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Abstract

We develop a dynamic model of banking to assess the effects of liquidity and capi-

tal requirements on banks’ insolvency risk. The model features endogenous capital

structure, liquid asset holdings, payout, and default decisions. In the model, banks

face taxation, flotation costs of securities, and default costs and are financed with

equity, insured deposits, and risky debt. Using the model, we demonstrate that (i)

regulatory requirements affect bank behavior even when they are not binding; (ii)

liquidity requirements constraining banks to hold a minimum amount of liquid reserves

have no long-run effects on default risk but may increase default risk in the short run;

(iii) capital requirements increase banks’ franchise value ex post and reduce default

risk; (iv) levered banks have no risk shifting incentives when outside financing is costly.
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Banks can impose major risks on the economy. Avoidance of these risks and the associated

social costs is the overwhelming concern of prudential regulation. Given the experience in

the financial crisis of 2007-2008, in which insufficient liquidity buffers and excessive leverage

made the financial system unable to withstand large negative shocks, the debate on banking

regulation has recently evolved around two main ideas, that have been reflected in proposals

for regulatory reform. First, equity requirements should be significantly increased, so that if

the value of the banks’ assets were to decline this would not automatically lead to distress

and the resulting losses would be borne by the bank owners (see e.g. Admati and Hellwig

(2013)).1 Second, because most banks assets are illiquid and raising fresh equity at short

notice is costly, banks should hold a buffer of liquid reserves in order to be able to cope with

short-term losses (see e.g. Gorton (2012)).

While many qualitative discussions of capital and liquidity requirements are available in

the literature, financial theory has made little headway in developing models that provide

quantitative guidance for the use of different instruments of prudential regulation. Moreover,

as useful as they are, many of the recent discussions on banking regulation ignore important

incentive effects that regulatory requirements may have on bank behavior. Our objective

in this paper is therefore twofold. First, we seek to develop a dynamic tractable model

of banks’ choices of liquid asset holdings, financing, payout, and default policies in the

presence of realistic market frictions. Second, we want to use this model to characterize the

endogenous response of banks to the imposition of liquidity and capital requirements and to

measure the effects of such requirements on banks’ insolvency risk.

We begin our analysis by formulating a dynamic structural model in which banks face

taxation, issuance costs of securities, and default costs and may be constrained by a regulator

to hold a minimum amount of liquid reserves and of equity capital. In the model, banks are

financed with equity, insured deposits, and risky debt. They hold risky, illiquid assets (e.g.

1For example, U.S. banking regulators have proposed in July 2013 a new restriction on borrowing for U.S.
banks. This new restriction would require a ratio of regulatory (Tier 1) capital to total assets of 6 percent for 8
Systemically Important Financial Institutions and 5 percent for their bank holding companies, independently
of the riskiness of these assets. Similarly, the Vickers Commission in the U.K. has recommended a 4 percent
ratio rather than the 3 percent global standard set by the Basel III regime.
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loan portfolios) that yield high returns but are subject to both small and frequent shocks (i.e.

Brownian shocks) as well as large negative shocks capturing tail risk (i.e. negative jumps).

Banks also hold risk-free, liquid assets (i.e. cash reserves or safe government bonds) that

can be used to absorb these shocks and save on recapitalization costs. In the model, banks

maximize the present value of future dividends to incumbent shareholders by choosing their

buffers of liquid assets as well as their payout, financing, and default policies.

We start our analysis by solving the policy choices that maximize shareholder value in

an hypothetical environment in which banks are unregulated. We show that when outside

financing is costly, inside and outside equity are not perfect substitutes and banks find it

optimal to hold buffers of liquid assets. Indeed, while cash is an asset with a low return, it is

also the most liquid store of value, the one that can be used to absorb potential losses without

issuing costly securities. To reduce the risk of default and save on recapitalization costs,

banks manage their liquidity buffers dynamically by adjusting their dividend payments to

shareholders. Banks facing higher recapitalization costs are less levered, pay less dividends,

hold more liquid reserves, and default earlier. Moreover, banks behave in a risk-averse

fashion. That is, we find that levered banks have no incentives to increase risk, even though

shareholders have limited liability, consistent with the evidence presented in Stein (2014).

We also show that banks absorb small and intermediate losses using their buffers of liquid

assets or by raising outside funds at a cost when these buffers are insufficient. That is, in our

model, small and intermediate losses do not lead to insolvency. We show, however, that large

losses due to a realization of tail risk may lead banks to default. Notably, we find that banks’

insolvency risk increases with tail risk, financial leverage, and financing costs and decreases

with franchise value, i.e. the expected cash flow from running the banks’ assets. As will

become clear, one key feature of our framework is that it highlights a trade-off between

managing insolvency risk ex ante via capital structure policy versus ex post via liquidity

buffers. That is, in our model, liquidity management, capital structure policies, and default

decisions are jointly and endogenously determined.

2



After solving for the policy choices of unregulated banks, we examine the effects of

prudential regulation on these policy choices and insolvency risk. We first consider liquidity

requirements that mandate banks to hold a minimum amount of liquid reserves. We show

that when facing such a requirement, banks voluntary choose to hold liquid buffers in excess

of the required minimum in order to reduce recapitalization costs associated with breaches

of the requirement. Notably, we show that as liquidity requirements rise, banks raise their

target level of liquid reserves by a like amount, thereby making their cushion of liquid reserves

independent of the level chosen by the regulator. We then investigate the implication of this

behavior for default risk. Because raising outside funds is costly, an increase in liquidity

requirements will not generally lead to an immediate adjustment to the new target buffer. As

a result, in the short-run, liquidity requirements will lead to a drop in franchise value and to

an increase in insolvency risk. We also demonstrate that once there has been an opportunity

to build up liquid reserves towards the desired level, changes in liquidity requirements have

no impact on insolvency risk. That is, contrary to received wisdom, we find that constraining

liquid reserves has no long-run impact on the risk of failure of banks.

In addition to liquidity requirements, banks may be subject to capital (or equity) require-

ments. Such requirements do not impose any restriction on what assets banks should hold

but impose constraints on the way they fund their operations. Indeed, as argued by Admati

and Hellwig (2013), an increase of equity capital transfers a large fraction of the bank’s risks

to the bank’s owners, which otherwise might be passed on to creditors or taxpayers. Capital

requirements are generally expressed in terms of leverage ratios, indicating how much equity

capital banks should have relative to their total assets. For example, banks are expected to

maintain a Tier 1 capital to asset ratio of 3% under Basel III. In July 2013, the US Federal

Reserve Bank announced that the minimum Basel III leverage ratio would be 6% for 8

Systemically Important Financial Institutions. Consistent with these recommendations, we

consider requirements that fix ex-ante a minimum amount of equity capital for banks. Using

a calibrated version of the model, we show that such requirements have a significant effect

on insolvency risk. For example, increasing equity capital from 6% (as recommended by U.S.

regulators) to 20% (as recommended by Admati and Hellwig) decreases the probability of
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default over a one year horizon from 0.1518% to less than 0.0001%. We also show that such

requirements have a significant effect on bank value. In our base environment for example,

we find that increasing equity capital from the equity value-maximizing level to 20% reduces

total bank value by 6.25%.

The literature examining default risk in banks has started with the early contributions

of Merton (1977, 1978), in which the objective is to determine the cost of deposit insurance

and loan guarantees. Although an important milestone, the analysis of Merton has four

limitations. First, it assumes that banks default whenever the assets-to-deposits ratio falls

below some exogenous barrier. This provision approximates the case in which banks face a

positive net worth covenant, but it is by no means the only or typical situation. Second, the

capital structure of banks is set exogenously and does not depend on frictions that banks

face such as taxes, bankruptcy costs, or issuance costs of securities. Third, the dynamics of

the banks assets are governed by an exogenous process, implying that there is no connection

between the banks’ asset and capital structures. Fourth, raising equity is costless, so that

liquid reserves are irrelevant.

Most of the recent quantitative banking models examine variants to the first of these

assumptions. By doing so, these studies are able to determine the effects of a given, exogenous

capital structure on insolvency risk, while maintaining the Modigliani and Miller (1958)

assumption that investment policy is independent of financing policy. In these contributions,

insolvency is endogenous and triggered by shareholders decision to cease injecting funds in

the bank (see e.g. Fries, Mella-Barral, and Perraudin (1997), Bhattacharya, Planck, Strobl,

and Zechner (2002), or Décamps, Rochet, and Roger (2004)). While identifying some prime

determinants of insolvency risk, these theories assume that asset and liability structures are

exogenously given. As a result, they leave open the question of how financing structure and

asset structure interact and jointly affect insolvency risk. In addition, these models also

maintain the assumption that banks can raise outside funds at no cost, thereby leaving no

role for liquidity. In that respect, they ignore a number of key determinants of insolvency

risk, which are at the centre of most regulatory frameworks, for example those of the Basel

Committee on Banking Supervision.
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Our analysis inherits some of the assumptions of this literature. For example, bank

shareholders are protected by limited liability and the bank’s objective is shareholder value

maximization. However, it differs from these contributions in three important respects. First,

we consider that at least part of a bank’s assets are illiquid and that it is costly to issue

securities, thereby providing a role for liquidity buffers. Second, we incorporate some of the

key market imperfections and regulatory requirements that banks face in practice and relate

banks’ payout, financing, and default policies to these various frictions. Third, in our model,

financing structure and asset structure interact and jointly affect insolvency risk. We show

that these unique features have important implications. Notably, in standard models of bank

moral hazard limited liability leads banks to increase risk as much as possible. In addition,

shareholder value is always increased by making dividend payments to shareholders. This is

not the case in our model with frictions, in which equity value is concave and shareholders

have incentives to protect their franchise value by maintaining adequate liquid reserves.

