� ) TXt=1 �u(xt�)� u(xt� )�for all u 2 R1(� ) with suÆ
iently large a1 and we minimize the maximum of expe
tedutility di�eren
es. If the evaluated portfolio has the highest minimum then we 
andire
tly 
on
lude that �(� ;�(� )) = 0, that is, the evaluated portfolio is FSD optimal(see the following Corollary).Corollary 1:(i) Portfolio � is FSD optimal if and only if �(� ;�(� )) = 0.Otherwise, �(� ;�(� )) > 0.(ii) If �0 � �(� ) then �(� ;�0) � �(� ;�(� )).The next se
tion will show that �(� ;�(� )) 
an be 
omputed by solving a linearprogramming problem.IV Mathemati
al Programming AlgorithmThere exist well-known, simple algorithms for establishing FSD-dominan
e relation-ships between a pair of 
hoi
e alternatives; see, for example, (Levy (1998), Se
tion 5.2).Bawa et al. (1985) derive a linear programming algorithm for FSD optimality relativeto a dis
rete set of 
hoi
e alternatives. Kuosmanen's (2004) test for FSD admissibilityin a portfolio 
ontext is 
omputationally more demanding, be
ause we need to a

ountfor 
hanges to the ranking of the portfolio returns as the portfolio weights 
hange, atask that requires integer programming. A similar 
ompli
ation arises for testing FSD9



optimality in a portfolio 
ontext. This se
tion develops a linear programming test fortesting portfolio optimality. However, the input to the linear programming test mayrequire an initial phase of mixed integer linear programming (MILP) or subsampling.Before presenting the algorithm, we stress that in some 
ases, simple ne
essary orsuÆ
ient 
onditions will suÆ
e to 
lassify the evaluated portfolio as FSD optimal orFSD non-optimal. For example, a pairwise dominan
e relationship or a non-optimality
lassi�
ation by the Bawa et al. suÆ
e to 
on
lude that the portfolio is FSD non-optimal. Similarly, if the evaluated portfolio is 
lassi�ed as eÆ
ient a

ording to amean-varian
e test or a SSD test, we 
an 
on
lude that the portfolio is FSD optimal.Let hs(�; � ) = TXt=1 I(xt� � (X� )[s℄); s = 1; : : : ; T(6) h(�; � ) = (h1(�; � ); : : : ; hT (�; � ))(7) H(� ) = fh 2 f0; : : : ; TgT : h = h(�; � ); � 2 �(� )g:(8) Sin
e hs(�; � ) represents the number of returns of portfolio � ex
eeding the s-thsmallest return of portfolio � , it 
an take at most T + 1 values (0; 1; : : : ; T ) for anys = 1; : : : ; T . Thus the set H(� ) has a �nite number of elements. For small-s
aleappli
ations, identifying all elements is a fairly trivial task. However, for large-s
aleappli
ations, the task is more 
hallenging and 
an be
ome 
omputationally demanding.Some 
omputational strategies to identifying the elements of H(� ) are dis
ussed below.Interestingly, given H(� ), the test statisti
 �(� ;�(� )) 
an be 
omputed using simplelinear programming. To see this, 
onsider the following 
hain of equalities:�(� ;�(� )) = 1T minu2R1(� ) max�2�(� ) TXt=1 �u(xt�)� u(xt� )�= 1T mina2A(� ) max�2�(� ) TXt=1 TXs=1 as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� ) max�2�(� ) TXt=1 TXs=k(� ) as �I(xt� � (X� )[s℄)� I(xt� � (X� )[s℄)�= 1T mina2A(� ) max�2�(� ) TXs=k(� ) as TXt=1 I(xt� � (X� )[s℄)� TXt=1 I(xt� � (X� )[s℄)!= 1T mina2A(� ) max�2�(� ) TXs=k(� ) as(hs(�; � )� hs(� ; � ))10



= 1T mina2A(� );Æ8<:Æ : TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H(� )9=;The RHS of the �nal equality involves the minimization of a linear obje
tive undera �nite set of linear 
onstraints. Thus, testing FSD optimality requires solving a simplelinear programming problem and Corollary 1(i) implies the following suÆ
ient andne
essary 
ondition for FSD optimality.Theorem 2:Let H0 � H(� ). Let Æ�(H0) = mina2A(� ) Æ(9) s:t: TXs=k(� ) as(hs � hs(� ; � )) � Æ 8h 2 H0:(10)Portfolio � is FSD optimal if and only if Æ�(H(� )) = 0. If Æ�(H0) > 0 for someH0 � H(� ) then � is FSD non-optimal.The idea of this result is to �nd a representative utility fun
tion for whi
h �maximizes expe
ted utility. Note that �(� ;�(� )) = Æ�=T . Sin
e a 2 A(� ) andh 2 f0; : : : ; TgT for all h 2 H(� ), using Corollary 1(i), we have 0 � �(� ;�(� )) � 1.Among other things, the theorem implies the following about the relationship be-tween the eÆ
ien
y 
on
epts of optimality and admissibility.Corollary 2:If (T � 4) then FSD optimality is equivalent to FSD admissibility.Proof:Without loss of generality, let T = 4 and let � be FSD admissible. Consider allpossible h(�; � ) whi
h are not dominated by ea
h other6: h1(�; � ) = (4; 2; 2; 2),h2(�; � ) = (4; 3; 3; 0), h3(�; � ) = (4; 4; 2; 0) and h4(�; � ) = (4; 4; 1; 1). Entering these
andidates in the linear programming test in Theorem 2, we 
an see that � is the opti-mal portfolio for a representative utility fun
tion with a2 = a3 = a4 = 1=3, and hen
e� is FSD optimal.6A dominated h(�; � ) 
an not 
hange the solution of (9)-(10).11



