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Abstract
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nalities on public finances when a minimum level of retirement consumption is not

assured. I discuss optimal policies that prevent such an outcome. Specifically, I show

the optimality of two policies funded by optimally determined mandatory savings. The

first policy mandates the use of accumulated savings to purchase a claim providing a

fixed income stream during retirement. The second policy mandates an appropriately

structured portfolio insurance policy. It is also shown that borrowing constraints make
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1 Introduction

This paper develops a methodology to design optimal, fully funded claims aimed at influ-

encing consumers’ optimal savings and portfolio choices. The motivation for influencing

these choices lies in negative externalities on public finances, which arise when a consumer’s

post-retirement standard of living drops below a minimum level. In the absence of any

constraints, other than the intertemporal budget constraint, such fully funded claims do

not exist.1 However, in the presence of borrowing constraints one can explicitly determine

optimal claims to ensure a minimum, post-retirement standard of living.

The economic context is provided by recent trends in retirement economics. Specifically,

the world-wide trend towards fully funded, personal retirement accounts has raised concerns

that some retirees may arrive in retirement with insufficient funds and diminished precautions

against a stock market downturn. In the presence of redistribution mechanisms, such an

event could create pressures to provide direct or indirect transfers to the affected retirees,

increasing distortionary taxes, and having a “systemic” impact on public finances.2

Because of these concerns, it is very common for countries to complement the shift to-

wards private accounts and defined contribution plans with various measures to ensure a

minimum standard of living in retirement. Such measures include minimum return guar-

antees, minimum retirement incomes, phased (as opposed to lump sum) withdrawals upon

entering retirement, and mandates to use part of the accumulated balances to purchase a

fixed annuity and ensure a minimum defined benefit.3 The idea to use similar measures is

also the topic of policy discussion in the US.4

1As is shown shortly, this is a direct consequence of the principle of Ricardian Equivalence.
2Shoffner et al. (2005) note in a Social Security Report that “ ...Such individuals might then qualify for,

and as a result place a greater burden on, means-tested antipoverty programs.”
3For instance, a recent Government Accountability Office report Bovbjerg (2009) investigates such regula-

tions in the UK, Switzerland and the Netherlands and documents that these countries use some combination
of the above measures.

4See e.g. “The Obama administration is weighing how the government can encourage workers to turn
their savings into guaranteed income streams following a collapse in retiree accounts when the stock market
plunged.” by Theo Francis in http://www.bloomberg.com/apps/news?pid=20603037&sid=aHFCE999fWR0
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The pervasive use of measures to ensure a minimum standard of living in retirement has

led to various studies evaluating the costs and benefits of specific policy interventions adopted

in certain countries.5 Less emphasis has been placed on developing an integrated method-

ology to derive the optimal government policies that would ensure a minimum standard of

living in a fully funded retirement system. The present paper takes a step in that direction.

It proposes a framework to formalize the issues discussed above, and then develops a new

methodology to solve for the optimal provision of retirement benefits. This new methodology

utilizes approaches developed in the last two decades primarily in financial economics, and

particularly in the strands of the literature analyzing portfolio insurance problems.

The proposed framework features a benevolent, rational government aiming to maximize

social welfare. Agents in the society maximize their individual welfare, which does not co-

incide with social welfare. The reason for the discrepancy is that a representative agent’s

consumption in retirement can have negative, external effects. This occurs when retire-

ment consumption drops below a given minimum level and triggers redistributive pressures

financed by distortionary taxes on the population.

To avoid such negative external effects, the government optimally designs policies to

ensure that a retiree’s consumption does not fall below the specified minimum level. The

allowed government policies are transfers from and to the agent. They can be chosen subject

to two constraints:

The first constraint is informational, and reflects an intentionally conservative assumption

on the government’s information set. Specifically, the government can condition its policies

on aggregate outcomes (e.g., the return on the stock market), but not on individual con-

sumption, savings and portfolio choices. Since the government cannot dictate consumption,

savings and portfolio choices, it needs to induce the agent to choose specific consumption

and portfolio paths.

5For some examples see e.g. Feldstein (2005b), Feldstein (2005a), Feldstein and Ranguelova (2001), Fuster
et al. (2008), Smetters (2001), Mitchell and Lachance (2003), Constantinides et al. (2005), and the numerous
contributions in the special NBER volume edited by Campbell and Feldstein (2001)
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The second constraint is a full-financing constraint. The net present value of the transfers

provided to the agent should be equal to the present value of mandatory savings accumulated

by the agent. This assumption is in line with the aim of the paper, which is to discuss

optimal policies ensuring a minimum standard of living, assuming that society has opted

for a fully funded system. (The full funding assumption also helps isolate the tensions that

arise between a fully funded retirement system and a redistributive welfare system aimed

to insure intra-generational risks in retirement.6) The broader issue of the advantages and

disadvantages of full funding - as opposed to “pay as you go” - is outside the scope of this

paper, and the reader is referred to the large literature that discusses this issue.7,8

These two assumptions are made for two reasons: a) to be as conservative as possible

about the government’s ability to observe and influence agents’ actions,9 and b) in order

to make the theoretical results of the paper more interesting. To elaborate on the second

reason, it is useful to recall that in the absence of frictions, only the present value of an agent’s

resources restricts her consumption choices.10 Hence, according to the joint assumptions that

a) individual choices cannot be mandated, and b) the transfers received by the agent are

financed by herself during her work-years, it would seem that no government intervention

can succeed in affecting the agent’s consumption choices.

To allow governmental policies to have a meaningful effect, I make a third assumption,

6We discuss this issue in detail in the appendix.
7This literature is too voluminous to summarize here. An indicative sample of alternative views on these

important issues are contained in , e.g., Storesletten et al. (1999), Krueger and Kubler (2006), and Ball and
Mankiw (2007). Related to this paper, Bovenberg and Uhlig (2008) discuss the joint implications of full/pay-
go funding as well as defined benefit/contribution systems from the perspective of allocating macroeconomic
risk. However, they do not discuss the optimal design of a fully funded system, which is the topic of this
paper.

8A practical implication of the full-financing constraint is that all the policies considered in the paper can
be implemented by having the government simply specify the properties of optimal claims and mandating
that agents purchase the respective financial products by the private sector.

9For instance, if agents in the real world can divert their assets to other countries, or put them to uses
that are beyond the scope of any given imperfect regulation, effectively they can “hide” their true assets and
transactions from the government.

10In the literature this insight is known as “Ricardian Equivalence”. Barro (1974) and Abel (1987) contain
a modern treatment of this idea that is originally due to D. Ricardo.
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namely that agents cannot borrow against future governmental transfers. (Such constraints

can be easily enforced in courts by forbidding securitization of such payments). Because

of the resulting borrowing constraint, the government can affect the agent’s consumption

choices and it becomes possible to discuss optimal mandatory savings and transfer processes.

The main contribution of the paper is to develop a methodology to design an optimal pre-

retirement mandatory savings/ and post-retirement transfer process that exploits borrowing

constraints, so as to induce savings and consumption choices consistent with a minimum

standard of living in retirement. The proposed methodology is based on the literature on

convex duality / dynamic Lagrange multiplier methods (Basak and Cuoco (1998), Chien et al.

(2007), Cuoco (1997), Cvitanic and Karatzas (1992), Detemple and Serrat (2003), Dumas

and Lyasoff (2010), Gallmeyer and Hollifield (2008), He and Pages (1993), He and Pearson

(1991), Haugh et al. (2004), Lustig (2002), Marcet and Marimon (1998)).11 The typical

approach in this literature is to take a (post-transfer) income process of the agent as given

and derive the process of Lagrange multipliers associated with the borrowing constraint.

The new methodological aspect of the present paper is that the convex duality approach is

applied in reverse. The government first solves for the optimal consumption process, derives

the associated optimal process for the Lagrange multipliers, and then determines a transfer

process that is associated with these Lagrange multipliers.

Utilising this methodology, I show that there can be multiple optimal forms of pension

design. Somewhat surprisingly – given the wide variety of admissible policies – one optimal

policy takes the form of a simple, fixed, mandatory annuity: under such a policy agents are

required to use a fraction of their assets upon entering retirement in order to purchase a

fixed income stream for the duration of their life. The level of that fixed income stream is

explicitly derived and shown to be a multiple of the minimum level of consumption that the

government is aiming to enforce. The optimality of the fixed annuity critically hinges on the

11For an alternative, approximately analytic approach for handling portfolio problems with constraints,
see Kogan and Uppal (2001).
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fact the investment opportunity set (interest rate, market price of risk) is constant. For an

arbitrary investment opportunity set, I derive an alternative optimal “portfolio insurance”

policy, which delivers appropriate transfers once the value of the agent’s portfolio borders

on zero. Both transfer processes are optimally financed by mandatory savings that are

accumulated during the latter years of an agent’s worklife, when borrowing constraints have

ceased binding.

In terms of substance, the paper relates to two strands of the literature.

The first strand is the finance literature on portfolio insurance. (See, e.g., Basak (2002),

Grossman and Zhou (1996).) In that literature some agents voluntarily place a requirement

on the minimum level of their assets at some point in time. In the present paper agents must

be induced to adopt consumption and asset accumulation plans that can safeguard such a

minimum standard of living, otherwise they can cause negative externalities.

The second strand is the literature on “dynamic public finance”.12 That literature con-

siders optimal insurance and contract design problems predominantly in setups of “hidden

information” due to idiosyncratic shocks with or without observable savings.13 The present

paper differs from that literature in its scope. The main friction assumed in this paper is

that agents’ incentives to hedge against downturns in their consumption – caused by a com-

bination of portfolio/savings decisions and common, aggregate shocks – may be inadequate

from the perspective of a central planner. To illustrate the novel intuitions obtained in such

a framework, most of the analysis focuses exclusively on common, aggregate shocks and ab-

12See the overview article of Golosov et al. (2007) and references therein.
13Hidden savings complicate the solution of dynamic incentive problems considerably. See Chiappori et al.

(1994) for an early discussion of these issues. An indicative list of papers in dynamic public finance concerned
with the issue of unobserved savings includes Werning (2002), Cole and Kocherlakota (2001), Golosov and
Tsyvinski (2007) amongst many others that I do not attempt to summarize here. From a formal perspective,
the paper is closest to the literature studying problems of (one-sided) limited commitment. This is especially
true of the one-sided commitment version of the model in Kocherlakota (1996). The main friction in that
model is the requirement that an agent’s continuation value function not fall below the level of autarky. The
minimum-standard-of-living constraint studied in this paper turns out to have some mathematical similarities
to the that requirement. However, in the present framework, an agent’s consumption, savings, etc. are all
unobserved, and cannot be dictated. This “hidden action / hidden savings” aspect leads to a non-trivial
principal-agent problem, which lies at the core of the paper.
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stracts from idiosyncratic shocks. (However, unobserved idiosyncratic shocks are considered

in the appendix to the paper as a foundation for the presence of a redistributive welfare

system). To be clear, this focus on aggregate shocks is not meant to deny or downplay the

obvious importance of idiosyncratic shocks in the real world; it is however a useful theoretical

abstraction, so as to isolate the paper’s new predictions.