There is a large literature on bank capital that analyzes its role in regulation (see e.g.

Hellman, Murdoch, and Stiglitz (2001), Décamps, Rochet and Roger (2004), Morrison and

White (2005), or Repullo and Suarez (2013)). But it is only recently that the question of

bank optimal capital structure has begun to be addressed. The papers that are most closely

related to ours in this literature are Froot and Stein (1988) and Subramanian and Yang

(2013). Subramanian and Yang use a dynamic model to examine banks’ insolvency risk. In

their paper, there is no role for liquid reserves as outside financing is costless. In addition,

the authors mostly focus on regulators’ incentives to step in as banks become distressed. In

that respect, the two papers are complementary.

Froot and Stein (1998) build a two-period model in which capital is initially costless but

may become costly in the future. In their model, decisions are made by bank shareholders

in the first period, in which the future increase in financing costs leads the bank to increase

equity capital and to engage in risk management activities to hedge future potential losses.

Our model differs from Froot and Stein by considering that banks always face the same

set of frictions and choose their payout, financing, and default decisions in response to these

frictions as well as regulatory requirements. Another difference is that we consider a dynamic
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model. Indeed, as suggested by Hellwig (1998), a static framework fails to capture important

intertemporal effects. For example, in a static model, a regulatory requirement can only affect

a bank’s behavior if it is binding. In practice however, regulatory requirements are binding

for a small minority of banks and yet seem to influence the behavior of other banks.

From a methodological perspective, our paper relates to the inventory models of Milne

and Whalley (2001), Milne (2004), Peura and Keppo (2006), or Décamps, Mariotti, Rochet,

and Villeneuve (2011), in which financing costs lead banks or corporations to have liquidity

buffers. In these models, uncertainty is solely driven by Brownian shocks and there is no

risk of default if firms can raise outside equity. Our paper advances this literature in two

important dimensions. First, we incorporate jumps in our analysis to account for tail risk

and show that banks may find it optimal to default, even if they have access to outside

funds. Second, we endogenize not only banks’ payout decisions but also their financing and

default policies. This allows us to examine the effects of regulation on banks’ insolvency

risk. As shown in the paper, this problem is difficult to solve because we now have two free

boundaries (the default and the payout thresholds) instead of one (the payout threshold).

Another contribution of this paper is therefore to develop a new method based on fixed-point

arguments to derive the solution to shareholders’ optimization problem in this context.

The paper is organized as follows. Section I presents the model. Section II derives the

policies choices of unregulated banks. Section III examines the effects of liquidity and capital

requirements on these policy choices and insolvency risk. Section IV discusses the model’s

implications. Section 5 concludes. The proofs are gathered in a separate Appendix.

I. Model

We develop a dynamic banking model in which financing structure and asset structure

interact and jointly affect insolvency risk. Our focus is on the liquidity management, payout,

financing, and default policies that maximize the bank’s equity value. We also analyze the

effects of capital and liquidity requirements on these policy choices and banks’ insolvency

risk. Throughout the paper, agents are risk neutral and discount cash flows at a constant
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rate ρ. Time is continuous and uncertainty is modeled by a probability space (Ω,F , P ;F),

with the filtration F = {Ft : t ≥ 0} satisfying the usual conditions.

The subject of study is a bank held by shareholders that have limited liability. This

bank is subject to taxation at the rate θ ∈ (0, 1). It owns a portfolio of risky assets (e.g.

a portfolio of risky loans) as well as liquid reserves (i.e. cash reserves or safe government

bonds) and is financed by equity, insured deposits, and risky debt. Risky assets generate

after-tax cumulative cash flows At that evolve according to:

dAt = (1− θ)µdt+ σdBt − YNtdNt

where Bt is a Brownian motion, Nt is a Poisson process, (µ, σ) are constants, and (Yn)∞n=1 is a

sequence of independently and identically distributed random variables that are drawn from

R+ according to an exponential distribution with cumulative density function F (y) = 1−e−βy

with β > 0. In this equation, the increments of the Brownian motion represent small and

frequent shocks to the bank cash flows. The jumps of the Poisson process represent large

losses that may be due, for example, to defaults across the loan portfolio of the bank. We

denote the intensity of the Poisson process by λ so that over an infinitesimal time interval

there is a probability λdt that the bank makes a large loss. Because the distribution of the

jump magnitudes has unbounded support, the bank will be unable to withstand this loss

with some positive probability, leading to insolvency. That is, the bank is subject to tail risk

(see for example Acharya, Cooley, Richardson, and Walter (2009) for an analysis of the role

of tail risk in the 2007-2009 financial crisis).

The relative illiquidity of bank assets generally constitutes a main source of banking

fragility.2 As discussed in Froot and Stein (1998), “one of the fundamental roles of banks

and financial intermediaries is to invest in assets which, because of their information-sensitive

nature, cannot be frictionlessly traded in the capital markets.” The standard example of such

2This illiquidity problem can be due for example to the special expertise of the bank in evaluating its
long-term investments. If the bank tries to sell them before they pay out, other investors might infer that
the bank got bad news about the future returns from these investments leading to a decrease of the price
at which the bank could sell these assets. That is, liquidity problems may be fundamentally informational.
But informational problems are also why we need a banking system in the first place.
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an illiquid asset is a loan to a small or medium-sized company. To capture this important

feature, we consider that risky assets are illiquid and assume for simplicity that they have

zero liquidation value, as in Biais, Mariotti, Rochet, and Villeneuve (2010), DeMarzo, Duffie,

and Varas (2013), or Rochet and Zargari (2013).

In addition to its risky assets, the bank can (or may be constrained by the regulator to)

hold liquid, risk-free reserves. We denote by St the liquid reserves of the bank at any time

t ≥ 0. Holding liquid reserves generally involves deadweight costs. We capture these costs by

assuming that the rate of return on liquid reserves is zero.3 When optimizing its liquid asset

holdings, the bank trades-off the lower returns of these assets with the benefits of liquidity.

The bank’s capital structure comprises equity, a fixed volume of insured deposits D,

and risky debt. Deposits are insured against bank failure by a deposit insurance fund and

require the bank to make a payment cD ≥ 0 per unit of time, which includes the interest

paid to depositors and a deposit insurance premium.4 Risky debt requires the bank to make

a payment cL ≥ 0 per unit of time and has a face value L that is endogenized in section

III.B. The bank’s debt payments are thus c = cD + cL and its cumulative earnings satisfy

Ct = At − (1− θ)ct = (1− θ)(µ− c)t+ σBt −
Nt∑
n=1

Yn. (1)

Given that sudden losses can eliminate an arbitrarily large fraction of the bank’s assets,

the bank is subject to default risk. In the following, we use a stock based definition of default

whereby the bank services debt as long as equity value is positive (as in e.g. Leland (1994)).

That is, default is the result of the optimizing behavior of shareholders. We will show that

in our model limited liability only has value if the bank cash flows are subject to tail risk,

i.e. only if λ > 0, for otherwise the bank would not be subject to default risk.

3A necessary condition for a well-defined payout policy is that there exists a cost of holding liquidity in
that the rate of return on liquid reserves is strictly less than the risk-free rate of return ρ.

4As in Hanson, Shleifer, Stein and Vishny (2014), “we depart from much of the rest of the literature by
downplaying the vulnerability of bank deposits to runs. Indeed, we emphasize precisely the opposite aspect
of deposit finance: Relative to other forms of private-money creation that occur in the shadow-banking
sector–notably, short-term collateralized claims such as broker-dealer repurchase agreements (repos)–bank
deposits are noteworthy because, in the modern institutional environment, they are highly sticky and not
prone to run at the first sign of trouble.”
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In the model, equity capital and liquid reserves serve as buffers against default risk. The

bank can increase its liquid reserves either by retaining earnings or by issuing new equity. We

consider that when raising outside funds, the bank has to pay a lump-sum cost φ. Because

of this fixed cost, the bank will raise new funds through lumpy and infrequent issues. In

addition, in order to reduce the costs associated with having to issue fresh equity, the bank

will choose to retain earnings and hold liquidity buffers.