The numeri
al example in the next se
tion shows that the two eÆ
ien
y 
on
eptsdiverge for T � 5.A remaining problem is identifying the elements of the set H(� ). We may adoptseveral strategies for this task. The appendix provides a mixed integer linear program-ming (MILP) algorithm that identi�es a set of 
andidate ve
tors eH(� ) � H(� ), and
he
ks if h 2 H(� ) for every 
andidate h 2 eH(� ). A drawba
k of this approa
h isthat the number of 
andidates in
reases exponentially with the number of s
enarios(T ). Hen
e, for large numbers of s
enarios, this strategy may be
ome 
omputationallyprohibitive and some sort of approximation may then be required.For example, we may form a sample Hs(� ) of elements h(�; � ) by using a sample�s 2 �(� ) and 
onstru
ting the asso
iated values for h(�; � ). The test pro
edure isthen applied to the sample Hs(� ) instead of the 
omplete set H(� ). 7 A

ording toCorollary 1(ii), this will lead to a ne
essary 
ondition for FSD optimality. There existvarious te
hniques for performing the sampling task, in
luding a regular grid, MonteCarlo methods or Quasi-Monte Carlo methods; see, for example, Ja
kel (2002) andGlasserman (2004).While the MILP algorithm starts from a large set of 
andidate ve
tors and 
he
ksfeasibility for every 
andidate, sampling from the portfolio spa
e avoids sear
hing overinfeasible 
andidates. Of 
ourse, the limitation of this strategy is that the 
riti
alsample size needed to obtain an a

urate approximation in
reases exponentially as thenumber of individual 
hoi
e alternatives (N) in
reases. Still, this approa
h 
an yieldan a

urate approximation in an eÆ
ient manner if N is low. This is true espe
iallywhen the 
orrelation between the individual 
hoi
e alternatives is high and hen
e small
hanges in the portfolio weights do not lead to large 
hanges in the values of h(�; � ).An alternative approa
h is to enri
h the Bawa et al. test by in
luding the samesample of diversi�ed portfolios �s as additional 
hoi
e alternatives. This will lead to amore powerful ne
essary 
ondition for FSD optimality than 
onsidering the undiversi-�ed 
hoi
e alternatives only. However, using the sample �s in our test generally leadsto a more favorouble trade-o� between 
omputation time and numeri
al a

ura
y.Spe
i�
ally, if we apply the Bawa et al. test to a grid with step size s, the relevantlinear program has M � T 
olumns and M rows, see (Bawa et al. (1985), Se
tion IC,LP problem at the bottom of p. 423), or dimensions M � T �M , while the dimensionsof our linear program (9)-(10) are T �M , whereM = N�1Yi=1 (1 + 1si)7Sin
e every h(�; � ) is known to be feasible, we 
an skip Step 2-5 of the algorithm and take onlyStep 1 and Step 6. Step 1 in this 
ase boils down to performing pairwise dominan
e tests between everysampled portfolio and the evaluated portfolio. The 
omputational burden of the step 
an be ignored.12



is the number of portfolios from the grid. For example, if we use T = 120 time-seriesobservations, N = 10 base assets and grid step size s = 0:1, the Bawa et al. test hasdimensions 1:11 � 107 � 9:24 � 104, while our program has dimensions 120� 9:24 � 104.V Numeri
al exampleA numeri
al example 
an illustrate our test and the di�eren
e with the Bawa et al. testand Kuosmanen test. We fo
us on an example with �ve s
enarios (T = 5), be
auseFSD optimality is equivalent to FSD admissibility for (T � 4) (see Corollary 2).Table 1 shows the returns to three 
hoi
e alternatives (X1, X2, X3) and the testedportfolio Z = 0:16X1 + 0:21X2 + 0:63X3 in the �ve s
enarios (1; 2; 3; 4; 5).[Insert Table 1 about here℄One 
an immediately see that no individual 
hoi
e alternative (X1, X2 and X3)FSD dominates Z; no other alternative involves a 100% 
han
e of a return above �2%and a 20% 
han
e of a return above 7%. However, this does not mean that Z is anoptimal portfolio. Therefore, it is interesting to employ the three eÆ
ien
y tests.To implement the Kuosmanen test, we need to solve the following LP problem forea
h of the 5! = 120 permutations of Z, say yj = (y1j ; y2j ; y3j ; y4j ; y5j ), j = 1; 2; : : : ; 120,or an equivalent mixed integer linear problem:	j = max�1;�2;�3 15 5Xt=1(�1xt1 + �2xt2 + �3xt3 � ytj)s:t: �1xt1 + �2xt2 + �3xt3 � ytj t = 1; 2; 3; 4; 5�1 + �2 + �3 = 1�1; �2; �3 � 0We �nd 	�j = 0 for every j = 1; 2; : : : ; 120, and hen
e Z is in the FSD admissible set(not FSD dominated by any 
onvex 
ombination of X1, X2 and X3).To test FSD optimality a