The paper is structured as follows. Section 2 sets up the model. Section 3 introduces

a government with the task of keeping the agent’s consumption above a minimum level

by usage of appropriate fully funded transfers. Section 4 considers the agent’s reaction to

the presence of such intervention. Section 5 derives an upper bound to welfare no matter

which set of admissible taxes/transfers is utilized. Section 6 illustrates two distinct ways

of attaining that upper bound, which are hence optimal. Section 7 discusses pre-retirement

implications and mandatory savings. Section 8 discusses the implications of closing the

model in general equilibrium. Section 9 concludes. Appendix A provides further details on

the assumed negative externality that arises when an agent’s consumption drops below the

minimum level. All proofs are in appendix B.

2 The model

2.1 Agents, preferences, and endowments

The baseline model is very similar to the small open economy version of Blanchard (1985).

Accordingly, the investment opportunity set (interest rate, equity premium etc.) is taken as

given. Section 8 shows that the important results of this baseline model remain valid in a

closed, general-equilibrium economy with endogenous interest rates and equity premia.

All agents are identical. The typical agent faces a probability of death q per unit of

time dt. All agents have constant relative risk aversion γ, and a constant discount rate ρ.
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Accordingly, the maximization problem of an agent, who is born at time tb, is given by

Etb

∫ ∞
tb

e−(ρ+q)(t−t
b) c

1−γ
t

1− γ
dt. (1)

To expedite the exposition and shorten proofs, I concentrate on the empirically relevant case

γ > 1.14

Life has two phases. A “work” phase, which lasts for τ years after birth, and is followed

by a “retirement phase”. During the work phase agents receive a constant income stream

equal to Y per unit of time. Once they retire, they receive no more labor income.

2.2 Investment opportunity set

Agents can invest in the money market, where they receive a constant strictly positive interest

rate r > 0. In addition, they can invest in a risky security with a price-per-share process

dPt
Pt

= µdt+ σdBt, (2)

where µ > r and σ > 0 are given constants and Bt is a one-dimensional Brownian motion

on a complete probability space (Ω, F, P ).15 The realization of this Brownian motion is the

only source of uncertainty in this economy. The extension to multiple assets is straightfor-

ward and is left out.

As is well understood, dynamic trading in the stock and the bond implies a dynamically

complete market. (See, e.g., Duffie (2001) or Karatzas and Shreve (1998)). Specifically,

there exists a unique stochastic discount factor Ht, so that the time-t price of any claim that

14With a few additional technical assumptions the results can be extended to γ < 1, at the cost of lengthier
proofs.

15F = {Ft} denotes the P -augmentation of the filtration generated by Bt.
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delivers dividends equal to Du, for u ≥ t is given by

Et

∫ ∞
t

Hu

Ht

Dudu.

As Karatzas and Shreve (1998) show, the stochastic discount factor that is consistent with

a constant interest rate and the price-per-share process (2) is given by

dHt

Ht

= −rdt− κdBt, where κ ≡ µ− r
σ

. (3)

The agent can also enter into “annuity-style” contracts with a competitive life insurance

company as in Blanchard (1985). Specifically, these contracts specify the following cash-

flows: The insurance company offers an income stream of p per unit of time dt, in exchange

for receiving one dollar if the agent dies over the next interval dt. Competition between

insurance companies implies that p = q. The presence of such annuities is inessential for the

main arguments, but it simplifies some technical aspects of the analysis.

2.3 Portfolio and wealth processes

Throughout life, an agent chooses a portfolio process πt and a consumption process ct. The

portfolio process πt is the dollar amount invested in the risky asset (the “stock market”) at

time t. The rest, Wt − πt, is invested in the money market. Since the key insights of the

paper do not depend on the presence or absence of bequest motives, I simplify matters and

assume that the agent has no bequest motives.16 As a result, the agent has an incentive

to enter Blanchard-style annuity contracts for the full amount of her financial wealth. This

results in an income stream of qWt per unit of time dt while she is alive. Accordingly, the

16Extending the model to include a homothetic bequest function is straightforward.
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wealth process of a retired agent evolves as

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt− ctdt, (4)

and the wealth process of a working agent is given by:

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt+ Y dt− ctdt. (5)

An additional requirement is that financial wealth must remain non-negative throughout:

Wt ≥ 0 for all t. (6)

This constraint excludes un-collateralized borrowing. However, collateralized borrowing (us-

ing the stock as collateral to borrow bonds and vice versa) is allowed. Alternatively phrased,

the agent can enter negative positions in the bond (resp. stock) market, as long as the sum

of the value of her bond and stock holdings is non-negative.

2.4 Externalities when consumption falls below a minimum stan-

dard of living

As already mentioned in the introductory section, almost all societies that rely on funded

retirement systems typically complement them with regulatory measures to ensure that

retiree consumption does not fall below a minimum standard.

The motivations for such regulatory interventions fall in two broad categories: behavioral

and rational. According to the behavioral perspective, even though individuals may recognize

the presence of some inelastic expenditures in retirement (health care and nursing costs etc.),

they may go through life without making provisions for such a minimum post-retirement

standard of living. According to the rational perspective, the rationale for intervention
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is different: If agents find themselves in situations where their consumption falls below a

minimum level, they may demand redistributive transfers, imposing a cost on taxpayers.

Even though the rational and behavioral perspectives on regulatory intervention are

diametrically different, they coincide in one important aspect. According to both views, a

drop in retiree consumption below some minimum level ξ would be associated with adverse

effects, which are external to the decision-making agent.

Specifically, the behavioral view formalizes this notion by postulating an agent with two

“selves”, a “prudent” self and an “imprudent” self. The “prudent” self correctly perceives

that if her post-retirement consumption falls below a minimum level required for nursing,

health care etc., this would be associated with a very large disutility (say negative infinity).

Accordingly, the prudent self’s preference is to maximize (1) subject to the constraint:

ct ≥ ξ for all t > tb + τ, (7)

However, the imprudent self, who is assumed to be the decision-making agent, maximizes

(1) without regard to to the constraint (7). Because of this divergence of objectives, the

actions of the decision-making, imprudent self have external effects on the welfare of the non-

acting, prudent self. This introduces a role for government intervention: The government is

assumed to maximize the welfare of the prudent self, while taking into account that decisions

will be made by the imprudent self. The literature models such situations by employing the

framework of principal-agent problems of the sort that will be presented in the next section.17

The rational perspective to governmental intervention refutes the idea that agents have

multiple selves. Instead, a consumption drop below the minimum level ξ is assumed to have

an adverse impact on society. Appendix A illustrates the source of such an externality by

presenting a stylized, extended model featuring a tax-financed welfare system, intended for

17The idea of handling behavioral problems as principal-agent problems between multiple selves is popular
in the literature. For a recent example see, e.g. Amador et al. (2006) and the references therein.
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agents experiencing unobserved catastrophic shocks in retirement. In the context of that

model, an agent with consumption below ξ would find it worthwhile to exert effort and

falsely claim that she has experienced a catastrophic shock, so that she can collect tax-

financed transfers, which impose deadweight costs on society. As a result constraint (7)

arises endogenously as a “truth telling” constraint, preventing the associated deadweight

costs. To expedite the presentation of the main results, I present the details of such a model

in the appendix; the body of the paper simply assumes that a violation of constraint (7)

would lead to substantive externalities on society, which the central planner wants to avoid.

To summarize, both behavioral and rational perspectives share some common ground.

Under both perspectives, the government should strive to ensure that agents’ decisions satisfy

the constraint (7), while recognizing that decision-making agents would not subject their

decisions to the requirements of (7) if left alone. This common ground allows a formulation

of the government’s objective in the next section, without having to differentiate between

rational and behavioral views.

3 Introducing a role for the government

To achieve the goal of imposing constraint (7) on the agent’s choices, the government can use

transfers to modify the agent’s behavior so that retirees’ consumption plans satisfy equation

(7). The government can observe an agent’s income and the realized returns on the stock

market, but not the agent’s assets or her consumption.

Based on that information set, the government needs to structure fully funded transfers

to the individual so as to ensure that constraint (7) holds. To keep with the assumption that

the retirement system is fully funded, such transfers are financed by the agent upon entering

retirement.

To obtain these optimal transfers it is most useful to use backward induction and split

the problem into a “post-retirement” part (which is solved first) and a “pre-retirement”
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part, which is solved subsequently. In the post-retirement part the government determines

the optimal transfer process that maximizes the agent’s retirement utility subject to (7),

assuming that these transfers are financed with an upfront payment upon entering retirement.

This is done in sections 3.1 - 6. The pre-retirement part is discussed in section 7.

3.1 The post-retirement problem

Because of the time-invariance of the problem, I henceforth simplify notation and normalize

the time of retirement tb + τ to be equal to zero. For the analysis of the post-retirement

problem (sections 3.1 - 6), I also normalize the value of the stochastic discount factor at

retirement to be equal to H0 = 1.18

Problem 1 The government’s objective is to determine a cumulative non-decreasing trans-

fer process Gt and an initial tax D0 so as to maximize:

Ω (W0) ≡ max
Gt,D0

E0

∫ ∞
0

e−(ρ+q)t
c1−γt

1− γ
dt (8)

subject to

ct ≥ ξ for all t > 0, (9)

D0 = E0

∫ ∞
0

e−qtHtdGt, (10)

and subject to the constraint that ct solves the decision-making agent’s optimization problem

18This latter normalization is without loss of generality since all quantities of interest depend on the ratio
of the stochastic discount factor between two points in time, rather than its level.

12



given Gt

ct = arg max
<ct,πt>

E0

∫ ∞
0

e−(ρ+q)t
c1−γt

1− γ
dt (11)

s.t.

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt− ctdt+ dGt (12)

W0+ = W0 −D0 (13)

Wt ≥ 0 for all t > 0 (14)

Consistent with the behavioral and rational motivations given previously, the government

aims to maximize (8), subject to the additional requirement (9) that the agent’s consumption

not fall below the minimum level ξ.

Equations (10) and (13) state that the cost of providing the transfer process Gt to the

consumer should be self-financed by an upfront payment D0. Parenthetically, this “self-

financing” requirement implies that the government is not required to implement the pro-

vision of transfers to consumers. It can simply specify the optimal process Gt that each

consumer should purchase and leave it to competitive financial companies to price and pro-

vide these transfers.

Finally, equations (11)-(14) capture the “principal-agent” aspect of the problem. Equa-

tion (11) states that the optimal process ct cannot be mandated by the government (since

the government observes neither the consumption nor the assets of the agent). Instead, the

optimal consumption process is chosen optimally by the decision-making agent, who would

not impose constraint (9) on her choices, if left alone. Due to the government intervention,

the budget dynamics of equation (12) differ from the ones in equation (4) in two ways. First,

the modified dynamics reflect the presence of the transfers dGt, and second, equation (13)

implies that the consumer needs to finance these transfers by paying the amount D0 upon

entering retirement. Accordingly, an instant after entering retirement, her wealth W0+ is

13



equal to the funds she has accumulated in the pre-retirement phase (W0) net of the lump

sum payment D0.