A payout and financing strategy for the bank is a pair π = (P π, Rπ) of adapted and

non-decreasing processes with initial value zero, where P π
t and Rπ

t respectively represent the

cumulative payouts to shareholders and the cumulative net financing raised from investors

up until time t ≥ 0. The liquid reserves process associated with a strategy π is defined by:

Sπt = s+ Ct − P π
t +Rπ

t ,

where Ct is defined in equation (1) and s is the initial level of liquid reserves. This equation

is a general accounting identity, in which P π
t and Rπ

t are endogenously determined by the

bank. It shows that liquid reserves increase with the bank’s earnings and with the funds

raised from outside investors and decrease with payouts to shareholders. The liquidation

time associated with the payout and financing strategy π is then defined by:

τπ = inf{t ≥ 0 : Sπt+ = lim
u↓t

Sπu ≤ 0}.

In the model, bank shareholders make their financing, payout, and default decisions

after observing the increment of the cash flow process. As a result, we use left-continuous

processes in the definition of strategies and right-hand limits in the definition of liquidation

times. Notably, the occurrence of a cash flow jump

∆Ct = Ct − lim
s↑t

Cs ≤ −Sπt−
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that depletes the liquid reserves of the bank results in default if shareholders do not provide

sufficient funds for the right hand limit

Sπt+ = Sπt− + ∆Ct +Rπ
t+ −Rπ

t − P π
t+ + P π

t

to be strictly positive. In the following, we will consider strategies such that P π
t+ − P π

t ≤

Sπt +Rπ
t+ −Rπ

t , implying that the bank cannot pay out amounts that it does not hold.

Management chooses the payout, financing, and default policies of the bank to maximize

the present value of future dividends to incumbent shareholders, net of the claim of new

investors on future cash flows. That is, management solves:

v(s) = sup
π∈Π(s)

Es
[∫ τπ

0

e−ρt(dP π
t − dΦt(R

π))

]
, (2)

where Π(s) denotes the set of admissible strategies and dP π
t and dΦt(R

π) are respectively

the bank’s incremental payout and the contribution of shareholders to the bank (including

the cumulative cost of external financing) over the time interval (t, t + dt).5 Because risky

assets have no liquidation value, there is no cash flow to shareholders in default. That is, we

have (Sπτπ −D − L)+ = 0, where x+ ≡ max (0, x).

To gain some intuition on the solution to problem (2), note that because of the fixed

costs of financing, the bank raises external funds only when cash flow shocks deplete its

liquid reserves, i.e. when s ≤ 0. In such instances, the bank has to either immediately

raise new funds to finance the shortfall and continue operating, or default. The bank may

choose to default when the shortfall or the cost of refinancing are too large. When this

is not the case, the bank pays the financing cost φ and raises an amount that maximizes

5Formally, the cumulative net financing raised from outside investors Rπt and the total contribution of
shareholders to the bank Φt(R

π) up until time t are defined by

Rπt =

∞∑
n=1

1{t>ξn}rn and Φt(R
π) = Rπt +

∞∑
n=1

1{t>ξn}φ,

for some increasing sequence of stopping times (ξn)∞n=1 that represent the dates at which the bank raises
funds from outside investors and some sequence of nonnegative random variables (rn)∞n=1 that represent the
net financing amounts. See the Technical Appendix to the paper for more details.
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equity value. Taking into account these two possibilities, we thus have that the equity value

function satisfies for all s ≤ 0:

v(s) = sup
b≥0

(v (b)− b+ s− φ)+ = (α∗0 + s)+ , (3)

where b is the level of the bank’s liquid reserves after raising external funds and

α∗0 = v(0) = sup
b≥0

(v (b)− (b+ φ))+

is the maximal shortfall that bank shareholders can accept to refinance. Anticipating,

equation (3) shows that two key determinants of default risk in our model are financing

costs φ and tail risk, i.e. the possibility for s to become (very) negative.

Because the likelihood of costly refinancing decreases with s, we expect the marginal value

of liquid reserves to be decreasing and, therefore, the equity value function to be concave. If

this conjecture is verified, then there should exist some barrier level b∗0 such that v′(s) ≥ 1 if

and only if s ≤ b∗0 and the optimal payout policy should consist in distributing dividends to

maintain liquid reserves at or below the target level b∗0.

The main difficulty in solving problem (2) is that one needs to simultaneously determine

the values of α∗0 and b∗0. To circumvent this difficulty, we proceed in two steps. In the first

step, we fix the value of the constant α and solve for the payout policy in an auxiliary problem

where the bank cannot raise funds but produces the payoff (α + s)+ to shareholders when

it runs out of liquid reserves and defaults. In the second step, we show that the payoff to

shareholders in default can be chosen in such a way that the value of this auxiliary problem

coincides with the solution to problem (2) and derive the equity value-maximizing payout,

financing, and default policies.

Before moving to these two steps, we first determine the equity value and the bank’s policy

choices when there are no refinancing costs. This allows us to derive a first best franchise

value of equity that will be of repeated use when solving shareholders’ optimization problem.
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II. Value of an unregulated bank

A. First best franchise value

When there are no costs of raising funds, in that φ = 0, there is no need for the bank to hold

liquid reserves because any loss can be covered by issuing equity at no cost, if optimal to do

so. As a result, it is optimal to distribute all earnings and the optimization problem reduces

to choosing the default policy that maximizes equity value. That is, management solves

v∗ = sup
τ∈S

E
[
e−ρτ |∆Cτ |+

∫ τ

0

e−ρtdCt

]
,

where cumulative earnings evolve according to equation (1), S denotes the set of all stopping

times, and |∆Cτ | represents the size of the loss leading to default. Solving this problem leads

to the following result.

Proposition 1 (First best franchise value): When issuing equity is costless, it is optimal

to distribute all earnings and the optimal default time is given by

τ ∗ = inf{t ≥ 0 : v∗ + ∆Ct ≤ 0}

where the first best franchise value of equity v∗ > 0 is the unique solution to

ρv∗ = (1− θ) (µ− c)− λE [min(v∗, Y1)] . (4)

when c < µ and v∗ = 0 otherwise. In particular, for c < µ, the first best franchise value of

equity is increasing in the drift rate µ, and decreasing in the coupon rate c, the jump intensity

λ, and the mean jump size 1/β.

Proposition 1 shows that for any c < µ, it is optimal for shareholders to default the first

time that the absolute value of a jump of the cash flow process exceeds equity value. In

effect, the quantity |∆Ct| = YNt plays the role of a cost of investment that shareholders have

to pay to keep the bank alive following the occurrence of a large loss. To better understand
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this feature, we can rewrite the Bellman equation (4) for the first best franchise value as

v∗ = p(1− θ)
(
µ− c
ρ

)
+ (1− p)E

[
(v∗ − Y1)+

]
.

with the constant p = ρ
ρ+λ
∈ (0, 1]. This equation shows that when issuing equity is costless,

the banks’ problem can be interpreted as a discrete-time, infinite horizon problem in which

shareholders earn (1− θ) µ−c
ρ

each period with probability p and otherwise face a random

liquidity shock that they can decide to pay, in which case the bank continues for an additional

period, or not, in which case the bank is liquidated.

To determine the effect of limited liability on bank policy choices in this first best

environment, let

v0 = E
[∫ ∞

0

e−ρtdCt

]
=

1

ρ

(
(1− θ)(µ− c)− λ

β

)

stand for the equity value under the assumption that shareholders never default, and denote

by Ω = v∗ − v0 the excess value generated by the option of declaring default. Using the

Bellman equation (4), it is easily seen that this quantity satisfies:6

Ω =

(
λ

ρ

)
E
[
(Y1 − v0 − Ω)+

]
.

This equation shows that limited liability only has value if the bank cash flows are subject

to jumps, i.e. only if λ > 0, for otherwise the bank would not be subject to default risk.

Importantly, the fact that the first best franchise value of equity v∗ is strictly positive for all

c < µ, irrespective of the frequency and magnitude of the jumps, implies that it is optimal

for the bank to operate even if the present value of cash flows v0 is negative. That is, in the

presence of tail risk, limited liability leads shareholders to overinvest in risky assets.7

6When the jumps Yn of the cumulative cash flow process are exponentially distributed, the solution to
this equation is given in closed form by Ω = (1/β)W((λ/ρ)e−v0) whereW(x) is the LambertW function (see
for example Corless, Gonnet, Hare, Jeffrey, and Knuth (1996)). While this closed form solution is useful in
numerical computation, it is not necessary for our analysis of the Bellman equation.

7This behavior is reminiscent of the collapse of AIG who was providing insurance by issuing credit default
swaps (CDSs). AIG was collecting premia on these CDSs and was expected to make payments only if certain
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B. Equity value and bank policies with no refinancing

Having determined the first best franchise value of equity, we now turn to the solution

of the auxiliary problem in which the bank has no access to outside funds. In this case,

shareholders cannot refinance, have to default if the bank runs out of liquid reserves, and

can only optimize equity value over the bank’s payout policy.