ording to Bawa et al., we need to establish if some 
onvex
ombination of the CDFs of X1, X2 and X3 dominates the CDF of Z, see (Bawa et al.,(1985), p. 421, Eq. 5). Table 2 shows the CDFs of the three 
hoi
e alternatives (�X1 ,�X2 , �X3) and the CDF of Z (�Z). Note that these CDFs need to be evaluated onlyat the observed return levels: fzjg19j=1.[Insert Table 2 about here℄
13



To implement the test, we need to solve the following LP problem, see (Bawa et al.(1985), Se
tion IC, LP problem at the bottom of p. 423):� = max�1;�2;�3 19Xj=1(�Z(zj)� �1�X1(zj)� �2�X2(zj)� �3�X3(zj))s:t: �1�X1(zj) + �2�X2(zj) + �3�X3(zj) � �Z(zj) j = 1; : : : ; 19�1 + �2 + �3 = 1�1; �2; �3 � 0Solving this problem, we �nd �� = 0, and hen
e Z is 
lassi�ed as optimal; not everynonsatiable de
ision-maker will prefer X1 or X2 or X3 to Z. Based on the positiveout
omes of the two tests, we may be tempted to 
on
lude that Z is the optimalportfolio for some in
reasing utility fun
tion. Perhaps surprisingly, this 
on
lusion iswrong. The appli
ation of our MILP algorithm will demonstrate this. We will followthe steps outlines in the Appendix.Sin
e we have already tested FSD admissibility, we start with the se
ond step ofidentifying the initial 
andidates for H(� ). For j = 2; 3; 4; 5, we solve (11), wherek(� ) = 2, T = 5, m = �4, m = 10 and X� = Z. (Re
all that the 
onstants m andm are the minimal and maximal possible returns, and k(� ) is the order of the se
ondsmallest return of � .) Table 3 shows the optimal solutions for h(�; � ) and �. It followsthat hmax = (5; 5; 4; 3; 2). [Insert Table 3 about here℄In this example, we �nd �1 = f(0:1483; 0:8517; 0), (0:1187; 0:8813; 0); (0:9266; 0:0734;0) g, and H1 = f(5; 5; 4; 2; 0); (5; 5; 3; 3; 0); (5; 3; 3; 2; 2)g for the set of 
orrespondingvalues of h�.In the third step, we apply the stopping rules for the initial 
andidates. Sin
eh(� ; � ) = (5; 4; 3; 2; 1), hmaxt > ht(� ; � ) for all t = k(� ); :::; T , hen
e the suÆ
ient
ondition of FSD optimality is not ful�lled. Sin
e �(� ;�1) = 0, the ne
essary 
onditionof FSD optimality is also not ful�lled; there exists a de
ision-maker who prefers � toall portfolios in �1.Thus, we pro
eed with the fourth step of 
onstru
ting and redu
ing the 
andidateset H. Sin
e hmax = (5; 5; 4; 3; 2), the 
andidate set 
onsists of 6 � 6 � 5 � 4 � 3 = 2160elements. We ex
lude 
andidates for whi
h a 
orresponding portfolios 
an not exist,that is, the members of the sets eH = eH1 [ eH2 [ eH3 [ eH4: The remaining 
andidatesare: 14