The final requirement that constrains a consumer’s choices is the borrowing constraint

(14). This constraint plays a central role in the analysis. Without this constraint, it would

be impossible for the government to find any set of transfers that would induce the agent to

choose a consumption path that satisfies (9). The reason is due to a Ricardian Equivalence:

Since the market is dynamically complete in the absence of the constraint (14), a consumer’s

feasible consumption plans are constrained only by the requirement that the net present value

of her consumption be equal to the wealth she has accumulated. Since the net present value

of government transfers is equal to the lump sum payment D0, the consumer’s intertemporal

budget constraint is unaffected by the government intervention, no matter what process

Gt the government chooses. Accordingly, the transfers cannot affect the consumer’s plans.

Agents can continue to consume as they would in the absence of government intervention

and only modify their portfolios so as to undo the effects of the transfers.

The presence of a borrowing constraint such as (14), however, makes transfers non-

neutral. The reason is that a borrowing constraint implies stronger restrictions than a

simple intertemporal budget constraint on the agent’s feasible consumption choices. Hence,

by a judicious choice of transfers, the government can affect the agent’s consumption.

Importantly, the borrowing constraint (14) is realistic and easy to implement in practice. It

suffices that the government instruct courts not to enforce agreements that would let lenders

seize future government transfers as collateral for loans.

Because of the central role played by the borrowing constraint (14), the next section

reviews some known results related to the implications of the constraint (14) for optimal

consumption processes. Subsequent sections use these results to solve problem 1.
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4 The agent’s consumption choices in the presence of

government intervention and borrowing constraints

Suppose that at the time of retirement (time 0) the government collects an amount D0 and

then assumes the obligation to deliver an admissible cumulative transfer process Gt. It is

natural to ask how the agent’s consumption choices will be affected by this intervention in

the presence of the borrowing constraint (14).

To gain some intuition, it is useful to start by assuming that there is no uncertainty

(σ = 0) , so that µ = r, the stochastic discount factor is deterministic (Ht = e−rt), and the

agent’s dynamic budget constraint is given by dWt = (q + r)Wtdt −ctdt +dGt. The deter-

ministic dynamics of Wt, Ht imply that the constraint Wt ≥ 0 amounts to the requirement19

∫ t

0

cse
−qsHs ≤ W0 −D0 +

∫ t

0

e−qsHsdGs for all t ≥ 0. (15)

Applying the Lagrangian method, an agent’s problem can be converted into an uncon-

strained problem by attaching Lagrange multipliers λ, ζt ≥ 0 to obtain

L =

∫ ∞
0

e−(ρ+q)t
c1−γt

1− γ
dt+ λ

[
W0 −D0 +

∫ ∞
0

e−qtHt(dGt − ctdt)
]

(16)

+

{∫ ∞
0

ζt

(
W0 −D0 +

∫ t

0

e−qsHs(dGs − csds)
)
dt

}

Applying integration by parts to the second line of (16) and imposing the transversality

condition limt→∞ e
−qtHtWt = 0 gives

L =

∫ ∞
0

e−(ρ+q)t
(
c1−γt

1− γ
− eρtλXtHtct

)
dt+ λ

∫ ∞
0

e−qsHsXsdGs + λ [W0 −D0] , (17)

where Xt ≡ 1−
∫ t
0
ζs
λ
ds. Maximizing L over ct amounts to simply maximizing the expression

19To derive this equation, note that in the deterministic case d(e−qtHtWt) = e−qtHt (dGt − ctdt) . Inte-
grating the left and right hand side of this equation and imposing the requirement Wt ≥ 0 leads to (15).
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inside round brackets in equation (17), which gives

ct =
(
λeρtHtXt

)− 1
γ . (18)

If all ζs = 0 (i.e., when the borrowing constraint Wt ≥ 0 is not binding) then Xt = 1, and

equation (18) amounts to the familiar result that an agent’s marginal utility of consumption(
e−ρtc−γt

)
be proportional to the stochastic discount factor Ht.

However, when the borrowing constraint is binding, then consumption is affected by the

presence of the decreasing process Xt, which reflects the cumulative effect of the Lagrange

multipliers associated with the borrowing constraint. By construction Xt is a process that

is non-increasing and starts at X0 = 1.

To fully determine the solution to the consumer’s problem, one needs to determine the

Lagrange multipliers λ, ζs. He and Pages (1993) show that this amounts to first maximizing

L over ct (given arbitrary λ,Xt) and then minimizing the resulting expression over λ,Xt.

Specifically, He and Pages (1993) show the following Proposition, which holds also in the

presence of uncertainty:20

Proposition 1 Let D be the set of non-increasing, non-negative and progressively measur-

able processes that start at X(0) = 1. Then, the value function V (W0) of an agent can be

expressed as:

V (W0) = min
λ>0, Xs∈D

[
E

(∫ ∞
0

e−(ρ+q)s max
cs

(
c1−γs

1− γ
− λeρsHsXscs

)
ds+ λ

∫ ∞
0

e−qsHsXsdGs

)
+ λ (W0 −D0)

]
(19)

Let X∗t , λ
∗ denote the process Xt and the constant λ that minimize the above expression.

Then the optimal consumption process c∗t for a consumer faced with the borrowing constraint

(14) is given by (18) evaluated at λ = λ∗, Xt = X∗t . Moreover, the process X∗t decreases only

20Marcet and Marimon (1998) show a similar result in the context of recursive contracts.
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when the associated wealth process (Wt) falls to zero and is otherwise constant, i.e.:

∫ ∞
0

WtdX
∗
t = 0 (20)

Finally, the resulting wealth process for any t > 0 is given by

Wt =
Et
(∫∞

t
e−q(s−t)X∗sHsc

∗
sds
)

X∗tHt

−
Et
(∫∞

t
e−q(s−t)X∗sHsdGs

)
X∗tHt

(21)

5 Government transfers and their welfare effects: an

upper bound

Proposition 1 gives an intuitive way to summarize the effects of the incentive compatibility

requirement (equations [11]-[14]).

It asserts that every government intervention (Gt, D0) will be associated with a constant

λ∗ (Gt, D0) and a Lagrange multiplier process X∗t (Gt, D0). Given this correspondence be-

tween a choice of (Gt, D0) and the resulting pair (λ∗, X∗t ), there is a straightforward way

to obtain an upper bound to the value function of problem 1. In particular consider the

following problem:

Problem 2 Maximize:

J (W0) ≡ max
ct,Xt∈D,λ>0

E0

∫ ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds (22)

17



All admissible ,  
t
X 

0,
t
G D 0

0

( , )

, )

,

(

t

tt

G D

X DG

 

Figure 1: An illustration of Lemma 1. The admissible choices of problem 1 map into a subset
of the admissible choices of problem 2.

subject to:

E0

(∫ ∞
0

e−qsHscsds

)
≤ W0 (23)

ct ≥ ξ (24)

ct =
(
λeρtHtXt

)− 1
γ (25)

Problem 2 is the problem of a government that can choose directly the consumption

of the agent, subject to the intertemporal budget constraint (23), the constraint on the

minimum consumption level (equation [24]), and the additional requirement that any chosen

consumption process should have a representation in the form of equation (25) for some

Xt. In effect, problem 2 allows the government to choose directly the Lagrange multipliers

(λ,Xt) without being concerned whether there exists any pair of payments and transfers

(Gt, D0) that would render these Lagrange multipliers as shadow values of the consumer’s

optimization problem (11).

Figure 1 gives a graphical argument to show that the optimized value J of Problem 2

provides an upper bound to the value function of problem 1. Clearly, any admissible pair

Gt, D0 needs to induce a consumption process that satisfies (24). Additionally, because
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transfers are fully funded, they don’t alter the consumer’s intertemporal budget constraint,

and hence any admissible consumption process of problem 1 needs to satisfy21 equation (23).

Moreover, Proposition 1 asserts that there always exists some pair of λ,Xt such that any

admissible consumption process of problem 1 can be expressed in the form of equation (25).

Therefore, any admissible Gt, D0 maps into a subset of pairs (Xt, λ) allowed by Problem 2,

and the value function of problem 2 must therefore provide an upper bound to problem 1.

The following Lemma provides a formal statement.

Lemma 1 Let G be the class of all transfer processes Gt that enforce (9) and satisfy (10).

Furthermore, let V (W0) be given as in equation (19). Then the value functions of problems

1 and 2 are related by

Ω (W0) = max
D0,Gt∈G

V (W0) ≤ J (W0) (26)

The remainder of this section derives an explicit solution to problem 2, while the next

section shows that there exist transfer processes G∗t that are optimal, because they make

(26) hold with equality.

As a first step towards solving problem 2, it is useful to ask whether constraints (23),

(24), and (25) bind at an optimum. The top panel of figure 2 gives an optimal consumption

path for a random realization of Ht assuming that one maximizes (22) subject only to the

intertemporal budget constraint (23). The resulting solution is c∗∗∗t = (λ∗∗∗eρtHt)
− 1
γ and it

corresponds to what the consumer would choose, if left alone. Because Ht is log-normal, so is

ct and accordingly ct < ξ with positive probability. Imposing the constraint ct ≥ ξ (but not

the constraint [25]) leads to the optimal consumption path c∗∗t = max
[
ξ, (λ∗∗eρtHt)

− 1
γ

]
.22

21The consumer’s dynamic budget constraint (12) implies the intertemporal budget constraint

W0 −D0 +

∫ ∞
0

e−qtHt(dGt − ctdt) ≥ 0.

Combining the intertemporal budget constraint with condition (10) implies (23).
22Clearly, (λ∗∗)

− 1
γ < (λ∗∗∗)

− 1
γ , otherwise it would be impossible that both c∗∗∗t and c∗∗t satisfy (23).
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Figure 2: Implications of the constraints in problem 2

The solution c∗∗t is what the government would choose, if it could directly observe and

mandate the agent’s consumption and portfolio choices.

However, the government cannot directly observe these choices. Instead, it needs to

induce the agent to choose consumption paths that satisfy ct ≥ ξ, by exploiting binding

borrowing constraints. This is captured by equation (25). The bottom panel of Figure 2

shows that this incentive compatibility requirement is in general binding. Indeed, equation

(25) implies that any admissible consumption process should satisfy the property that the

ratio ct/c
∗∗∗
t =

(
λ

λ∗∗∗

)− 1
γ X

− 1
γ

t should be a non-decreasing process (since Xt is non-increasing).

Clearly, the ratio c∗∗t /c
∗∗∗
t has decreasing sections and therefore c∗∗t cannot satisfy (25). There-

fore, J (W0) (and accordingly the value function Ω (W0) in problem 1) will in general be lower
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than what the government could attain if it observed and mandated consumption.