Let α ≥ 0 be a constant and consider a bank whose assets produce after-tax net cash

flows to shareholders given by dCt as long as it is in operation, and a cash flow (α + s)+ to

shareholders if the bank is liquidated at a point where St = s. The optimization problem of

shareholders in such a bank can be written as

w(s;α) = sup
π∈Π0(s)

Es
[∫ τπ

0

e−ρtdP π
t + e−ρτπ(α + Sπτπ)+

]
, (5)

where Π0(s) denotes the subset of admissible strategies such that Rπ = 0 (i.e. no refinancing)

and τπ denotes the first time that liquid reserves are negative. The first term on the right-

hand side of (5) captures the present value of all dividend payments until the time of default.

The second term gives the present value of the cash flow to shareholders in default.

If the value of α is sufficiently large, it should be optimal for shareholders to liquidate the

bank assets and distribute all the available cash. The following result confirms this intuition

and shows that the threshold above which immediate liquidation is optimal coincides with

the first best franchise value of equity determined in the previous section.

Lemma 2: If α ≥ v∗, it is optimal for shareholders to immediately liquidate.

Given the above result, we now assume that α < v∗ and solve problem (5) by deriving

the payout policy that maximizes shareholder value. Following the literature on optimal

dividend policies (see for example Albrecher and Thonhauser (2009) for a recent survey),

it is natural to conjecture that the optimal payout strategy for shareholders should be of

barrier type. Specifically, we conjecture that for any α < v∗ there exists a constant barrier

bonds defaulted, which unexpectedly happened in the wake of the subprime crisis. Once the bonds started
defaulting, the CDSs had to pay out and AIG was on the hook for billions, which eventually led them to
default.
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b∗(α) such that the optimal policy for problem (5) consists in paying dividends to maintain

liquid reserves at or below the level b∗(α). To verify this conjecture, we start by calculating

the value of the bank’s equity under an arbitrary barrier strategy.

Fix a constant b > 0 and consider the strategy πb = (P b, 0) that consists in paying

dividends to maintain the liquid reserves of the bank at or below the level b. The cumulative

payout associated with this barrier strategy is

P b
t = max

0≤u<t
1{t>0} (Xu − b)+

where Xt = s+Ct denotes the uncontrolled liquid reserves process (i.e. assuming that there

are no dividend payments) and the corresponding value is defined by

w(s;α, b) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπb (α + Sπbτπb

)+

]
.

Letting ζ0 denote the first time that the uncontrolled liquid reserves of the bank Xt become

negative and using the dividend–penalty identity (see Gerber, Lin, and Yang (2006) and

Gerber and Yang (2010)), we have that this value is given by:

w(s;α, b) =


(α + s)+ , for s ≤ 0,

ψ(s;α) + W (s)
W ′(b)

(1− ψ′(b;α)) , for 0 < s ≤ b,

s− b+ w(b;α, b), for s > b,

(6)

where the function

ψ(s;α) = Es
[
e−ρζ0 (α +Xζ0)

+]
gives the present value of the payment that shareholders receive in liquidation if no dividends

are distributed prior to bankruptcy, and W (s) is the ρ−scale function of the uncontrolled

liquid reserves process. Closed-form expressions for both of these functions as linear combi-

nations of exponentials are provided in the Appendix. In the payout region (i.e. for s > b),
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the bank pays dividends to maintain its liquid reserves at or below b, so that equity value

grows linearly with s. In the earnings retention region (i.e. for s ≤ b), the term

W (s)

W ′(b)
= w(s, 0, b) = Es

[∫ τπb

0

e−ρtdP b
t

]

gives the present value of the dividend payments that shareholders receive until default. The

term

ψ(s;α)− ψ′(b;α)
W (s)

W ′(b)
= Es

[
e−ρτπb (α + Sπbτπb

)+
]

gives the present value of the payoff that the bank shareholders receive in liquidation (the

second term on the left hand side reflecting the effects of payouts on this present value).

Equation (6) shows that in the earnings retention region, the value of a barrier strategy

depends on the barrier level only through the function

H(b;α) =
1− ψ′(b;α)

W ′(b)
.

In the Appendix, we show that there exists a unique payout barrier b∗(α) that maximizes this

function over R+ and, relying on a verification theorem for the Bellman equation associated

with our optimization problem, we prove that the corresponding strategy is optimal among

all strategies. This leads to the following result.

Proposition 3 (Auxiliary value function): Consider a bank with no access to outside funds

that produces a cash flow (α+s)+ to shareholders in default. The equity value of such a bank

is concave and twice continuously differentiable over (0,∞) and given by

w(s;α) = w(s;α, b∗(α)),

where b∗(α) is the unique solution to H ′(b∗(α);α) = 0. Furthermore, the optimal policy for

bank shareholders is to distribute dividends to maintain liquid reserves at or below b∗(α).
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As can be seen from equation (6), the value function of problem (5) is linear with slope

equal to one in the payout region where s > b∗(α). Combining this property with the

smoothness established in Proposition 3 shows that this value function satisfies:

0 = w′(b∗(α);α)− 1 = w′′(b∗(α);α).

The first of these two conditions is known as the smooth-pasting condition and indicates

that liquid reserves are reflected down through dividend payments at the constant barrier

level b∗(α). The second is usually referred as the high-contact condition and guarantees the

optimality of the dividend barrier; see Dumas (1991).

Importantly, the fact that the value function of problem (5) is concave in liquid reserves

shows that shareholders optimally behave in a risk averse way. In particular, it is never

optimal for shareholders to engage in risk shifting in the sense that, given the opportunity,

shareholders would never decide to increase the level of risk of the bank’s assets. This is true

even though the bank has risky debt outstanding and the price of deposit insurance is fixed.

As we will show in the next section, this important finding carries over to the solution of the

bank’s optimization problem (2).

C. Equity value and optimal bank policies

Having solved for the payout policy of a bank that defaults the first time it runs out of liquid

reserves, we now show how to obtain the optimal policies for problem (2) by endogenizing

the value of the constant α that determines the equity value of the bank at the point where

it runs out of liquid reserves.

Let b > 0 be a constant and consider the strategy π̂b that consists in paying dividends to

maintain liquid reserves at or below b and in raising funds back to b whenever liquid reserves

become negative if that is profitable. Denote by

v(s; b) = Es
[∫ τπ̂b

0

e−ρt(dP π̂b
t − dΦt(R

π̂b))

]
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the corresponding equity value. By definition, this function satisfies

v(s; b) = (v(b; b)− b+ s− φ)+, ∀s ≤ 0.

Since the bank does not raise funds before the first time τπb that liquid reserves are negative,

we have that Rπ̂b
t = P π̂b

t − P b
t = 0 for all 0 ≤ t ≤ τπb . Therefore, using the above equations

together with the law of iterated expectations, we get that

v(s; b) = Es
[∫ τπb

0

e−ρtdP b
t + e−ρτπbv(Sπbτπb

; b)

]
= Es

[∫ τπb

0

e−ρtdP b
t + e−ρτπb (v(b; b)− b+ Sπbτπb

− φ)+

]
= w(s; v(0; b), b), (7)

where w(s;α, b) is defined as in equation (6). Evaluating the bank’s equity at the payout

barrier b, subtracting b + φ from both sides of equation (7), and taking the positive part

shows that the equity value associated with zero liquid reserves solves

α̂(b) = (v(b; b)− b− φ)+ = v(0; b) = (w(b; α̂(b), b)− b− φ)+ .

Given equation (7), the result of the previous section suggest that to obtain the optimal

strategy, we should look for a barrier level b such that b = b∗(α̂(b)) or, equivalently, for a

fixed point of the function defined by

g(α) = (w(b∗(α), α, b∗(α))− b∗(α)− φ)+.

We show in the Appendix that this function admits a unique fixed point α∗0 in the interval

[0, v∗). If the cost of financing is such that

φ ≥ φ∗ ≡ w(b∗(0); 0, b∗(0))− b∗(0),

18



then this fixed point is given by α∗0 = 0 and it is not profitable for shareholders to raise funds

when the bank runs out of liquid reserves. If the cost of refinancing is such that φ < φ∗,

then we have that α∗0 > 0 and it is profitable for shareholders to refinance when the bank

runs out of liquid reserves. In this case, we have α∗0 = w(b∗0;α∗0, b
∗
0)− b∗0− φ with b∗0 = b∗(α∗0)

and it follows that α∗0 gives both the bank’s equity value at the point where it runs out of

liquid reserves and the size of the maximum loss that shareholders are willing to absorb.

The identity (7) and the definition of the constants α∗0 and b∗0 imply that the equity value

associated with the strategy π̂b∗0 is then given by

v(s; b∗0) = w(s;α∗0, b
∗
0) = w(s;α∗0).