h1
 = (5; 5; 4; 1; 1)h2
 = (5; 5; 2; 2; 2)h3
 = (5; 5; 2; 2; 1)h4
 = (5; 5; 2; 1; 1)h5
 = (5; 5; 1; 1; 1)h6
 = (5; 4; 4; 1; 1)h7
 = (5; 4; 2; 2; 2)h8
 = (5; 3; 3; 3; 1):Finally, we employ the last two steps of our algorithm. Step 5 tests feasibility ofa remaining 
andidate using (12). If the 
andidate is infeasible then we 
hoose thenext one. If the 
andidate is feasible then we add it to H1 and we re
ompute �(� ;H1).Let us start with h1
 = (5; 5; 4; 1; 1). This 
andidate is feasible as it 
orresponds to� = (0:265; 0:735; 0). Adding this 
andidate, we 
onsider �2 = �1 [ (0:265; 0:735; 0)andH2 = H1[(5; 5; 4; 1; 1). Applying Theorem 2, we solve the following linear problem:min Æs.t. a2 +a3 �a5 � Æa2 +a4 �a5 � Æ�a2 +a5 � Æa2 +a3 �a4 � Æa2 +a3 +a4 +a5 = 1We �nd Æ� = 1=9, �(� ;�2) = Æ�=5 = 1=45 > 0. This means that we 
an not �nd arepresentative utility fun
tion that rationalizes the evaluated portfolio. Thus, addingportfolio (0:265; 0:735; 0) to �1 suÆ
es to demonstrate non-optimality in this 
ase. Notethat this portfolio does not dominate the evaluated portfolio, as the evaluated portfoliois FSD admissible. However, we do know that every well-behaved investor will prefer(0:265; 0:735; 0) or an element of �1 to the evaluated portfolio. Sin
e the evaluatedportfolio is 
lassi�ed as FSD non-optimal, the algorithm is 
omplete. Thus, in thisexample, Z is 
lassi�ed as optimal a

ording to Bawa et al. and Kuosmanen tests.Still, it 
an be demonstrated to be non-optimal for any in
reasing utility fun
tion.We may repeat this exer
ise for more portfolios � 2 � \ f0; 0:01; : : : ; 1g3, that is,when using a grid with step size 0:01 for the portfolio weights. Figure 2 illustrates the
omparison between FSD admissibility and FSD optimality.[Insert Figure 2 about here℄15



The Kuosmanen test re
ognizes that many diversi�ed portfolios are FSD dominatedby other diversi�ed portfolio, most notably those that assign a high weight to X3. Inthis example, only 22 % of the 
onsidered portfolios are FSD admissible (the union ofthe grey and bla
k dots). The FSD optimal set is even smaller than the admissible set.The set of grey dots, in
luding Z, is now ex
luded, leaving only the bla
k dots. Theredu
tion in the eÆ
ient set to 16 % of all 
onsidered portfolios ( a 26 % redu
tion)is possible be
ause the optimality test a
knowledges that a 
hoi
e alternative may notbe optimal for all investors even if no single other 
hoi
e is preferred by all. Note thatthe eÆ
ient regions are not 
onvex, witness for example the small isolated optimal areanear � = (0; 0:7; 0:3):A similar analysis 
an be done for FSD optimality a

ording to Bawa et al. (1985).Figure 3 shows that 93 % of all portfolios is 
lassi�ed as optimal. Only 17 % of theseportfolios are FSD optimal. The optimal set is substantially larger than ours, be
ausethe Bawa optimality test does not a

ount for full diversi�
ation.[Insert Figure 3 about here℄As dis
ussed in Se
tion 3, we 
an in
rease the power of the Bawa et al. test byadding a grid of diversi�ed portfolios to the individual 
hoi
e alternatives. Of 
ourse,this approa
h will still yield only a ne
essary 
ondition, be
ause it is 
omputationallyimpossible to in
lude all in�nitely many relevant portfolios. In addition, using the samegrid of diversi�ed portfolios in our test will lead to a smaller linear program. Figure4 shows the set of portfolios whi
h are not 
lassi�ed as FSD non-optimal using theenri
hed Bawa et al. test and our test using the same grid step size.[Insert Figure 4 about here℄There are only small di�eren
es in the power of the two tests for s = 0:1. However,our test is roughly 120 times faster than the enri
hed Bawa et al. test. For s = 0:01,our test is very powerful: 97% of non-optimal portfolios are 
orre
tly 
lassi�ed as non-optimal. Unfortunately, we were unable to implement the enri
hed Bawa et al. test forthis step size due to the ex
essive 
omputation load. The di�eren
es in 
omputationload will be even larger for real-life appli
ations with higher dimensions.VI Empiri
al appli
ationTo further illustrate our test, we apply it to US sto
k market data in order to an-alyze FSD optimality of the market portfolio relative to portfolios formed on mar-ket 
apitalization of equity (size) and book-to-market equity ratio (B/M). This testseems relevant for asset pri
ing theory, be
ause all single-period, portfolio-oriented,16