The next proposition determines the solution of problem 2:

Proposition 2 Let the constants φ,K be defined as23

φ ≡
−
(
ρ− r − κ2

2

)
+

√(
ρ− r − κ2

2

)2
+ 2 (ρ+ q)κ2

κ2
> 1, (27)

K ≡ γ
γ−1
γ

κ2

2
+ γ (r + q) + (ρ− r)

, (28)

and assume that

W0 ≥ Wmin ≡
1
γ

+ φ− 1

φ− 1
Kξ. (29)

Additionally, for any λ > 0, let the process X∗t be given by

X∗t (λ) ≡ min

[
1,

ξ−γ/λ

max0≤s≤t (eρsHs)

]
. (30)

Then the value function of problem (2) is given by

J (W0) = min
λ≥0

[
E

(∫ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )1−

1
γ

1− γ
ds− λ

∫ ∞
0

e−qsHs (λeρsHsX
∗
s )−

1
γ ds+ λW0

)]
(31)

= min
λ≥0

[
− Kξ1−γ

γφ (φ− 1)

(
λ

ξ−γ

)φ
+K

γ

1− γ
λ1−

1
γ + λW0

]
. (32)

Letting λ∗ be the scalar that minimizes (32), the optimal triplet that solves problem (2) is

23To see why φ > 1, notice that φ solves the quadratic equation

κ2

2
φ2 +

(
ρ− r − κ2

2

)
φ− (ρ+ q) = 0

Evaluating the left hand side of this equation at φ = 1 gives −(r+ q) < 0. Hence the larger of the two roots
of the quadratic equation is larger than 1.
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given by λ∗, X∗t = Xt (λ∗) ,and c∗t = (λ∗eρtHtX
∗
t )
− 1
γ .

Proposition 2 provides an explicit expression for the value function of problem 2, assuming

that the agent enters retirement with a level of assets that are no smaller than the lower

bound of equation (29). For now, equation (29) will be assumed to be satisfied. Section 7

derives an optimal process of pre-retirement savings ensuring that (29) holds.

6 Optimal Transfer Processes

This section illustrates two optimal distinct processes G∗t that attain the upper bound

V (W0;G
∗
t ) = J (W0) .

6.1 A constant income stream

The simplest form of government transfer process is a constant income stream: The govern-

ment collects a lump sum tax of D0 = y0
r+q

and in exchange it delivers a constant stream of

y0 until the agent dies. Surprisingly, this simple policy is optimal, as long as y0 is chosen

judiciously. The following proposition gives a closed form solution for y0.

Proposition 3 Let y0 be given by

y0 ≡ (r + q)Kξ

(
1
γ

+ φ− 1

φ− 1

)
, (33)

where K is given in (28) and φ is given in (27). The policy of collecting D0 = y0
r+q

and

providing transfers equal to y0 until the agent dies, attains the upper bound V (W0;Gt = y0) =

J (W0) and is therefore optimal.

An interesting feature of the optimal policy in proposition 3 is contained in the following

Lemma
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Lemma 2 The optimal policy of proposition 3 has the property

y0
ξ
> 1.

Lemma 2 shows that if the government wants to ensure a minimum consumption of one

dollar, it needs to deliver more than one dollar in guaranteed income. This result is driven by

the fact that agents cannot be excluded from markets. To see why, suppose that –contrary

to Lemma 2– the government were to set y0 = ξ, and consider a retiree with current wealth

Wt = 0. Since the borrowing constraint is binding for that retiree, her Euler equation implies

that her current marginal utility of consumption will be no smaller than the expected value

of marginal utility tomorrow, discounted by the subjective discount rate and compounded

by the interest rate. In general, this implies that the retiree will find it optimal to make

a savings and portfolio choice today, so that tomorrow’s consumption will exceed today’s

consumption with positive probability. But, the dynamic budget constraint implies that the

only way to achieve such an optimal outcome is to set ct < y0 = ξ today, which would violate

the requirement ct ≥ ξ. Alternatively phrased, since in general a retiree will find it optimal

to set ct < y0 every time the borrowing constraint is binding, the optimal value of y0 needs

to exceed ξ.

6.2 Portfolio Insurance

Providing agents with a constant income is not the unique optimal way to attain the upper

bound in Proposition 2. Moreover, the optimality of a constant income stream depends

crucially on the assumption of a constant investment opportunity set (constant interest

rate and market price of risk). In this section we present a generic approach to constructing

income processes that attain the upper bound of Proposition 2. An advantage of the approach

presented here is that it does not depend on any assumptions about the stochastic discount

factor. In particular the form of the optimal process for Gt would remain optimal, when the
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model is closed in general equilibrium. (Section 8 provides further discussion.)

To describe this approach, let λ∗ be the scalar that minimizes (32). Then define the

government’s transfer process as:

dGt = −
(

1

γ
+ φ− 1

)
Kξ

dX∗t
X∗t

(34)

where X∗t (λ∗) is the process defined in (30).

This section shows the following two results: First, the process (34) attains the upper

bound of Proposition 2. Second, the process (34) has an intuitive economic interpretation as

a type of minimum return guarantee (portfolio insurance) on the agent’s optimal portfolio

of stocks and bonds.

The following proposition formalizes the first claim and provides results that are useful

towards establishing the second claim.

Proposition 4 Let λ∗ be the scalar that minimizes (32) and X∗t (λ∗) be the process that is

given in (30). Consider an agent who anticipates transfers given by (34) and is faced with

an initial tax of D0, where D0 satisfies (10). Then

a) her value function coincides with the upper bound given in (32).

b) Letting

Zt ≡ λ∗eρtHtX
∗
t , (35)

the agent invests

πt =
κ

σ
Kξ

[
(φ− 1)

(
Zt
ξ−γ

)φ−1
+

1

γ

(
Zt
ξ−γ

)− 1
γ

]
(36)
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dollars in the stock market and consumes

ct = Z
− 1
γ

t , (37)

while the agent’s optimal wealth process Wt is given by

Wt = −Kξ
(
Zt
ξ−γ

)φ−1
+KZ

− 1
γ

t . (38)

c) The initial payment D0 associated with (34) is given by

D0 = Kξ

1
γ

+ φ− 1

φ− 1

(
λ∗

ξ−γ

)φ−1
. (39)

The portfolio policy (36) will aid in the interpretation of (34) as a form of portfolio

insurance. To obtain some intuition on the nature of (34), consider first the following puzzling

feature of the optimal portfolio policy: As ct → ξ, equation (37) implies that Zt → ξ−γ and

(38) implies that Wt → 0. However, the agent’s holdings of stock satisfy

lim
Zt→ξ−γ

πt =

(
1

γ
+ φ− 1

)
Kξ

κ

σ
> 0. (40)

Because the agent’s financial wealth approaches zero as Zt → ξ−γ, but her stock position

doesn’t, a further negative return on the stock market would lead to a negative financial

asset position in the absence of any transfers. To prevent such a negative asset position, the

transfers given by (34) act as a minimum return guarantee, which ensures that the agent

receives just enough funds to sustain her financial wealth at zero and keep her consumption

at ξ.

It is useful here to clarify that these transfers do not require that the government actually

observe the path of the agent’s assets or her consumption. By the definition ofX∗t in equation

(30), the government only needs to know the evolution of the stochastic discount factor Ht,
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which can be inferred from the path of the stock market24,25.

A simple way of thinking about the transfer process Gt in (34) is that the government

and the agent have a joint understanding of how the consumer will consume and invest in

the presence of the transfers given by (34). Based on its (correct) understanding of the

consumer’s optimal policies, the government can infer the agent’s wealth and make just

enough transfers when needed, so as to keep the agent’s wealth above 0 and her optimal

consumption above ξ.

6.3 Comparing the two policies

Given that both policies attain the upper bound of equation (32), this means that they are

equivalent from a welfare perspective. The derivations in the appendix also show that they

imply exactly the same consumption process “path by path”.

However, the two policies do differ. They make transfers of different magnitudes in

different states of the world. The initial payments that they imply are also different. Indeed,

the initial payment associated with the constant income policy is:

Dconst.
0 =

y0
r + q

= Kξ

(
1
γ

+ φ− 1

φ− 1

)
, (41)

whereas by equation (39), the initial payment of the portfolio insurance policy is:

Dp.i.
0 = Kξ

(
1
γ

+ φ− 1

φ− 1

)(
λ∗

ξ−γ

)φ−1
(42)

24Note that log (Ht) − log (H0) = −(r + 0.5κ2)t − κ (Bt −B0) = −(r + 0.5κ2)t − κ
σσ (Bt −B0) = −

−(r + 0.5κ2)t− κ
σ

[
logPt − logP0 −

(
µ− 0.5σ2

)
t
]

= κ
σ (Pt − P0) +

(
κ
σ

(
µ− 0.5σ2

)
− (r + 0.5κ2)

)
t.

25Section 7 also implies that the behavior of the stochastic discount factor allows the government to infer
the agent’s initial assets at retirement. However, it is useful to note here that even if the government were not
able to infer an agent’s assets upon entering retirement, the agent would have every incentive to truthfully
report her assets, assuming that the agent can hide, but not overreport her assets. The reason is that the
initial payment D0 is declining in the amount of available assets upon entering retirement. Hence an agent
who would report a lower amount of assets would be making her post-retirement borrowing constraint more
binding.
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Since c0 ≥ ξ and26 c−γ0 = λ∗, it follows that λ∗/ξ−γ ≤ 1 and accordingly
Dp.i.0

Dconst.0
≤ 1.

Hence the “portfolio insurance” policy implies an initial payment that cannot be larger than

the initial payment of the “constant income” policy. This is intuitive, since the constant

income policy delivers the same transfers in all states of the world, including states of the

world where the borrowing constraint doesn’t bind. By contrast, the “portfolio insurance”

policy delivers payments only when the borrowing constraint binds.

However, when c0 = ξ (or alternatively W0+ = 0) the two policies imply the same initial

payment. Hence, the initial payment of the two policies differs only when the borrowing

constraint is not binding, but is identical when the borrowing constraint does bind. This

is the reason why the two policies imply different initial payments, but are identical from a

welfare perspective. The additional resources delivered by the constant income policy are

delivered in states of the world where the borrowing constraint is not binding and hence can

be “undone” by agents’ portfolio choice.

The above discussion illustrates that simply comparing the costs of alternative retirement

benefit guarantees does not provide sufficient information for welfare comparisons.

7 Minimum level of assets and implications for pre-

retirement savings

A maintained assumption of the analysis sofar was that the agent’s assets upon entering

retirement were above the minimum level of equation (29). As the next Proposition shows,

this assumption is not only sufficient, but it is also necessary for the existence of any transfer

processes that can induce a consumption process that satisfies ct ≥ ξ.

Proposition 5 An admissible transfer process Gt that can induce ct ≥ ξ post-retirement

exists if and only if (29) holds, i.e. if W0 ≥ Wmin.

26Recall that H0 = X∗0 = 1.
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Proposition 5 has implications for the government’s pre-retirement problem. Specifically,

the feasibility of enforcing the constraint ct ≥ ξ post-retirement is equivalent to requiring

that the agent arrive in retirement with assets that are at least as large as Wmin.