Using the properties of the auxiliary value function derived in the previous section, we show

in the Appendix that this function satisfies

v(s; b∗0) = (α∗0 + s)+ = max
b≥0

(w(b;α∗0)− b+ s− φ)+ , s ≤ 0,

and, relying on a verification theorem for the Bellman equation associated with the bank’s

optimization problem, we prove that the barrier strategy π̂b∗0 is optimal, not only in the class

of barrier strategies, but among all strategies. This leads to the following result.

Proposition 4 (Equity value function): The equity value function is concave and twice

continuously differentiable in liquid reserves over (0,∞) and given by

v(s) = v(s; b∗0) = w(s;α∗0, b
∗
0),

where α∗0 denotes the unique fixed point of g(α) in the interval [0, v∗). The optimal payout

strategy consists in paying dividends to maintain liquid reserves at or below b∗0 = b∗(α∗0).

When φ < φ∗, the bank raises funds to move to b∗0 whenever liquid reserves become negative

with a shortfall smaller than α∗0 > 0, and liquidate otherwise. When φ ≥ φ∗, the bank never

raises equity and defaults the first time that liquid reserves reach α∗0 = 0.

19



Using the concavity of the equity value function, we immediately get the following result:

Corollary 5 (Risk shifting): Under the optimal payout, financing, and default policies,

levered banks have no risk shifting incentives.

Proposition 4 and Corollary 5 show that when outside funds are costly, the value of

equity is a concave function of the bank’s liquid reserves over (0,∞), so that there are no

incentives for shareholders to engage in risk-shifting even if the bank is levered. Specifically,

if shareholders could choose the volatility of cash flows from an interval [σ, σ], they would

pick σ = σ. Indeed, if the bank suffers from a series of shocks that deplete its liquid reserves,

it incurs some cost to raising external funds. In an effort to avoid these costs and preserve

equity value, the bank behaves in a risk-averse fashion. Our results are therefore consistent

with the evidence presented in Stein (2014), who shows that banks with the highest levels

of capital–i.e. those that are less likely to impose losses on the Deposit Insurance Fund–

invest in the same mix of loans and securities and have the same risk exposure as less well

capitalized banks. In our model, the bank’s risk aversion is endogenous and depends on the

level of its liquid reserves. In particular, for liquid reserves above the target level b∗0, the

equity value function satisfies

v′′(s) = w′′(s;α∗0) = 0,

so that the bank becomes risk-neutral. Our results are therefore in sharp contrast with those

of previous quantitative models, in which banks can raise equity at no cost and equity value

is convex; see for example Merton (1977, 1978), Sharpe (1978), or Subramanian and Yang

(2013) among others.

For negative values of liquid reserves, the equity value function is linear as long as

shareholders find it optimal to refinance and equal to zero in the default region where

s + α∗0 ≤ 0. The value of equity is therefore convex for negative values of liquid reserves.

However, since these values can only be reached following a large loss, the bank does not

spend any time in this region. The equity value function is represented in Figure 1.
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Figure 1: Equity value for an unregulated bank
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Notes. This figure illustrates the shape of the equity value function and the optimal strategy for an

unregulated bank. The regions on each side of the graph correspond respectively to liquidation

(left) and dividend payments (right) while the two intermediate regions and correspond

respectively to earnings retention and refinancing.

Under the optimal payout policy, the bank pays dividends in a minimal way to maintain

its liquid reserves at or below b∗0. This is illustrated by the smooth-pasting and high-contact

conditions:

0 = v′(b∗0)− 1 = v′′(b∗0),

which show that liquid reserves are optimally reflected down at b∗0. When liquid reserves

exceed b∗0, the bank is fully capitalized and places no premium on internal funds so that it is

optimal to make a lump sum payment s− b∗0 to shareholders. The desired level of reserves,
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b∗0, results from the trade-off between the cost of raising funds and the cost of holding liquid

reserves. The next section investigates how this tradeoff is affected by regulatory constraints.

Lastly, note that in our model, banks are subject to insolvency risk even though they

can raise outside funds. Notably, Proposition 4 shows that it is optimal for shareholders to

default following a shock that brings liquid reserves below −α∗0 = −v(0). Our results are

thus in sharp contrast with those of Brownian-driven inventory models (see e.g. Milne and

Whalley (2001), Peura and Keppo (2006), or Décamps, Mariotti, Rochet, and Villeneuve

(2011)) in which there is no default if banks can raise outside equity. Also, while in those

models firms always raise the same amount of capital, there exists some time series variation

in the amount of funds raised from investors in our model.

III. The effects of liquidity and capital requirements

This section examines the effects of prudential regulation on the policy choices that maximize

equity value and on the risk of insolvency. We introduce prudential regulation in our setup by

considering that the regulator can set an lower bound on equity capital when making leverage

choices and can force the bank to maintain its liquid reserves in excess of a given regulatory

level. That is, our focus is on the instruments of regulation that are being considered in the

Third Basel Accord, namely capital and liquidity requirements.

A. Liquidity requirements

We start by examining the effects of liquidity requirements on the bank’s policy choices and

insolvency risk by considering a regulatory constraint that mandates the bank to have a

minimum level of liquid reserves T > 0 at all times. When s ≤ T , the bank has the choice

of recapitalizing by issuing new equity at a fixed cost φ or liquidating. By introducing this

liquidity requirement in the model, we are interested in answering the following questions.

Can a liquidity requirement affect bank behavior even if it is not binding? If liquidity

requirements were to rise, would banks raise their target level of liquid reserves? What are

the implications of these behaviors on default risk and on incentives for risk-taking?
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The value of equity in a bank subject to a minimum regulatory level of liquid reserves is

defined by the optimization problem

v(s;T ) = sup
π∈Π(s,T )

Es
[∫ τπ,T

0

e−ρt(dP π
t − dΦt(R

π)) + e−ρτπ,T (Sπτπ,T −D − L)+

]
, (8)

where τπ,T = inf{t ≥ 0 : Sπt+ ≤ T} denotes the default time associated with the strategy π

in the presence of a liquidity requirement at the level T , the constant L is the face value of

risky debt, and Π(s, T ) denotes the set of admissible payout and financing strategies such

that P π
t+ − P π

t ≤ Sπt − T +Rπ
t+ −Rπ

t . This constraint implies that the regulatory amount of

liquid reserves T cannot be distributed as dividends and therefore guarantees that creditors

will receive at least this amount in liquidation.

Let `(s) = (s − D − L)+ denote the payment that shareholders receive if liquidation

occurs at point where the bank’s liquid reserves are equal to s and let a ∧ b = min(a, b).

Solving shareholders’ optimization problem leads to the following result.

Proposition 6 (Liquidity requirements): Equity value in a bank subject to a minimum

regulatory level of liquid reserves T ≥ 0 is given by:

v(s;T ) =

 v(s− T ; 0), if `(T ) ≤ α∗0,

w(s− T ; `(T )), otherwise.
(9)

Liquidity requirements increase the target level of liquid reserves b∗T in that

b∗T =

 T + b∗0, if `(T ) ≤ α∗0,

T + b∗(`(T ) ∧ v∗), otherwise.
(10)

When `(T ) ≤ α∗0, the bank pays dividends to maintain liquid reserves at or below T + b∗0,

raises funds to move to T + b∗0 whenever liquid reserves fall below T with a shortfall smaller

than α∗0, and liquidates otherwise. When `(T ) > α∗0, the bank never raises equity, defaults as

soon as s ≤ T , and pays dividends to maintain liquid reserves at or below T + b∗(`(T )∧ v∗).
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Proposition 6 shows that the effect of minimum liquidity requirements on the bank’s

policy choices depends on their stringency. When the liquidity requirement is such that

`(T ) > α∗0 = v(0), it is never optimal for shareholders to refinance at the minimum regulatory

level of liquid reserves T since the cash flow to shareholders in liquidation exceeds the

continuation value of equity. In this case, the bank liquidates as soon as liquid reserves

fall short of T . By contrast, when `(T ) ≤ α∗0, it is optimal for shareholders to refinance at

T . In this case, liquidity requirements lead to a drop in equity value as

v(s;T ) = v(s− T ; 0) = v(s− T ) ≤ v(s), ∀s ≥ T,

and make it optimal for shareholders to default when liquid reserves fall below T−α∗0. Figure

2 illustrates these effects by plotting the value equity for different liquidity requirements.

Given that liquidity requirements reduce equity value, it is immediate to see that in the

short-run, or when the bank has not had the opportunity to move to its new target buffer of

liquid reserves, such requirements increase insolvency risk (see also Figure 5 below). That

is, liquidity requirements have a negative transitory effect on insolvency risk. We therefore

focus below on the long-run effects of liquidity requirements, i.e. on their effects once the

bank has had the opportunity to build up liquid reserves. In addition, given that setting

T > α∗0 +D+L leads to liquidation whenever liquid reserves fall below the regulatory trigger,

we consider that the regulator sets a minimum liquidity requirement satisfying `(T ) ≤ α∗0,

consistent with the instruments of regulation of the Third Basel Accord.