representative-investor models of 
apital market equilibrium predi
t that the marketportfolio is optimal for a representative investor with well-behaved preferen
es.The investment universe of sto
ks is proxied by the well-known six value-weightedFama and Fren
h portfolios 
onstru
ted as the interse
tion of two groups formed on size(small 
aps and large 
aps) and three groups formed on B/M (growth sto
k, neutralsto
ks and value sto
ks). We proxy the market portfolio by the CRSP all-share index,a value weighted average of 
ommon sto
ks listed on NYSE, AMEX, and NADAQ, andthe riskless asset by the one-year US government bond index from Ibbotson Asso
iates.We 
onsider yearly (January-De
ember) ex
ess returns from 1963 to 2002 (40 annualobservations).8;9 Ex
ess returns are 
omputed by subtra
ting the riskless rate from thenominal returns, that is, the riskless asset always has a return of zero.Table 4 shows some des
riptive statisti
s for our data set. Parti
ularly puzzling isthe value premium in the small 
ap segment. The small value sto
ks earned an averageannual ex
ess return of 13.86 per
ent, 8.55 per
ent in ex
ess of the 5.31 per
ent forsmall growth sto
ks. It seems diÆ
ult to explain away this premium with risk be
ausethe small growth sto
ks a
tually have a higher standard deviation than the small valuesto
ks. Indeed, the market portfolio is SSD ineÆ
ient, as shown before by Post (2003).This means that in the fa
e of attra
tive premiums from investing in small 
aps sto
ksand value sto
ks, investing in the market portfolio seems not optimal for any risk averseinvestor. [Insert Table 4 about here℄Still, the market portfolio may be FSD optimal, for example, it may be optimalfor investors who are risk seeking for losses and risk averse for gains. Our �rst stepto analysing FSD optimality is to apply the Bawa et al. test. This test 
lassi�es themarket portfolio as optimal, meaning that some investors prefer the market portfolioto all of the 7 ben
hmark portfolios (six Fama and Fren
h, and the riskless asset).However, as dis
ussed before, the test does not a

ount for diversi�
ation between theseven portfolios. To analyze the e�e
t of diversi�
ation, we 
an enri
h the Bawa et8As dis
ussed in Benartzi and Thaler (1995, p.83), one year is a plausible 
hoi
e for the investor'sevaluation period, be
ause "individual investors �le taxes annually, re
eive their most 
omprehensivereports from their brokers, mutual funds, and retirement a

ounts on
e a year, and institutional in-vestors also take the annual reports most seriously." Ex
ess returns are 
omputed by subtra
ting theriskless rate from the nominal returns.9There are two reasons for starting in 1963 and omitting the pre-1963 data. First, prior to 1963,the Compustat database is a�e
ted by survivorship bias 
aused by the ba
k�lling pro
edure ex
ludingdelisted �rms, whi
h typi
ally are less su

essful (Kothari, Shanken and Sloan (1995)). Further, fromJune 1962, AMEX-listed sto
ks are added to the CRSP database, whi
h in
ludes only NYSE-listedsto
ks before this month. Sin
e AMEX sto
ks generally are smaller than NYSE sto
ks, the relativenumber of small 
aps in the analysis in
reases from June 1962. Sin
e the value e�e
t is most pronoun
edin the small-
ap segment, the post-1962 data set is most 
hallenging.17



al. test by adding diversi�ed portfolios or apply the Kuosmanen test. Using the grid�g = �(� ) \ f0; 0:1; : : : ; 1g7 the enri
hed Bawa et al. test already leads to linearprogram with more than 320,000 
onstrains and 8,000 variables. We therefore applythe Kuosmanen test, whi
h involves solving a mixed-integer program with 1,600 integervariables. Interestingly, this test 
lassi�es the market portfolio as FSD inadmissible andidenti�es the dominating portfolio shown in Figure 5.[Insert Figure 5 about here℄Sin
e FSD inadmissibility implies FSD non-optimality there is no need to apply ourtest in this 
ase. Still, it is useful to apply our test for the purpose of illustration and
omparison of the 
omplexity of these three tests.Sin
e the number of 
hoi
e alternatives (7) is small in 
omparison to the numberof s
enarios (40), we apply the method of sampling portfolios using the grid: �g =�(� ) \ f0; 0:1; : : : ; 1g7: The asso
iating ve
tors h(�; � ) are 
olle
ted in Hg and Hgis used to proxy for H(� ) in the linear programming problem (9)-(10). This linearprogram has only 8,000 
onstrains and 40 variables. Therefore our test is mu
h morefaster than both the Kuosmanen test and enri
hed Bawa et al. test for the samegrid. Interestingly, the non-optimality measure is stri
tly positive; �(� ;�g) = 0:00275.A

ording to Corollary 1(ii), this implies that the market portfolio is not optimal forany in
reasing utility fun
tion.Table 5 illustrates the non-optimality 
lassi�
ation. It shows 9 
ombinations of the7 ben
hmark portfolios. For the ve
tors h(�; � ) asso
iated with these 
ombinations, therestri
tions in (9)-(10) are binding. This means that the value of the non-optimalitymeasure 
riti
ally depends on these ve
tors. By 
ontrast, the other ve
tors 
an beex
luded without a�e
ting the non-optimality measure. None of these 9 
ombinationsFSD dominates the evaluated portfolio. Still, for every in
reasing utility fun
tion, atleast one of these 
ombinations is better than the market portfolio. Not surprisingly,ea
h of these portfolios assigns a substantial weight to small 
ap sto
ks and/or valuesto
ks. [Insert Table 5 about here℄The above analysis fo
uses on sample optimality. It is desirable to a

ount forsampling error and establish the statisti
al 
on�den
e we have in population optimality.For mean-varian
e eÆ
ien
y tests, the sampling distribution is well-known, see, forexample Gibbons, Ross and Shanken (1989). The sampling distribution for SD testsis more diÆ
ult to derive, be
ause the shape of the population return distribution isnot restri
ted. We therefore resort to the bootstrap method, a well-established tool toanalyze the sensitivity of empiri
al estimators to sampling variation in situation wherethe sampling distribution is diÆ
ult to obtain analyti
ally.18