Therefore, prior to retirement, the government needs to ensure that the agent saves an

adequate fraction of labor income, so as to be able to finance the post-retirement optimal

transfer processes Gt, which were described previously. Specifically, recalling that tb is an

agent’s date of birth, τ the duration of work, and tb + τ is the time of retirement (which

is normalized to zero), the government can collect pre-retirement payments from the agent

equal to
∫ 0

tb
dSt, dSt ≥ 0, and rebate a lump-sum amount L0 at retirement so that

W0 ≡ W0− + L0 ≥ Wmin, (43)

and27

Etbe
−qτ
(
H0

Htb

)
L0 = Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
dSt. (44)

Equation (43) requires that the agent’s assets upon entering retirement (W0) - which

comprise the agent’s assets an instant before retirement (W0−) and the governmental lump-

sum transfer (L0) - be at least as large as Wmin. Additionally, equation (44) is analogous

to equation (10), since it requires that the present value of the lump sum transfer L0 be

equal to the present value of the pre-retirement payments dSt. Because of equation (44), I

refer to the transfers dSt as “mandatory savings” rather than “distortionary labor taxes”,

since they are returned to the agent (compounded at a fair market return) in the form of

a lump sum transfer at retirement. (A practical implication of this difference would arise

in an extended model with endogenous, continuous labor supply, since taxes would distort

the intra-temporal first order conditions for labor supply, whereas mandatory savings would

27Clearly, for the purposes of this section t < 0, and H0 is a random number, so that it cannot be
normalized to 1 as in the post-retirement problem.
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not.)

An appealing feature of the post-retirement government policies of the previous sections

is that they did not actually require the government to implement and administer them. The

government could simply mandate that retirees purchase an “insurance” policy with payoffs

dGt, and then private competitive entities (insurance companies, pension funds, etc.) could

provide this policy in exchange for an upfront fee D0.

To ensure that the same “decentralization” through private entities is also feasible for

the pre-retirement problem, I make an additional assumption on the allowable combinations

of St, L0. To motivate this assumption, suppose that the government determined a policy

pair (St, L0), and mandated that working agents make transfers to a pension fund equal to

dSt, in exchange for a transfer payment of L0 from the pension fund at retirement. Then,

the financial assets of the pension fund are given by W̃t, with W̃t defined as

W̃t ≡ Ete
−q(0−t)

(
H0

Ht

)
L0 − Et

∫ 0

t

e−q(u−t)
(
Hu

Ht

)
dSu (45)

Equation (45) follows from the fact that the financial assets of the pension fund
(
W̃t

)
plus the remaining present value of transfers from the workers Et

∫ 0

t
e−q(u−t)

(
Hu
Ht

)
dSu must

be equal to the present value of the lump sum transfer to be paid once the agents retire

Ete
−q(0−t)

(
H0

Ht

)
L0. To prevent default in the spirit of Bulow and Rogoff (1989),28 I require

that

W̃t ≥ 0⇐⇒ Ete
−q(0−t)

(
H0

Ht

)
L0 − Et

∫ 0

t

e−q(u−t)
(
Hu

Ht

)
dSu ≥ 0, (46)

28Specifically, Bulow and Rogoff show that whenever W̃t < 0 for any private entity, then there exist a
profitable deviation whereby the private entity defaults on its lenders at t, keeps receiving its income from t
onwards (in the case of a pension fund the contributions dSt), and finances its consumption (in the case of
a pension fund the terminal payout L0) without ever having to borrow from its lenders in the future.
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for all t ∈
[
tb, 0

]
. This non-negativity of financial assets for a pension fund is the direct

analog of the non-negativity of financial assets for consumers (equation [6]).29 It is note-

worthy that the requirement (46) is automatically satisfied for any deterministic policy pair

St, L0 that satisfies (44).

Finally, to ensure that there exist some feasible combination of St, L0 that satisfy (44),

(46), and can enforce (43), I assume that the present value of Wmin as of the birth of the

agent is no larger than the respective present value of the agent’s income

Etbe
−qτ
(
H0

Htb

)
Wmin < Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
Y dt. (47)

Using Etb
(
Ht
H
tb

)
= e−r(t−t

b) inside (47), taking logarithms on both sides and rearranging

leads to the following re-statement of (47) in terms of an agent’s minimum duration of work,

which is maintained throughout

τ >
log
(

1 + (r + q) Wmin

Y

)
(r + q)

. (48)

The government’s pre-retirement problem can now be summarized in a manner analogous

to the government’s post-retirement problem 1.

Problem 3 Choose St, L0 so as to maximize

Ωtb ≡ max
St,L0

Etb

∫ 0

tb
e−(ρ+q)(t−t

b) (ct)
1−γ

1− γ
dt+ Etbe

−(ρ+q)τJ (W0− + Lτ ) (49)

subject to (43), (44), (46), and subject to the constraint that Wt is the wealth process that

results for the choices of ct, πt that solve the decision-making agent’s pre-retirement opti-

29It is useful to remark that in the post-retirement problem W̃t = Et
∫∞
t
e−q(u−t)HudGu ≥ 0, and the

constraint (46) is automatically satisfied.
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mization problem given St, Lτ :

max
<ct,πt>

Etb

∫ 0

tb
e−(ρ+q)(t−t

b) (ct)
1−γ

1− γ
dt+ Etbe

−(ρ+q)τJ (W0− + Lτ ) (50)

s.t.:

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt+ (Y − ct) dt− dSt (51)

Wt ≥ 0 for all t ≥ tb. (52)

Equation (49) requires that the government choose mandatory saving policies St and a

lump sum transfer upon retirement so as to maximize the agent’s life-time expected utility

at birth. The equations (50) - (52) require that the wealth process is the result of the

agent’s optimal consumption and portfolio choices ct, πt that result in the presence of the

government policies St, L0.

The discrepancy in the government’s and the agent’s objectives in the pre-retirement

problem stems from the fact that the government wants to ensure that the agent arrives in

retirement with a minimum amount of assets (in order satisfy the constraint ct ≥ ξ post-

retirement). If left alone, the agent would not necessarily arrive in retirement with such a

minimum level of assets. Accordingly, the government policies St, L0 need to induce her to

choose pre-retirement consumption and portfolio policies that will result in a minimum level

of retirement assets.

As a first step towards solving problem 3, it is useful to consider the solution of the

following problem

Problem 4 Choose ct,W0 so as to maximize

Jtb ≡ max
ct,πt

Etb

∫ 0

tb
e−(ρ+q)(t−t

b) (ct)
1−γ

1− γ
dt+ Etbe

−(ρ+q)τJ (W0)

subject to the dynamic budget constraint (5), the non-negativity of wealth constraint (6) and
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the additional constraint W0 ≥ Wmin.

Problem 4 is the problem that would be solved by the agent, if she voluntarily imposed

the constraint W0 ≥ Wmin on her own choices. As one might expect, the fact that the agent

voluntarily imposes the constraint W0 ≥ Wmin on her own decisions implies that the value

function of problem 4 is an upper bound to the solution of problem 3. This is formalized in

the next Lemma

Lemma 3 For Ωtb , Jtb denoting the value functions of problems 3 and 4 respectively, Ωtb ≤

Jtb .

Variants of problem 4 have been studied elsewhere, and especially in the literature on

portfolio insurance. (See e.g., Basak (2002)). The new aspect of this paper is that the

solution of Problem 4 acts as an upper bound to Problem 3 and hence can be used to check

the optimality of various mandatory savings programs.

Solving Problem 4 in closed form is difficult, because of the presence of the borrowing

constraint Wt ≥ 0 and the extra state variable introduced by the agent’s distance to re-

tirement. Fortunately, the exact solution of problem 4 is not required for the analysis that

follows. Instead, it is sufficient to establish the following property of any optimal solution to

problem 4.

Lemma 4 If W ∗
t is the optimal wealth process associated with problem 4, then there exist a

time χ = −
log
(
1+(r+q)W

min

Y

)
(r+q)

∈ (tb, 0) such that W ∗
t > 0 for all t ∈ (χ, 0].

Lemma 4 asserts that there exists a time χ prior to retirement, such that the borrowing

constraint W ∗
t ≥ 0 is non-binding for any t ∈ [χ, 0). The next proposition shows that a

simple way to construct an optimal policy to the government’s problem 3 is to set dSt > 0

only during [χ, 0).
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Proposition 6 Consider the government policy given by

dSt =

 0 if t ∈ [tb, χ)

Y dt if t ∈ [χ, 0]

and L0 = Wmin. Then this policy is optimal, since the associated value function Vtb of the

agent satisfies Vtb = Jtb .

Simply put, proposition 6 asserts that an optimal solution to the government’s problem

is to make a transfer equal to Wmin at retirement and finance this transfer by requiring

mandatory savings only for a few years immediately prior to retirement. This “backloading”

of savings is driven by Lemma 4 and in particular, the observation that the borrowing

constraint stops binding for some time prior to retirement (t ∈ [χ, 0]) .

Intuitively, by the time χ, the agent has accumulated enough wealth that income can be

channeled towards savings without distorting the optimal consumption decisions the agent

would have made, if she was solving problem 4.

Summarizing, this section has shown that the feasibility of any fully funded post-retirement

plan dGt that can provide a minimum standard of living in retirement, is equivalent to the

requirement that the agent arrive in retirement with assets at least as large as Wmin. In

order to ensure that the agent has accumulated this amount of assets by retirement, the gov-

ernment needs to enforce a minimum amount of savings pre-retirement. Given the frictions

implied by the presence of borrowing constraints, the current framework suggests that these

mandatory savings should be done just prior to retirement, when the agent has accumulated

enough wealth to avoid consumption distortions.

Of course, Proposition 6 is mostly of theoretical interest: It helps highlight the fact that

borrowing constraints make it optimal to postpone mandatory savings to the years prior

to retirement. The stark difference in optimal mandatory savings before χ and after χ is

sensitive to the maintained assumption of an exogenous retirement time. It is reasonable to
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conjecture that endogenizing the retirement time along the lines of Farhi and Panageas (2007)

would lead to a smoother age-dependent mandatory savings profile. This extension would

be lengthy and would require a separate paper. However, it is likely that the presence of

borrowing constraints would still tend to backload mandatory savings, albeit not completely.

8 Arbitrary stochastic discount factors and general equi-

librium

The assumption of a small open economy facilitated the analysis by rendering the stochastic

discount factor exogenous to the model. Another simplifying assumption is that everything

is driven by a single shock. Neither of these assumptions is restrictive. Even if the stochastic

discount factor were endogenous and driven by multiple sources of uncertainty, most of the

results of the paper would survive.

Specifically, the fact that equation (31) provides an upper bound to problem 1 remains

valid for any continuous stochastic discount factor Ht. It is also straightforward to show that

an appropriately re-parametrized version the portfolio insurance policy would attain the

upper bound of proposition 2 for any continuous stochastic discount factor, and accordingly

for the general equilibrium version of the present model. However, the result that depends

crucially on the functional form of the stochastic discount factor (3) is the optimality of the

constant income policy.

In summary, the qualitative findings of the model would survive even in a closed, general

equilibrium economy.30 Even though the stochastic discount factor and the price of all

guarantees would change, most of the key results of the paper, namely the nature of the

upper bound of equation (31), and the optimality of the portfolio insurance policy would

30Of course in general equilibrium care should be taken to make sure that aggregate consumption stays
above the level ξ multiplied by the mass of retirees. In an endowment economy this could be done by
boundedness assumptions on the aggregate endowment. Alternatively one could introduce production in the
spirit of Cox et al. (1985).
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remain unchanged.