Consider first the long-run effects of liquidity requirements on insolvency risk. When

`(T ) ≤ α∗0, it is optimal for shareholders to refinance when liquid reserves reach the regulatory

level T , at which point the bank raises b?T −T = b?0 to go to the target level of liquid reserves.

As a result, equity value at the regulatory trigger T is given by:

v(T ;T ) = (v(b∗T ;T )− (b∗T − T )− φ)+ .
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Figure 2: Equity value for a regulated bank
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Notes. This figure illustrates the change in the equity value when going from an unregulated bank

(solid line) to either a regulated bank with T0 such that `(T0) ≤ α∗0 (dashed line) or to a regulated

bank with T1 such that `(T1) > α∗0 (dashed-dotted line).

This value corresponds by definition to the maximum amount that shareholders are willing

to contribute to keep the bank alive following a large loss. Using equations (9) and (10), we

then have

v(T ;T ) = (v(b∗T − T )− (b∗T − T )− φ)+ = (v(b∗0)− b∗0 − φ)+ = α∗0,

so that shareholders default when liquid reserves fall below T with a shortfall greater than

α∗0. This shows that the presence of liquidity requirement increases the default threshold

from the unregulated value −α∗0 to the regulated value T − α∗0. Since the target level of

liquid reserves satisfies b∗T = b∗0 + T , we immediately get the following result:
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Corollary 7 (Liquidity requirements and insolvency risk): Liquidity requirements have no

effect on insolvency risk when banks are optimally capitalized.

Given that b∗T = b∗0 + T , the cushion of liquid reserves that the bank holds above the

required level does not depend on the level chosen by the regulator. In effect, liquidity

requirements simply shifts the support of the distribution of liquid reserves from (−α∗0, b∗0]

to (−α∗0 + T, b∗0 + T ]. This is due to the fact that raising the level of liquid reserves does not

change the trade-off between the cost of carrying liquidity and the cost of outside capital.

Lastly, since the bank’s attitude towards risks depends on the amount of liquid reserves held

in excess of the refinancing threshold, this result in turn implies that, once there has been

an opportunity to build up liquid reserves towards the desired level, liquidity requirements

do not affect the attitude of the bank towards risks. Therefore, our analysis implies that

liquidity requirements have no long-run impact on either risk taking or insolvency risk.

B. Endogenous leverage and capital requirements

So far, our analysis has considered that the debt level of the bank was exogenously given. In

this section, we examine the privately optimal mix between equity and debt on the balance

sheet of the bank and the effects of regulatory constraints on this mix.

To do so, consider a bank that raises an amount D of deposits and issues at par a

perpetual debt contract, with face value L and coupon rate cL. Assume that the bank is

subject to a fixed setup cost Ψ ≥ φ and let us start by determining the set of face values

that lead to nonnegative payoffs for both shareholders and debtholders. If creditors agree to

the proposed face value L, then the present value to shareholders of setting up the bank is

ηs(cL, L, T ) = sup
e≥(T+Ψ−D−L)+

(−e+ v(D + L+ e−Ψ, T |cL, L)) ,

where e represents the amount of equity to be injected by shareholders and v(s, T |cL, L),

defined as in (8), gives the equity value of a bank that holds s in liquid reserves, is subject

to a minimum liquidity requirement T ≥ 0, and has issued a perpetual debt contract with
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coupon rate cL and face value L. In order to derive conditions under which this net present

value is nonnegative, consider the function

N(cL, T ) = T + b∗0(cL) + Ψ−D − v(b∗0(cL)|cL),

where b∗0(cL) and v(s|cL) respectively give the optimal payout barrier and the equity value

of an unregulated bank with coupon rate cL. Note that, since shareholders in such a bank

do not receive any payment in liquidation, these quantities depend neither on the face value

of the debt contract L nor on the amount of deposits D that the bank initially raises. In the

Appendix, we establish the following result:

Proposition 8 (Net present value): The net present value of setting up the bank to share-

holders is positive if and only if L ≥ N(cL, T ), in which case it satisfies:

ηs(cL, L, T )+ = (L−N(cL, T ))+,

and shareholders’ strategy Θ∗(cL) = (T, α∗0(cL), b∗0(cL)) consists in paying dividends to main-

tain liquid reserves at or below T + b∗0(cL), raising funds to move to T + b∗0(cL) whenever

liquid reserves fall below T with a shortfall smaller than α∗0(cL), and liquidating otherwise.

The first part of Proposition 8 shows that shareholders break even only if they can obtain

at least N(cL, T )+ from creditors in exchange for the debt contract. If creditors agree to

such a price, then the second part of the proposition shows that shareholders will first adjust

liquid reserves to the optimal level

b∗T (cL) = T + b∗0(cL)

and will then run the bank according to the barrier strategy Θ∗(cL). Accordingly, the present

value to creditors will be

ηc(cL, L, T ) = d (T + b∗0(cL),Θ∗(cL)| cL, L)− L, (11)
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where the function

d(s,Θ|cL, L) = E

[∫ τ(s,Θ)

0

e−ρtcLdt+ e−ρτ(s,Θ) min
(
Sτ(s,Θ)(s,Θ)−D,L

)+

]
(12)

gives the market value of the bank’s debt for all s under the assumption that it follows a

barrier strategy Θ = (T, a, b). The first term on the right-hand side of (12) captures the

present value of all coupon payments to debtholders until the occurrence of the default time

τ(s,Θ) associated with the use of the strategy Θ starting from the initial level s. The second

term is the present value of the cash flow to debtholders in default, where we have assumed

that deposits were senior to risky debt.8

In the Appendix, we derive a closed-form expression for the value of the bank’s debt and

show that, for any coupon rate cL > 0, the creditors’ present value is strictly decreasing in L

and admits a unique root L∗(cL, T ) that lies in (0, cL/ρ]. This result implies that the present

value of creditors in equation (11) is positive if and only if the proposed face value lies below

L∗(cL, T ). Combining this with Proposition 8 then shows that the set of individually rational

face values associated to a coupon rate level is given by the interval

{
L > 0 : N(cL, T )+ ≤ L ≤ L∗(cL, T )

}
.

If the chosen coupon rate is such that this set is empty, then there is no face value of

debt that generates nonnegative payoffs for both parties. If the coupon rate is such that

0 < N(cL, T ) ≤ L∗(cL, T ), then any face value between these points generates a nonnegative

present value for both parties, and it remains to determine how the surplus is shared between

shareholders and creditors. To do so, we assume that creditors are competitive and do not

have any bargaining power against the bank. In this case, the usual undercutting argument

implies that shareholders will be able to sell debt at the highest possible price L∗(cL, T ).

We can now examine the debt-equity mix that maximizes initial shareholder wealth as

well as the effects of prudential regulation on this mix. In our model, issuing debt is beneficial

8Helberg and Lindset (2013) examine the effects of alternative priority rules on bank leverage and credit
spreads in a Leland (1994) style model.
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for the bank as it reduces its taxes. At the same time, for any given level of liquid reserves,

debt financing increases expected bankruptcy costs and the frequency at which the bank

raises costly outside capital. When choosing the coupon payment cL on risky debt, the

objective of shareholders is to maximize the value of equity after debt has been issued plus

the proceeds from the debt issue net of the cost to shareholders of acquiring the bank assets

through the provision of required capital. That is, shareholders solve:

sup
cL∈C(T )

ηs (cL, L
∗(cL, T ), T ) = sup

cL∈C(T )

(v(b∗0(cL)) +D + L∗(cL, T )− T − b∗0(cL)−Ψ) , (13)

where the feasible set is given by

C(T ) = {cL ≥ 0 : N(cL, T ) ≤ L∗(cL, T )}.

One key difference between the optimization problem (13) and leverage choices in dynamic

corporate finance models such as Fischer, Heinkel, and Zechner (1989) or Leland (1994) is

that the initial contribution of shareholders to the bank’s capital is endogenous and depends

on the liquidity constraints faced by the bank. Another important difference is that, in our

model, the bank determines its optimal capital structure by balancing tax benefits against

both issuance costs and bankruptcy costs.

While problem (13) is not amenable to an explicit solution, we can show that as long as the

minimum liquidity requirement does not exceed the amount of deposits—which is the relevant

case in practice—the presence of a liquidity requirement will either deter shareholders from

setting up the bank or will have no effect on the optimal coupon rate. In particular, we

establish the following result in the Appendix.

Proposition 9 (Optimal leverage and liquidity requirements): Assume that the optimal

coupon rate c∗L(0) ∈ C(0) is well-defined. If the liquidity requirement is such that T ≤ D then

either C(T ) is empty or c∗L(T ) = c∗L(0).