Under the assumption of serially IID returns, the empiri
al return distribution is a
onsistent estimator of the population return distribution, and bootstrapping samples
an simply be obtained by randomly sampling with repla
ement from the empiri
alreturn distribution. Nelson and Pope (1991) demonstrated in a 
onvin
ing way thatthis approa
h 
an quantify the sensitivity of the empiri
al return distribution to sam-pling variation, and that SD analysis based on the bootstrapped return distribution ismore powerful that analysis based on the original empiri
al return distribution. Weimplement this method by generating 10,000 random pseudo-samples and apply ourtests for ea
h pseudo-sample. We do not apply the enri
hed Bawa et al. test or theKuosmanen test, be
ause of the asso
iated 
omputational burden. Rather, we applyour LP ne
essary test (9)-(10) using the 9 
ombinations from Table 5. In 97.9 % ofthe pseudo-samples, the market portfolio did not pass this ne
essary test. Then, forthe remaining 2.1% of the pseudo-samples, we apply our LP ne
essary test (9)-(10)using the grid �g = �(� )\f0; 0:1; : : : ; 1g7. In 0.8% of the pseudo-samples, the marketportfolio failed this ne
essary test. For the remaining 1.3% of the pseudo-samples, weapplied our ne
essary and suÆ
ient test. The market portfolio was 
lassi�ed as FSDoptimal in all of these pseudo-samples. Thus, bootstrap p-value is 1.3% and the marketportfolio 
an be 
lassi�ed as signi�
antly FSD non-optimal with 98.7% 
on�den
e.The 
lassi�
ation of the market portfolio as FSD non-optimal reinfor
es Post's(2003) �nding that the market portfolio is SSD ineÆ
ient. This �nding is potentiallyimportant for asset pri
ing theory. All single-period, portfolio-oriented, representative-investor models predi
t FSD optimality. FSD non-optimality would 
ontradi
t allthese models and may 
all for multi-period models, 
onsumption-oriented models orheterogeneous-investor models. However, we stress that this appli
ation serves only toillustrate our non-optimality test. Among other things, the 
hoi
e of the ben
hmarkportfolios and market portfolio, investment horizon and sample period requires moreanalysis than is possible here.VII Con
lusionsWe have developed a test for \FSD eÆ
ien
y" of a given portfolio that is more powerfulthan 
urrently available. In 
ontrast to Bawa et al. (1985), our test 
ompares theevaluated portfolio not only with the �nite set of individual 
hoi
e alternatives, butalso with all portfolios formed by 
ombining the individual alternatives. In 
ontrastto Kuosmanen (2004), our eÆ
ien
y test is based on the 
riterion of FSD optimalityrather than the weaker 
riterion of FSD admissibility.The test 
an be performed by solving a simple linear programming problem. How-ever, the input to the linear programming problem may require an initial phase of mixedinteger linear programming (MILP). For large numbers of s
enarios, this strategy may19



be
ome 
omputationally prohibitive and we may have to resort to an approximationbased on sampling portfolios from the portfolio possibilities set. This subsamplingapproa
h improves the trade-o� between 
omputational 
omplexity and numeri
al a
-
ura
y 
ompared with enri
hing the Bawa et al. test with diversi�ed 
hoi
e alternatives.Using our new test, we showed that the US sto
k market portfolio is signi�
antlyFSD non-optimal relative to ben
hmark portfolios formed on market 
apitalization andbook-to-market equity ratio; no nonsatiable investor would hold the market portfolio inthe fa
e of the small 
ap premium and the value sto
k premium. FSD non-optimalitywould 
ontradi
t all single-period, portfolio-oriented, representative-investor modelsof 
apital market equilibrium and would 
all for multi-period models, 
onsumption-oriented models or heterogeneous-investor models. The fo
us of our study is howeveron methodology and a reje
tion of market portfolio optimality requires a more rigorousempiri
al analysis than is possible in this study.AppendixThis appendix provides a MILP algorithm for identifying the elements of H(� ) andsuggests some stopping rules for testing FSD optimality.STEP 1: Perform a FSD admissibility testAs an initial stopping rule, test FSD admissibility of � , for example using the MILPtest of Kuosmanen (2004). If � is FSD inadmissible then stop the algorithm; � is FSDnon-optimal.STEP 2: Identify initial 
andidates for H(� )For all j = k(� ); :::; T solve the following MILP problem:(11) max hj + 1T 2 PTt = k(� ) hts:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = k(� ); : : : ; Tht = PTs = 1 vs;t t = k(� ); : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = k(� ); : : : ; T� 2 �(� )The problem is solved only for j >= k(� ); solving it for j < k(� ) will identify no20