9 Conclusion

By exploiting borrowing restrictions of agents, this paper proposed a framework to discuss

optimal transfer processes that can ensure a minimum standard of living in retirement.

Within the framework of a baseline life-cycle model, featuring a constant interest rate and

market price of risk, two policies were shown to be optimal: According to the first policy,

retirees use part of their accumulated assets to purchase a fixed annuity that pays off a

constant income stream. The second policy is an appropriate form of portfolio insurance that

ensures retirees against further negative returns, once their assets approach zero. Optimal

transfers are financed by mandating pre-retirement savings, which optimally take place in

the years leading up to retirement, and not at the beginning of the life-cycle.

In summary, the baseline framework supports a mandate for agents to purchase a fixed

annuity financed by compulsory savings in the years prior to retirement. However, the

optimality of a mandatory annuity depends crucially on interest rates and the market price of

risk being constant. This fact lends some support to the critics of mandatory fixed annuities,

who point out that such annuities may be suboptimal in a world of historically low real

interest rates. Alternative policies, such as the portfolio insurance policies constructed in this

paper remain optimal for arbitrary assumptions on the investment opportunity set. However,

they are more complex, which may make them unattractive from a practical perspective.

Several issues are unexplored by the present paper. A first issue concerns unobserved

preference heterogeneity. If agents have different risk aversions, or subjective discount fac-

tors, then the government needs to offer menus of contracts in the spirit of discriminatory

pricing. An open question is whether the need to enforce sorting into different types of

contracts would affect the qualitative features of the guarantees. A further extension of the

present model would be to allow agents to choose their retirement time endogenously and
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examine the implications for pre-retirement savings. Studying these two questions is left for

future research.
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Appendix

A Justification for a minimum standard of living ct ≥ ξ

From a rational perspective, one potential reason for safeguarding that agents can self-

finance a minimum standard of living in retirement is to deter them from over-burdening

the (distortionary-tax financed) welfare system by claiming welfare benefits, when they are

not the intended recipients of such benefits. In that sense agents’ financial decisions can be

a source of systemic risk, since they can constitute a negative externality for the economic

system.

To substantiate this claim, I enrich the model and introduce a simple reason for the

existence of a welfare system, along with a stylized model of the welfare system. Specifi-

cally, assume that up until retirement agents are identical in every respect. Upon entering

retirement, however, a small fraction θ of agents experiences an unobservable and idiosyn-

cratic shock that results in a random, negative and bounded income stream of −Yt for the

rest of their lives. (This assumption can be relaxed; individuals could experience the shock

at some privately observed, random time after retirement without affecting the intuitions

and conclusions). The remaining 1− θ fraction of the agents remain identical to the agents

described in the paper sofar. The idiosyncratic shock is catastrophic, in the sense that no

agent could self-insure against that shock by accumulating savings∫ 0

tb
e−(q+r)(t−t

b)Y dt < Etb

∫ ∞
0

e−(q+r)(t−t
b)Ytdt. (53)

Equation (53) states that even if an agent saved all her labor income, the resulting present

value would still be smaller than the present value of the negative shock Yt. Accordingly, if

self-insurance were the only available form of insurance, then for any θ > 0 agents would be

faced with a positive probability of an unboundedly negative post-retirement value function.

Because of these catastrophic and unobservable idiosyncratic shocks, the government

can raise the welfare of the time tb−cohort of agents by creating a “welfare” system, which

aims to ensure agents against catastrophic idiosyncratic shocks. The fact that all individual

characteristics (shocks, consumption, wealth, Yt etc.) are unobservable, and the government

can only provide transfers based on public information without being able to affect agents’

access to markets, requires some way to ensure that agents truthfully declare whether they

suffered a shock. In reality, non-pecuniary costs (such as standing in queues, filing paper-work
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etc.) can help “separate” different types of agents. To formalize this notion, suppose that

the welfare system works as follows: any agent who enters retirement can obtain transfers

(dNt ≥ 0) from the government, by incurring non-pecuniary, time-related costs ξ−γdNt, such

as standing in a queue.31 (An alternative interpretation is that the agent gets hired and paid

a wage dNt for performing some task of low - for illustration purposes say zero- market value,

but with a time-related disutility to herself given by ξ−γdNt.
32 ) Accordingly, the agent’s

objective is to maximize

E0

(∫ ∞
0

e−(ρ+q)t
c1−γt

1− γ
dt−

∫ ∞
0

e−(ρ+q)tξ−γdNt

)
. (54)

The assumption of a constant cost of time (ξ−γ) per unit of transfer simplifies the analysis,

but is not key.33 As will become clear shortly, the crucial feature of (54) is that the non-

pecuniary costs act as a useful screening device so as to separate the agents who have

experienced idiosyncratic shocks from those who haven’t.

A final assumption is that the transfers dNt are financed by distortionary labor taxes

when the cohort of agents is still working. Specifically, the government collects a labor tax

equal to ωY, during the work years of the agents, so as to finance any welfare transfers dNt

later on. An important difference between the mandatory savings discussed in section 7 and

the labor tax ωY is that this tax is withheld by the government and redistributed only to

agents who experience idiosyncratic shocks, so that there is no direct linkage between the

taxes paid and the benefits received by an individual. As is well understood in the literature

(see e.g., Barro (1979), Lucas and Stokey (1983)), this decoupling leads to a distortion of the

labor-leisure tradeoff and results in deadweight costs. Even though it is straightforward to

model such distortions explicitly (see, e.g., Panageas (2010)) for the purposes of this paper

it suffices to treat such deadweight costs in a simple reduced-form way and assume that only

a fraction (1− δ)ωY of an agent’s taxes reaches the government. (The literature sometimes

refers to such a simple modeling of deadweight costs as “iceberg” costs). The constant δ

captures the fraction of income that gets “wasted” due to work-disincentives. The resulting

31The idea that queues can act as devices to elicit hidden information is well established in the literature.
See e.g. Stiglitz (1992).

32Indeed, many successful real-world programs to fight poverty and homelessness are associated with
providing subsidized work.

33The conclusions of the paper would not be materially affected if agents paid a once-and-out pecuniary
cost to enter the welfare system, as I explain in the remark at the end of this section.
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budget constraint of the government is given by∫ 0

tb
e−(ρ+q)(t−t

b) (1− δ)ωY = θEtb

∫ ∞
0

e−q(t−t
b)
(
Ht

Htb

)
dNt,

assuming that only the θ-fraction of agents who suffer the idiosyncratic shock ever request

transfers.

Letting i = I if agent i has experienced an idiosyncratic shock and i = NI otherwise,

the “truth-telling” requirement34 can be expressed as∫ ∞
0

dN i
t = 0, whenever i = NI. (55)

Using the shorthand notation θI ≡ θ, θNI ≡ 1 − θ and Ỹt
I ≡ Yt, Ỹt

NI ≡ 0, the full

government’s post-retirement problem can be expressed as

Problem 5 Choose Gt, D0 to maximize

max
Gt,D0

E0

∑
i=I,NI

θi

(∫ ∞
0

e−(ρ+q)t
(cit)

1−γ

1− γ
dt−

∫ ∞
0

e−(ρ+q)tξ−γdN i
t

)
. (56)

subject to (10), (55), and subject to the constraint that cit, dN
i
t solve the agent’s optimization

problem given Gt

cit = arg max
<cit,π

i
t,dN

i
t>
E0

∫ ∞
0

e−(ρ+q)t
(cit)

1−γ

1− γ
dt−

∫ ∞
0

e−(ρ+q)tξ−γdN i
t (57)

s.t.:

dW i
t = qW i

t dt+ πit {µdt+ σdBt}+
{
W i
t − πit

}
rdt (58)

− citdt+ dGt + dN i
t − Ỹt

i
dt (59)

W i
0+ = W i

0 −D0 (60)

W i
t ≥ 0 for all t > 0 (61)

Problem 5 is almost identical to problem 1, with the main exception that the constraint

ct ≥ ξ is replaced by the separation requirement (55). Once again, the government introduces

34Because of the distortions associated with labor taxation (and the deadweight costs associated with
screening), separation of types is optimal, in the sense that only agents who experience an idiosyncratic
shock should be receiving welfare transfers dNt.
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a fully funded transfer process, but not in an attempt to keep consumption above a minimum

standard, but instead with the goal to induce agents who have not experienced idiosyncratic

shocks to refrain from using the welfare system. However, the setup does not prohibit agents

who have experienced idiosyncratic shocks to use the welfare system, and in general they

will.

The link between the two problems is given by the following Lemma.

Lemma 5 dNNIt = 0 whenever cNIt ≥ ξ.

Lemma 5 shows that the constraint (7) is a standard “truth-telling” constraint, which

ensures that agents with asset dynamics given by equation (12) (i.e. agents who have not

experienced idiosyncratic shocks) do not find it optimal to access the welfare system. Because

of this correspondence, problem 1 can be viewed as a limiting case of problem 5 as θ becomes

sufficiently small. The next Proposition formalizes this claim.

Proposition 7 Let Ω∗(W0) denote the value function of problem 5 and let Ω(W0;G
∗
t , D

∗
0)

denote the value of the objective function of problem 5 assuming that the government follows

any of the optimal policies G∗t , D
∗
0 for problem 1. Then limθ→0 Ω(W0;G

∗
t , D

∗
0) = Ω∗(W0).

I conclude this section with a remark on the disutility associated with welfare transfers.

With appropriate modifications, the assumption that the agent receives a disutility ξ−γ per

unit of transfer could be replaced with the assumption that an agent has to incur a fixed

disutility Ξ̄ to enter the welfare system. Subsequent to incurring this disutility the agent

can attain a continuation value equal to V̄ . For instance it could be assumed that after the

agent incurs the fixed disutility, the government excludes the agent from further trading, pays

costs to observe and pay for her idiosyncratic shock for the remainder of her life, and gives

her some consumption path with discounted present value V̄ in units of utility. In such an

extension, the truth-telling constraint ct ≥ ξ would have to be replaced with the constraint

Vt ≥ V̄ − Ξ̄, and so would equation (24) in problem 2. Then problem 2 shares several

mathematical similarities with problems of one-sided commitment.35 The solution of such

problems can be expressed in the form (25). Because of this correspondence, it is relatively

straightforward to simply repeat all the steps of our analysis for the appropriately redefined

optimal process X∗t associated with such a modified setup. Having determined the optimal

process X∗t , one can address the core issue of the analysis, namely the “implementation” of

35For a textbook treatment, see e.g., Ljungqvist and Sargent (2004).
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the resulting optimal consumption process by appropriate income process, along the lines of

section 6.

B Proofs

Proof of proposition 1. Subject to minor modifications, the proof of this proposition is identical
to the first theorem of He and Pages (1993) and the reader is referred to that paper for a proof.

Proof of Lemma 1. The proof of this lemma is contained in the proof of proposition 2
(Particularly Lemma 7).

Proof of Proposition 2. The proof of this proposition is established in steps. The following
Lemma contains a useful first result.