In addition to liquidity requirements, the bank may also face capital requirements. That

is, in an attempt to reduce insolvency risk, the regulator may constrain the bank to have a
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minimum level of equity capital, i.e. to choose a debt level cL ∈ [0, ĉ), where ĉ ≥ 0 is a cap

on the coupon payment on risky debt. We investigate in the next section the effects of such

requirements on the bank’s policy choices and the risk of insolvency.

IV. Model analysis

A. Parameter values and implied variables

This section provides additional results and illustrates the effects of frictions and regulatory

constraints on bank’s policy choices using numerical examples. The values of the model

parameters are set as follows: the risk-free rate of return ρ = 5%, the after-tax mean return

on risky assets (1− θ)µ− λ
β

= 13.5%, the diffusion coefficient σ = 8%, the frequency of large

losses 1
λ

= 2, the mean size of large losses 1
β

= 9%, the corporate tax rate θ = 35%, the fixed

volume of demand deposits D = 4.5 and the corresponding cash outflow cD = 4.5%, and the

cost of outside funds φ = 0.75%. Table 1 summarizes these parameter values.

These parameter values imply that large losses represent on average 50% of yearly income

and occur every other year in expectation and that the cost of refinancing represents between

φ
b∗T+α∗T

= 1.27% (at the default threshold) and φ
b∗T

= 6.36% (at the regulatory threshold) of

the capital raised. For these parameter values, the optimal coupon on risky debt is cL =

c∗L(0) = 11.49% and the face value of risky debt is L = 2.25. Because for any coupon level,

liquid reserves fluctuate between their minimum regulatory level and the target buffer set by

bank shareholders, the leverage ratio of the bank effectively remains between two bands as

in the dynamic capital structure models of Fischer, Heinkel, and Zechner (1989), Hackbarth,

Miao, and Morellec (2006), Strebulaev (2007), and Morellec, Nikolov, and Schürhoff (2012).

Notably, the leverage ratio of the bank – defined as debt value plus deposits over total bank

value – fluctuates between 91.89% and 93.49% at the optimal coupon level and deposits

represent between 61.25% and 62.31% of total bank value, consistent with the figures reported

in Gropp and Heider (2010).9 Lastly, the 1-year default probability for the bank at optimal

9Interestingly, changing the pricing of deposit insurance has little effect on the leverage ratio selected by
shareholders. For example, the overall leverage of the bank fluctuates between 91.45% and 93.26% if we
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Table I: Parameter values and implied variables

A. Parameter values

Parameter Symbol Value

Drift rate net of taxes (1− θ)µ 0.18
Volatility σ 0.08
Arrival intensity λ 0.50
Mean jump size 1/β 0.09
Tax rate θ 0.35
Face value of debt L 2.25
Face value of deposits D 4.50
Coupon rate cL 0.1149
Cost of deposits cD 0.045
Discount rate ρ 0.05
Financing cost φ 0.0075
Liquidity requirement T 0.00

B. Implied variables

Variable Symbol Value

First best value v∗ 0.6220
Equity value when s = T = 0 α∗0 0.4699
Target level of liquid reserves b∗0 0.1179
Financing cost (%) [0.0127, 0.0636]
Leverage [0.9189, 0.9349]
Leverage from deposits [0.6125, 0.6231]

leverage is 0.1057%, consistent with those reported in Crossen and Zhang (2012) or Hamilton,

Munves, and Smith (2010) for 1-year default probabilities in the financial industry.

B. Default and payout decisions

We start our analysis by examining the determinants of the target level of liquid reserves.

To do so, we plot in Figure 3 the unconstrained target buffer b∗0 as a function of the intensity

of large losses λ, the size of large losses 1
β
, the volatility coefficient σ, and the the rate of

return µ. In the model, the target buffer of liquid reserves maximizes the value of equity

and results from a trade-off between the carry cost of liquidity ρ and the cost of raising

increase cD from 4.5% to 9% and between 91.46% and 93.56% if we increase cD to 13.5%. This is due to the
fact that an increase in cD leads not only to a decrease in c∗L(T ) but also to a decrease in equity value.
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new capital. Because an increase in volatility increases the likelihood of a costly equity

issuance, the target buffer b∗0 increases with σ. An increase in the frequency of large losses λ

or in their size 1
β

has two opposite effects on b∗0. First, it increases the likelihood of a costly

security issuance and, hence, shareholders’ incentives to build up liquid reserves. Second,

it reduces the expected cash flow from operating the bank’s assets (and thus the bank’s

franchise value) and therefore shareholders’ incentives to contribute capital. The first effect

dominates for low values of λ and 1
β
; the second effect dominates for larger expected losses.

The effect of the rate of return µ on the target level of liquid reserves also results from two

opposite effects. On the one hand, a rate of return increases the bank’s franchise value and

shareholders’ incentives to contribute capital. On the other hand a higher rate of return

increases revenues and reduces the role of liquid reserves as a buffer to absorb losses.

Consider next the determinants of the bank’s default threshold. As shown in Proposition

4, when there is no liquidity requirement in that T = 0, default occurs when the bank is

hit with a negative shock that takes its liquid reserves below −α∗0. This threshold is given

by the value of equity at the target, i.e. v(b∗0), net of the new provision of capital b∗0 and of

the refinancing cost φ. By decreasing v(b∗0), an increase in the intensity of large losses λ, in

their size 1
β
, in the cost of financing φ, or in the diffusion coefficient σ lead to an increase

in the default threshold. By contrast, an increase in the rate of return µ (or a decrease in

the coupon rate c) leads to an increase in the franchise value of the bank and, therefore, to

a decrease in the default threshold. These effects are illustrated in Figure 3.

To illustrate the effects of liquidity requirements on bank’s policy choices, Figure 4 plots

the target level of liquid reserves as well as the default threshold as functions of the minimum

requirement T . Consistent with Proposition 6, the figure shows that both thresholds grow

linearly with the minimum liquidity requirement T . That is, regulatory requirements affect

bank behavior even when they are not binding. The figure also shows that banks will

generally hold a significant buffer of liquid reserves in excess of the liquidity requirements in

order to reduce refinancing costs. Therefore, our theory predicts that liquidity requirements

should be non-binding for most banks. Lastly, Figure 4 shows that both thresholds increase

with the cost of external funds φ. Indeed, an increase in the cost of raising funds decreases
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Figure 3: Effect of the cash-flow parameters
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Notes. This figure plots the target level of liquid reserves (solid line) and the liquidation threshold

(dashed line) as functions of the jump arrival intensity, the mean jump size, the cash flow volatility

and the cash flow drift. In each panel the upper and lower regions correspond respectively

to dividend payments and liquidation while the two intermediate regions and correspond

respectively to earnings retention and refinancing.
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Figure 4: Effect of liquidity requirements and financing costs
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Notes. This figure plots the target level of liquid reserves (solid line) and the liquidation threshold

(dashed line) as functions of the required level of liquid reserves and the fixed cost of equity

financing. In each panel the upper and lower regions correspond respectively to dividend

payments and liquidation while the two intermediate regions and correspond respectively

to earnings retention and refinancing.

the benefits of refinancing, leading to an increase in the selected default threshold. In

addition, an increase in the cost of raising funds raises the value of inside equity and therefore

shareholders’ incentives to build up liquid reserves.

C. Regulation and insolvency risk

An important question that our model allows to answer is whether regulatory requirements

affects insolvency risk. Proposition 6 and Corollary 7 show that altering the liquid reserves

of banks has no long-run impact for the risk of insolvency (this is also illustrated by Figure

4 in which the spread between the target level of liquid reserves b∗T and the default threshold

T − α∗0 is independent of T ). To examine the short-run effects of liquidity requirements on

insolvency risk, Figure 5 plots the relative change in the probability of default of the bank
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that results from imposing a minimum liquidity requirement . When the bank follows equity

value-maximizing policies and is optimally financed, this relative change is given by:

P (τ(b∗0;T, α∗0, b
∗
0) < t)

P (τ(b∗0; 0, α∗0, b
∗
0) < t)

− 1,

where τ(b∗0;T, α∗0, b
∗
0) is the time of default for a bank with liquid reserves b∗0, default trigger

at −α∗0, payout trigger at b∗0, and facing a liquidity requirement T . Figure 5 considers three

different horizons to compute the change in the probability of default: A three-month horizon

(t = 0.25), a six-month horizon (t = 0.5), and a one-year horizon (t = 1). Consistent with the

discussion in section III.A, Figure 5 shows that imposing a minimum liquidity requirement

always increases insolvency risk in the short-run. In addition, the figure shows that the

increase in the probability of default is larger for shorter horizons, since it is less likely that

the bank has had the opportunity to build up liquid reserves. The figure also shows that for

large liquidity requirements (i.e. when T is large), it is optimal for the bank to recapitalize

immediately. In such cases, liquidity requirements do not change the probability of default.