new 
andidates, be
ause the optimal solutions of (11) for any j < k(� ) is equal to thatfor j = k(� ).Use (h�jt ; ��jt ; v�js;t) for the optimal solution of this problem. Let �1 2 �(� ) be a setof pairwise di�erent ��j (all redundan
ies are removed). Sethmaxt = maxj h�jtH1 = fh(�; � ) : � 2 �1gSTEP 3: Stopping rulesConsider h(� ; � ) as de�ned by (6)-(7). If there exists t 2 fk(� ); : : : ; Tg su
h thathmaxt � ht(� ; � ) then stop the algorithm; � is FSD optimal. Otherwise, solve problem(9)-(10) for H0 = H1. If Æ�(H1) > 0 then stop the algorithm; � is FSD non-optimal.STEP 4: Constru
t and redu
e the 
andidate set HLet Ht = f0; 1; : : : ; hmaxt g. Use H for the 
artesian produ
t H = NTk(� )Ht. ClearlyH(� ) � H, and hen
e H is a 
andidate set. Ex
lude the 
andidates eH = eH1 [ eH2[ eH3 [ eH4; whereeH1 = �h 2 Hjht1 < ht2 for some t1 < t2	eH2 = �h 2 Hjht � ht(� ; � ) 8t 2 fk(� ); : : : ; Tg	eH3 = nh 2 Hj9bh 2 H1 : ht � bht 8t 2 fk(� ); : : : ; Tg with at least onestri
t inequalitygeH4 = 8<:h 2 Hjht � �ht(� ; � ) + (1� �) TXj = k(� ) �jh�jt ; 8t 2 fk(� ); : : : ; Tg;8h�j 2 H1; 0 � � � 1; TXj = k(� ) �j = 1; �j � 0; 8j 2 fk(� ); : : : ; Tg 9=; :The elements of eH are not feasible, that is, there exist no 
orresponding portfolios.The elements of eH1 
ontradi
t the de�nition of ve
tor h(�; � ), see (6)-(7). In step 1,we have found that � is FSD admissible. Feasibility of an element of eH2 implies FSDinadmissibility of � . Every element of eH3 gives a stri
tly higher value of the obje
tivefun
tion in (11) for at least one initial 
andidate. Thus it 
an not be a feasible 
andidate.Adding the elements of eH4 to H1 does not a�e
t the solution of (9)-(10).Set p = 1. 21