Lemma 6 Take any λ ∈ (0, ξ−γ ] and any process Gt and define

X̂t ≡ arg min
Xs∈D

E0

(∫ ∞
0

e−(ρ+q)s max
cs

(
c1−γs

1− γ
− λeρsHsXscs

)
ds+ λ

∫ ∞
0

e−qsHs (Xs − 1) dGs

)
.

(62)

Then:

λE0

(∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs

)
= E0

∫ ∞
0

e−(ρ+q)s
(
eρsλHsX̂s

)1− 1
γ

(
1− 1

X̂s

)
ds. (63)

Proof of Lemma 6. Let Λt ≡ 1− 1

X̂t
. Applying Ito’s Lemma to Λt, one obtains dΛt ≡ dX̂t

(X̂t)
2 .

Hence Λt changes when and only X̂t changes. By Theorem 1 of He and Pages (1993):∫ ∞
0

[
Et

(∫ ∞
t

X̂se
−qsHsdGs

)
− Et

(∫ ∞
t

X̂se
−qsHscsds

)]
dX̂t = 0, (64)

where cs is given explicitly by (25). Plugging (25) into (64), and observing that Λt changes when
and only when X̂t changes implies that∫ ∞

0

(
Et

∫ ∞
t

X̂se
−qsHsdGs − Et

∫ ∞
t

X̂se
−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

)
dΛt = 0.

Then, for any admissible Gt and X̂t given by (62)

λE0

(∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs

)
=
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λE0

[∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs −

∫ ∞
0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt

]
(65)

+ λE0

{∫ ∞
0

Et

[∫ ∞
t

X̂se
−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

]
dΛt

}
.

Next consider the martingale

Mt ≡ Et
∫ ∞
0

X̂se
−qsHsdGs =

∫ t

0
X̂se

−qsHsdGs + Et

∫ ∞
t

X̂se
−qsHsdGs. (66)

According to the martingale representation theorem, there exists a square integrable ψ̃s such that

Mt =M0 +

∫ t

0
ψ̃sdBs. (67)

Combining (66) and (67) gives

d

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
= dMt − X̂te

−qtHtdGt

= ψ̃tdBt − X̂te
−qtHtdGt.

Now, fixing an arbitrary ε > 0, letting τ ε be the first time t such that |Λt| ≥ 1
ε , applying

integration by parts and using the fact that Λ0 = 0, gives

−E0

∫ T∧τε

0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt = −E0

∫ T∧τε

0
ΛsX̂se

−qsHsdGs + E0

∫ T∧τε

0
Λsψ̃sdBs

− E0

[
ΛT∧τε

(
ET∧τε

∫ ∞
T∧τε

X̂se
−qsHsdGs

)]
.

Since ψs is square integrable and |Λs| is bounded in
[
0, 1ε
]

the second term on the right hand
side of the above expression is 0. Also note that

−E0

[
ΛT∧τε

(
ET∧τε

∫ ∞
T∧τε

X̂se
−qsHsdGs

)]
= −E0

[
X̂T∧τεΛT∧τεJ

]
, (68)

where

J ≡

(
ET∧τε

∫ ∞
T∧τε

X̂s

X̂T∧τε
e−qsHsdGs

)
≤ ET∧τε

∫ ∞
T∧τε

e−qsHsdGs, (69)

since X̂t is non-increasing. Combining (69) with (68) and noting that 0 < X̂t ≤ 1,

−E0

[
X̂T∧τεΛT∧τεJ

]
= E0

[(
1− X̂T∧τε

)
J
]
≤ ET∧τε

∫ ∞
T∧τε

e−qsHsdGs. (70)
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Given that E
∫∞
0 e−qsHsdGs <∞ it follows that

ET∧τε

∫ ∞
T∧τε

e−qsHsdGs → 0, (71)

as ε→ 0, T →∞. This leads to the inequalities:

−E0

∫ ∞
0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt ≥ −E0

∫ T∧τε

0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt

≥ −E0

∫ T∧τε

0
ΛsX̂se

−qsHsdGs.

Letting ε→ 0, T →∞, using the monotone convergence theorem, and using (70) and (71), gives

−
∫ ∞
0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt = −E0

∫ ∞
0

ΛsX̂se
−qsHsdGs. (72)

Using (72) and the definition of Λt gives

λE0

[∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs −

∫ ∞
0

(
Et

∫ ∞
t

X̂se
−qsHsdGs

)
dΛt

]
=

= E0

[
λ

∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs − λ

∫ ∞
0

e−qsHsX̂sΛsdGs

]
= 0.

Returning now to (65) and using the above equation yields

λE0

(∫ ∞
0

e−qsHs

(
X̂s − 1

)
dGs

)
= λE0

{∫ ∞
0

Et

[∫ ∞
t

X̂se
−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

]
dΛt

}
(73)

= E0

[∫ ∞
0

e−(ρ+q)t
(
eρtλHtX̂s

)1− 1
γ

Λtdt

]
, (74)

where (74) follows from a similar integration by parts argument as the one in equations (66)-(72).

The next Lemma uses Lemma 6 to prove (26).

Lemma 7 For all admissible processes Gt ∈ G:

max
Gt∈G

V (W0) ≤ min
λ∈(0,ξ−γ ]

[
E

(∫ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )

1− 1
γ

1− γ
ds− λ

∫ ∞
0

e−qsHs (λeρsHsX
∗
s )
− 1
γ ds+ λW0

)]
(75)

Proof of Lemma 7. Proposition 1 along with Lemma 6 implies that for any admissible process
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Gt there exists a λG > 0 and a decreasing process XG
t ∈ D that minimizes (19) such that

V (W0) = E

(∫ ∞
0

e−(ρ+q)s max
cs

(
c1−γs

1− γ
− λGeρsHsX

G
s cs

)
ds+ λG

∫ ∞
0

e−qsHs

(
XG
s − 1

)
dGs

)
+ λGW0

= E

∫ ∞
0

e−(ρ+q)s

(eρsλGHsX
G
s

)1− 1
γ

1− γ
− λGeρsHs

(
eρsλGHsX

G
s

)− 1
γ

 ds+ λGW0.

(76)

Moreover, since the process Gt enforces ct ≥ ξ, equation (18) implies that λG ≤ ξ−γ . Next take

an arbitrary λ > 0. Since ct =
(
eρtλGHtX

G
t

)− 1
γ is an optimal consumption process, it exhausts the

“budget constraint” of the consumer so that

E

∫ ∞
0

e−(ρ+q)seρsHs

(
eρsλGHsX

G
s

)− 1
γ ds = W0 −D0 + E

∫ ∞
0

e−qsHsdGs.

Using (10), this implies that E
∫∞
0 e−(ρ+q)seρsHs

(
eρsλGHsX

G
s

)− 1
γ = W0. This furthermore implies

that (76) can be rewritten as

V (W0) = E

∫ ∞
0

e−(ρ+q)s

(eρsλGHsX
G
s

)1− 1
γ

1− γ
− λeρsHs

(
eρsλGHsX

G
s

)− 1
γ

 ds+ λW0. (77)

Next define X∗t as in equation (30), and let the process Nt be given as Nt ≡ λG

λ
XG
t

X∗t
. Using Nt, one

can rewrite equation (77) as

V (W0) = E

∫ ∞
0

e−(ρ+q)s

(
(eρsλHsX

∗
sNs)

1− 1
γ

1− γ
− λeρsHs (eρsλHsX

∗
sNs)

− 1
γ

)
ds+ λW0. (78)

Since λGXG
t is a decreasing process that starts at λG and always stays below ξ−γ , the Skorohod

equation36 implies that there exists another decreasing process λGX∗Gt that also starts at λG and
stays below ξ−γ , with the property

λGXG
t ≤ λGX∗Gt . (79)

This process is given by X∗Gt = min
[
1, ξ−γ/λG

max0≤s≤t(eρsHs)

]
. Note that X∗Gt is identical to X∗t with the

exception that λ replaces λG. Using (79) and the definition of Nt yields

Nt =
λG

λ

XG
t

X∗t
≤ λG

λ

X∗Gt
X∗t

. (80)

36For the Skorohod equation see Karatzas and Shreve (1991) p. 210.
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Using (80) and (78) leads to

V (W0) ≤ E
∫ ∞
0

e−(ρ+q)sA(s)ds+ λW0, (81)

where

A (s) ≡ max
Ns≤Qs

(
Ã (s)

)
, (82)

and Ã (s) is defined as Ã (s) ≡ (eρsλHsX∗sNs)
1− 1

γ

1−γ −λeρsHs (eρsλHsX
∗
sNs)

− 1
γ , whileQs ≡ max

[
1, λ

G

λ
X∗Gs
X∗s

]
.

To study the maximization problem of equation (82) it is useful to compute the derivative of Ãs
with respect to Ns. Performing this computation and combining terms gives

∂Ãs
∂Ns

= −1

γ
(eρsλHsX

∗
sNs)

1− 1
γ N−1s

(
1− 1

NsX∗s

)
. (83)

At this stage it is useful to consider two cases separately. The first case is λ > λG. In this case, it
is straightforward to show that Qs = 1. Hence in maximizing Ã(s), one can constrain attention to

values of Ns ≤ 1. An examination of (83) reveals that ∂Ã(s)
∂Ns

≥ 0 for all Ns ≤ 1 and all X∗s , since

X∗s ≤ 1. Hence the solution to (82) is Ns = 1 when λ > λG.
In the case where λ < λG it is also true that the optimal Ns in (82) is equal to one. To see this,

observe that

Qs =

{ λG

λ
X∗Gs
X∗s

when X∗s = 1

1 when X∗s < 1
.

Using this observation in (83) reveals that the optimal choice for Ns is always equal to 1.37

The above reasoning shows that the optimal solution of (82) is given by Ns = 1. Returning to
(81), this implies that

V (W0) ≤ E
∫ ∞
0

e−(ρ+q)s

(
(eρsλHsX

∗
s )

1− 1
γ

1− γ
ds− λeρsHs (eρsλHsX

∗
s )
− 1
γ ds

)
+ λW0.

Since this bound holds for arbitrary λ ∈ (0, ξ−γ ] and arbitrary Gt ∈ G, it also holds for the
λ ∈ (0, ξ−γ ] that minimizes the right hand side of the above equation and the Gt ∈ G that maximizes
the right hand side. Hence (75) follows.

The next part of the proof of Proposition 2 is to show that equation (31) holds. A first step is
to show that (31) provides an upper bound to J (W0) .

37To see this distinguish cases. When X∗s = 1, then solving ∂Ã(s)
∂Ns

= 0 gives Ns = 1 ≤ Qs. Hence Ns is the

unique interior solution. When X∗s < 1, then ∂Ã(s)
∂Ns

> 0 for all Ns ≤ Qs = 1. Hence the solution is given by
the corner Ns = Qs = 1.
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Lemma 8 The value function of problem 2 is bounded above by

J (W0) ≤ min
λ∈(0,ξ−γ ]

[
E

(∫ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )

1− 1
γ

1− γ
ds− λ

∫ ∞
0

e−qsHs (λeρsHsX
∗
s )
− 1
γ ds+ λW0

)]
.