One way to constrain the bank’s leverage is to constrain its liquid asset holdings by

imposing liquidity requirements. However, we have just shown that imposing such constraints

leads to a short-run increase in insolvency risk for any given coupon cL. In addition, as

shown by Proposition 9, liquidity requirements have no effects on banks’ ex ante choice of

debt level, i.e. on the liability side of the balance sheet, in that c∗L(T ) = c∗L(0) for all T ≤ D.

As a result, a more direct mechanism, constraining directly banks’ leverage ratios, may be

necessary. One measure advocated by practitioners and academics to limit default risk in

the banking sector is to impose capital requirements (see e.g. Admati and Hellwig (2013)),

i.e. a minimum level of equity capital (or a maximum coupon level) for banks.

To illustrate the effects of such capital requirements on insolvency risk, Figure 6 plots

the probability of default of the bank over a one-year horizon as a function of its coupon

payment cL, assuming that the bank holds the target amount of liquid reserves b∗T (cL).

(The Appendix shows how to compute this default probability.) The three curves represent

this default probability for different values of the cost of financing φ. On each curve the
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Figure 5: Insolvency risk and liquidity requirements
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Notes. The figure plots the relative change in default probability at a 3 month (dotted line), 6 month

(dashed line) and 1 year horizon (solid line) induced by a tightening of the liquidity requirement for

a bank with liquid reserves equal to the unregulated target b∗0. The dot indicates the point where

the liquidity requirement level reaches the unregulated target.

discontinuity occurs at the point where the bank no longer uses outside equity financing, i.e.

at the point where `(T ) becomes larger than α∗0.

As shown by the figure, capital requirements have a very strong quantitative effect on

insolvency risk. In our base case environment for example, reducing the coupon rate of the

bank from cL = 12.8% – corresponding to a equity capital ratio of 6% advocated by U.S.

regulators – to cL = 5.34% – corresponding to a the equity capital ratio of 20% recommended

by Admati and Hellwig (2013) – reduces the probability of default over a one-year horizon

from 0.1518% to less than 0.0001%. In effect, imposing capital requirements leads to an
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Figure 6: Insolvency risk and coupon level
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Notes. This figure plots the default probability at an horizon of one year for an optimally

capitalized, unregulated bank as a function of the coupon rate cL on long term debt for different

level of the fixed cost of financing. On each curve the discontinuity occurs at the point where the

bank no longer uses outside equity financing.

increase in the ex post franchise value of the bank (i.e. in the cash flow rate of the bank net

of the payments to debtholders) and, hence, in shareholders’ willingness to absorb losses.10

D. Regulation and value

Our analysis so far has shown that while liquidity requirements ay increase banks’ insolvency

risk in the short-run, capital requirements reduce this risk. Another important aspect of

10In our model, the bank only has access to one class of risky assets. As a result, the ex-ante constraint
on the coupon level that we consider in the paper is equivalent to a risk-weighted capital ratio. When banks
have access to multiple risky assets, risk-based capital charges constrain the bank’s asset choices to reflect
the trade-off between risk and return. See e.g. Rochet (1992) for an analysis of the benefits and costs of
risk-weights.
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regulation that has been widely discussed in the financial press relates to its effects on

valuations. To measure the value effects of liquidity and capital requirements, Figure 7 plots

the net present value to shareholders (top left panel) as well as the bank’s leverage (top right

panel) as functions of the selected coupon payment.

As shown by Figure 7, both liquidity and capital requirements have significant value

effects. For example, the total value of the bank, given by v(b∗0(cL)) + D + L∗(cL, T ), is

reduced by 6.25% when moving from the equity value-maximizing leverage ratio to a leverage

ratio with 20% equity capital. In our model, this decrease in value is due to an increase in

the bank’s cost of capital. Similarly, the figure shows that imposing a liquidity requirement

leads not only to a short-run increase in default risk but also in a large reduction in the

value of the bank to shareholders. In our base case environment for example, requiring a

minimum liquid reserves representing 3% of the value of deposits (i.e. T
D

= 0.03) reduces the

total value of the bank by 1.97%. Two additional features are worth being mentioned. First,

because of the presence of deposits, leverage fluctuates between 61.25% and 62.31% of total

bank value when c = 0 on the figure. Second, Figure 7 shows that we have c∗L(T ) = c∗L(0)

for all T , consistent with Proposition 9.

Next, to measure the social benefits of regulation, we compute the social net present

value of the bank defined as the net present value to shareholders net of the cost of debt

to the regulator. We consider that this cost has two components. First, it includes a flow

cost that (partially) balances the tax benefits of debt to the bank shareholders. Second, it

includes an additional cost of default, related for example to systemic effects. Specifically,

we define the net present value to the regulator ηr(p, cL) or social net present value as:

ηr(p, cL) ≡ ηs(cL)− Eb∗T (cL)

[
p0e
−ρτ∗T (cL) + p1

∫ τ∗T (cL)

0

e−ρtθcLdt

]
,

where ηs(cL) is the value of the bank to shareholders (plotted on the top left panel of Figure

7), p0 represents the systemic cost borne by the regulator in default, and p1 represents the

flow cost of debt to the regulator.
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Figure 7: Regulation, leverage, and value
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Notes. This figure plots the net present value to shareholders as a function of the coupon level for

different values of the ratio T
D (upper left panel), the leverage at the target level of liquid reserves

b∗T (cL) and at the refinancing point T as functions of the coupon level (upper right panel), and the

net present value to the regulator as a function of the coupon level for different values of the cost

parameters p = (p0, p1) (lower panels). On the horizontal axis c80
L = 0.0471 indicates the coupon

level where the leverage at refinancing equals 80%, c∗L(0) = 0.1149 indicates the coupon level that

is optimal for the shareholders of the bank given any liquidity requirement T ≤ D, and ĉL = 0.1843

indicates the coupon level where where the bank switches to a no-refinancing strategy.
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The bottom panels of Figure 7 plot the social net present value for different systemic

costs of default (bottom left panel) as well as different flow costs of debt (bottom right

panel) as functions of the selected coupon payment. As shown by the figure, systemic

default costs have little effect on the coupon payment that maximizes the social net present

value. For example, increasing systemic default costs from p0 = 0 (no systemic costs) to

p0 = 10 (systemic costs corresponding to 150% of the total bank value) only changes the

range of leverage ratios from [91.89%; 93.49%] to [89.78%; 91.32%]. This result is due to the

fact that the default probability is very low at the equity value-maximizing leverage ratio

so that increasing systemic default costs only has a marginal effect on the coupon payment

maximizing the social value of the bank.

Similarly, reducing the tax benefit of debt to the regulator only has a large effect if the

reduction is drastic, i.e. if p1 is very large. For example, increasing the flow cost of debt to

the regulator from p1 = 0 to p1 = 0.5 (i.e. reducing the tax benefit of debt to the regulator

by 50%) only changes the range of leverage ratios from [91.89%; 93.49%] to [91.26%; 92.84%].

Overall, our analysis therefore suggests that while constraining capital ratios clearly reduces

insolvency risk, it seems difficult to obtain optimal leverage ratios in the range of 80%, unless

one completely removes the tax deductibility of interest payments.

V. Conclusion

We develop a dynamic of model of banking in which banks face taxation, flotation costs of

securities, and default costs and are financed with equity, insured deposits, and risky debt.

In this model, liquidity management, capital structure policies, and default decisions are

jointly and endogenously determined. Shareholders have limited liability and banks’ policies

maximize shareholder value.

Using this model, we show that when raising outside funds is costly, inside and outside

equity are not perfect substitutes and banks find it optimal to hold buffers of liquid assets.

To reduce the risk of default and save on recapitalization costs, banks manage their liquidity

buffers dynamically by adjusting their dividend payments to shareholders. Banks facing
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higher cost of outside financing are less levered, pay less dividends, hold more liquid reserves,

and default earlier. In addition, we show that equity value is concave, implying that

shareholders in levered banks have no incentives to increase risk.

Turning to regulation, we show that liquidity requirements constraining banks to hold

a minimum amount of liquid reserves have no long-run effects on default risk or bank risk-

taking but may increase default risk in the short run. We also show that capital requirements,

indicating how much equity capital banks should have relative to their total assets, increase

banks’ ex post franchise value and reduce default risk. Ex ante, however, such requirements

may reduce significantly total bank value by increasing the bank’s cost of capital. In our

base environment for example, we find that increasing capital ratios from the equity value-

maximizing level to 20%, as suggested by Admati and Hellwig (2013), reduces total bank

value by 6.25%.

While the framework developed in this paper is based on a number of simplifying as-

sumptions, we believe that it is a natural starting point to think about bank equity capital

and liquid reserves and to examine the effects of prudential regulation on bank behavior and

insolvency risk. In future research, we plan to extend this framework to examine additional

issues related to bank optimal capital structures and asset choices.
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