STEP 5: Che
k feasibility of the remaining 
andidatesIf H n eH is empty, that is, all possible h 2 H have been 
onsidered, then stop thealgorithm; portfolio � is FSD optimal. Otherwise, 
hoose h 2 H n eH and add it to eH.Let p = p+1, Hp = Hp�1 [h and go to the next step if there exists a feasible solutionof the system:(12) s:t: (vs;t � 1)(m�m) � xs�� (X� )[t℄ � vs;t(m�m) s = 1; : : : ; T ;t = t1; : : : ; Tht = PTs = 1 vs;t t = t1; : : : ; Tvs;t 2 f0; 1g s = 1; : : : ; T ;t = t1; : : : ; T� 2 �(� )Otherwise, repeat this step.STEP 6: Test optimality using the feasible 
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Table 1: Example showing that the Bawa et al. test and the Kuosmanen testdo not give a suÆ
ient 
ondition for FSD optimality.The table shows the returns in �ve s
enarios to three 
hoi
e individual alterna-tives (X1, X2 and X3) and the tested portfolio Z = 0:16X1+0:21X2+0:63X3.No 
onvex 
ombination of X1, X2 and X3 FSD dominates Z and hen
e Z isFSD admissible. t X1 X2 X3 Z1 -1 6 -4 -1.422 -2 5.90 2 2.183 3.50 2.20 3 2.914 8.70 2 5 4.965 10 7 7.50 7.80
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Table 2: Example showing that the Bawa et al. test and Kuosmanen test donot give a suÆ
ient 
ondition for FSD optimality{
ontinued.The table shows the CDFs of the three individual 
hoi
e alternatives(X1; X2; X3) and the tested portfolio Z for all observed return levels. No
onvex 
ombination of �X1 , �X2 , �X3 dominates �Z and hen
e Z is 
lassi�edas optimal. j zj �X1 �X2 �X3 �Z1 -4 0 0 1=5 02 -2 1=5 0 1=5 03 -1.42 1=5 0 1=5 1=54 -1 2=5 0 1=5 1=55 2 2=5 1=5 2=5 1=56 2.18 2=5 1=5 2=5 2=57 2.2 2=5 2=5 2=5 2=58 2.91 2=5 2=5 2=5 3=59 3 2=5 2=5 3=5 3=510 3.5 3=5 2=5 3=5 3=511 4.962 3=5 2=5 3=5 4=512 5 3=5 2=5 4=5 4=513 5.9 3=5 3=5 4=5 4=514 6 3=5 4=5 4=5 4=515 7 3=5 1 4=5 4=516 7.5 3=5 1 1 4=517 7.795 3=5 1 1 118 8.7 4=5 1 1 119 10 1 1 1 1
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Table 3: Initial 
andidates.The table presents the initial 
andidates H1 and the asso
iated �1(� ) obtainedin Step 2 of our algorithm.j h�1 h�2 h�3 h�4 h�5 ��1 ��2 ��32 5 5 4 2 0 0.1483 0.8517 03 5 5 4 2 0 0.1483 0.8517 04 5 5 3 3 0 0.1187 0.8813 05 5 3 3 2 2 0.9266 0.0734 0
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Table 4: Des
riptive statisti
s.The table shows des
riptive statisti
s for the annual (January-De
ember)ex
ess returns of the six Fama and Fren
h sto
k portfolios formed on market
apitalization of equity and book-to-market equity ratio (SG=small growth,SN=small neutral, SV=small value, BG=big growth, BN=big neutral andBV=big value), and the CRSP all-equity index (CRSP). Ex
ess returns are
omputed by subtra
ting the return to the one-year US government bondfrom the nominal returns. The sample period is from 1963 to 2002 (40 annualobservations). Equity data are from Kenneth Fren
h and bond data are fromIbbotson Asso
iates.Mean St.dev. Skew. Kurt. Min. Max.SG 5.309 28.520 0.323 0.175 -49.28 83.68SN 11.301 22.728 -0.308 0.062 -37.38 65.48SV 13.861 23.158 -0.373 -0.222 -33.86 61.14BG 5.303 18.820 -0.317 -0.537 -40.49 34.67BN 6.340 16.120 -0.241 -0.090 -34.13 34.73BV 8.946 17.723 -0.690 -0.026 -34.24 40.34CRSP 5.536 17.191 -0.602 -0.404 -39.19 31.89
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Table 5: Nine 
ombinations showing FSD non-optimality of the marketportfolio.The table shows the portfolio weights of 9 
ombinations of the six Fama andFren
h sto
k portfolios formed on size and B/M (SG=small growth, SN=smallneutral, SV=small value, BG=big growth, BN=big neutral and BV=bigvalue), and the riskless alternative (RL). For every in
reasing utility fun
tion,at least one of these nine 
ombinations is preferred to the market portfolio,and hen
e the market portfolio is FSD non-optimal.Combination SG SN SV BG BN BV RL1 0 0 0.1 0.3 0.1 0.4 0.12 0 0 0.3 0.2 0 0.2 0.33 0 0 0.4 0 0 0.3 0.34 0 0 0.4 0 0.1 0.3 0.25 0 0 0.6 0 0.1 0 0.36 0 0 0.6 0.2 0 0.1 0.17 0 0.1 0.5 0.1 0.1 0.1 0.18 0 0.1 0.9 0 0 0 09 0 0.2 0.8 0 0 0 0
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Figure 1: Representative utility fun
tion.The �gure shows the original utility fun
tion u0 and the asso
iated represen-tative utility fun
tion u1.
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Figure 2: Admissibility and optimality.The �gure shows the eÆ
ien
y 
lassi�
ation a

ording to the FSD admissibilitytest and our FSD optimality test. We applied these tests to all portfolios� 2 � \ f0; 0:01; : : : ; 1g3, that is, when using a grid with step size 0.01 forthe portfolio weights. Our optimal set is represented by the bla
k dots. Theadmissible set is the union of the bla
k dots and the grey dots.
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Figure 3: Bawa et al. optimality and FSD optimality.This �gure shows the optimality 
lassi�
ation a

ording to the Bawa et al. testand our test for FSD optimality. Our optimal set is represented by the bla
kdots. The Bawa et al. optimal set is the union of the bla
k dots and the greydots.
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Figure 4: Subsampling approa
h.The �gure shows the out
omes of the Bawa et al. test and our test whenapplied to a grid of portfolios with step size s=0.1 or s=0.01. The grey dotsare portfolios that passed the ne
essary test; the other portfolios failed the testand are 
lassi�ed as FSD non-optimal. The per
entages of FSD non-optimalportfolios that are dete
ted using the ne
essary tests are given below everygraph.
32



Figure 5: Pairwise FSD dominan
e.This �gure shows the CDF of the sto
k market portfolio (bla
k line) and thedominating portfolio (grey line): �d = (0; 0:04; 0:43; 0:37; 0:04; 0; 0:13). Sin
ethe dominating portfolio is preferred by all investors, the market portfolio isFSD inadmissible.
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