(84)

Proof of Lemma 8. The proof of this Lemma follows identical steps to the proof of the
previous Lemma. To see this, take an arbitrary triplet < λ̂,Xt, ct > that satisfies equations (23)-
(25) of Problem 2. Then for any λ > 0, one obtains

J (W0) ≤ E

∫ ∞
0

e−(ρ+q)s

(
λ̂eρsHsXs

)1− 1
γ

1− γ
− λ

∫ ∞
0

e−qsHs

(
λ̂eρsHsXs

)− 1
γ

+ λW0


Notice that this equation is identical to equation (77), with the exception that λG is replaced by λ̂
and XG

t is replaced by Xt. Since the equations following (77) hold for any λG, XG
t they also hold

for λ̂,Xt. Accordingly, by repeating the same steps, one can arrive at (84).
The next step in the proof of the proposition is to show that the inequality in (84) holds with

equality for the optimal policy. The following Lemma presents a step in this direction.

Lemma 9 Let F (λ) be given by

F (λ) = E

(∫ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )

1− 1
γ

1− γ
ds− λ

∫ ∞
0

e−qsHs (λeρsHsX
∗
s )
− 1
γ ds

)
(85)

Then

F (λ) = − Kξ1−γ

γφ (φ− 1)

(
λ

ξ−γ

)φ
+K

γ

1− γ
λ
1− 1

γ (86)

Assume moreover that (29) is met. Then

min
λ∈(0,ξ−γ ]

[F (λ) + λW0] = min
λ>0

[F (λ) + λW0] (87)

and (84) can be rewritten as J (W0) ≤ minλ>0 [F (λ) + λW0]. Moreover, letting λ∗ be given as

λ∗ ≡ arg minλ>0 [F (λ) + λW0] implies that E0

[∫∞
0 e−qsHs (λ∗eρsHsX

∗
s )
− 1
γ

]
= W0, and accordingly

c∗s = (λ∗eρsHsX
∗
s )
− 1
γ is a feasible consumption process for problem 2.

Proof of Lemma 9. To save notation, let

Zt ≡ λeρtHtX
∗
t , (88)

and note that Z0 = λ, and that Zt ∈ (0, ξ−γ ] by the definition of X∗t in equation (30). Equation
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(85) can now be rewritten as

F (λ) = E

∫ ∞
0

e−(ρ+q)s
1

1− γ
(Zs)

1− 1
γ ds−

∫ ∞
0

e−(ρ+q)s
Z

1− 1
γ

s

X∗s
ds

 . (89)

It will be convenient to compute the two terms inside equation (89) separately. Define first

G (Zt) ≡ E
[∫ ∞

t
e−(ρ+q)(s−t)

1

1− γ
(Zs)

1− 1
γ ds|Zt

]
. (90)

To compute G (Zt), it is easiest to let τ ε be the first hitting time of Zt to the level ε > 0, namely
τ ε ≡ infs≥t {Zs = ε} , and then compute the expression:

Gε (Zt) = E

[∫ τε

t
e−(ρ+q)s

1

1− γ
(Zs)

1− 1
γ ds|Zt

]
. (91)

To compute (91), apply first Ito’s Lemma to (88) to obtain dZt
Zt

= (ρ− r) dt − κdBt +
dX∗t
X∗t

. Next,

construct a function Gε(Z) that satisfies the ODE

κ2

2
GεZZZ

2 +GεZZ (ρ− r)− (ρ+ q)Gε +
1

1− γ
(Z)

1− 1
γ = 0, (92)

subject to the boundary conditions GεZ (ξ−γ) = 0, Gε(ε) = 0.
Equation (92) is a linear ordinary differential equation with general solution

Gε (Z) = C1Z
φ− + C2Z

φ +K
1

1− γ
Z

1− 1
γ ,

where C1, C2 are arbitrary constants, K is given in equation (28), φ > 0 in (27), and φ− is given
by

φ− ≡
−
(
ρ− r − κ2

2

)
−
√(

ρ− r − κ2

2

)2
+ 2 (ρ+ q)κ2

κ2
< 0 (93)

To satisfy the two boundary conditions GεZ (ξ−γ) = 0, Gε(ε) = 0, the constants C1 and C2 must be
chosen so that

φ−C1

(
ξ−γ
)φ−

+ φC2

(
ξ−γ
)φ − 1

γ
K
(
ξ−γ
)1− 1

γ = 0, C1ε
φ− + C2ε

φ +K
1

1− γ
ε
1− 1

γ = 0.

Solving this system yields:

C2 =
K
[

1
γφ− (ξ−γ)

1− 1
γ
−φ−

εφ
−

+ 1
1−γ ε

1− 1
γ

]
φ
φ− (ξ−γ)φ−φ

−
εφ− − εφ

, C1 = −C2ε
φ−φ− −K 1

1− γ
ε
1− 1

γ
−φ−

.
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It remains now to verify that Gε (Zt) satisfies (91). To this end, apply Ito’s Lemma to
e−(ρ+q)tGε(Zt) to obtain for any time T ∧ τ ε

e−(ρ+q)TGε(ZT∧τ )− e−(ρ+q)tGε(Zt) =

∫ T∧τε

t

(
κ2

2
GεZZZ

2
s +GεZZs (ρ− r)− (ρ+ q)Gε

)
e−(ρ+q)sds

−
∫ T∧τε

t
e−(ρ+q)sκGεZZsdBs +

∫ T∧τε

t
e−(ρ+q)sGεZ

(
ξ−γ
)
ξ−γ

dX∗s
X∗s

.

Using (92) inside the first term on the right hand side of the above equation along with
GεZ (ξ−γ) = 0 inside the third term, letting T →∞ along with Gε(ε) = 0, and using the monotone
convergence theorem gives

Gε(Zt) = Et

[∫ τε

t
e−(ρ+q)(s−t)

1

1− γ
(Zs)

1− 1
γ ds+

∫ τε

t
e−(ρ+q)(s−t)κGεZZsdBs

]
. (94)

Since GεZZ is bounded between t and τ ε, the second term in the above expression is a martingale
and hence (113) follows. Next, letting ε→ 0, it is straightforward to show that

C2 =
K
[

1
γφ− (ξ−γ)

1− 1
γ
−φ− − 1

1−γ ε
1− 1

γ
−φ−

]
φ
φ− (ξ−γ)φ−φ

− − εφ−φ−
→ K

1

γφ

(
ξ−γ
)1− 1

γ
−φ
,

since εφ−φ
− → 0 and ε

1− 1
γ
−φ− → 0. By a similar argument it is easy to show that C1 → 0 and

hence:

lim
ε→0

Gε(Z) = G(Z) =
1

φ

1

γ
Kξ1−γ

(
Z

ξ−γ

)φ
+K

1

1− γ
Z

1− 1
γ . (95)

Equation (90) follows as a consequence of the monotone convergence theorem.
It remains to compute the expression

N (Zt, X
∗
t ) = Et

∫ ∞
t

e−(ρ+q)(s−t)
Z

1− 1
γ

s

X∗s
ds

 . (96)

Following similar steps as for G (Zt), N(Z,X∗) is given by

N(Z,X∗) =
1

(φ− 1)

1

γ

K (ξ−γ)
1− 1

γ

X∗

(
Z

ξ−γ

)φ
+K

Z
1− 1

γ

X∗
. (97)

It is now possible to compute F (λ) which is given by

F (λ) = G(λ)−N (λ, 1) == − Kξ1−γ

γφ (φ− 1)

(
λ

ξ−γ

)φ
+K

γ

1− γ
λ
1− 1

γ . (98)
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To show the second part of the proposition, observe that (96), (88) and (97) imply that

N (λ, 1)

λ
=

1

λ
E0

∫ ∞
0

e−(ρ+q)s
Z

1− 1
γ

s

X∗s
ds

 = E0

(∫ ∞
0

e−qsHs (λeρsHsX
∗
s )
− 1
γ ds

)
=

=
Kξ1−γ

(φ− 1)

1

γ

(
λ

ξ−γ

)φ 1

λ
+Kλ

− 1
γ . (99)

Moreover, computing F ′(λ) in (98) yields

F ′(λ) = −Kξ
1−γ

(φ− 1)

1

γ

(
λ

ξ−γ

)φ 1

λ
−Kλ−

1
γ . (100)

Combining (99) and (100) leads to

F ′(λ) = −N (λ, 1)

λ
= −E0

(∫ ∞
0

e−qsHs (λeρsHsX
∗
s )
− 1
γ ds

)
. (101)

Using the formula for F (λ), equation (84) can be expressed as minλ∈(0,ξ−γ ] {F (λ) + λW0} ,which
leads to the first order condition F ′ (λ∗) = −W0. Using (101) leads to

W0 = E0

(∫ ∞
0

e−qsHs (λ∗eρsHsX
∗
s )
− 1
γ ds

)
= E0

(∫ ∞
0

e−qsHsc
∗
sds

)
.

This last equation implies that λ∗, X∗t and the associated consumption process c∗t =
(
λ∗eρtHtX

∗
t

)− 1
γ

satisfy (23) and (25). To show that the choice 〈λ∗, X∗t , c∗t 〉 constitutes a feasible triplet, it remains
to show that it also satisfies (24). By construction of X∗t this will be the case as long as λ∗ < ξ−γ .
This will indeed be the case as long as W0 satisfies (29). To see this, note that ξ−γ is the unique

solution of F ′ (λ∗) = −W0, when W0 is given by W0 =
1
γ
+φ−1
φ−1 Kξ. Moreover, equation (100) implies

that:

F ′′(λ) = −K
(
ξ−γ
)1− 1

γ
1

γ

(
1

ξ−γ

)φ
λφ−2 +

1

γ
Kλ
− 1
γ
−1

=
1

γ
Kλ
− 1
γ
−1
[

1−
(

λ

ξ−γ

)φ+ 1
γ
−1
]
> 0. (102)

The above equation shows that F
′
(λ) is an increasing function of λ for 0 < λ < ξ−γ and hence the

solution λ∗ of equation F ′ (λ∗) = −W0 is a decreasing function of W0. Hence, as long as W0 satisfies
(29), then λ∗ < ξ−γ . Since the interior solution λ∗ is smaller than ξ−γ , equation (87) follows.

49



Combining the above Lemma with (84) implies that

J(W0) ≤ min
λ>0

[F (λ) + λW0] = F (λ∗) + λ∗W0 =

= E

∫ ∞
0

e−(ρ+q)s

(
(λ∗eρsHsX

∗
s )
− 1
γ

)1−γ
1− γ

ds


= E

(∫ ∞
0

e−(ρ+q)s
(c∗s)

1−γ

1− γ
ds

)
≤ J (W0) .

The last inequality follows because c∗s = (λ∗eρsHsX
∗
s )
− 1
γ is a feasible consumption process for

problem for problem 2 and J (W0) is the value function of the problem. The above three lines
imply that equation (84) holds with equality as long as one chooses the optimal solution in the
statement of the proposition. This concludes the proof of Proposition 2.

Proof of Proposition 3. The proof of this Proposition is just a special case of Section 6 in
He and Pages (1993) and hence I give only a sketch and refer the reader to He and Pages (1993)
for details. To start, define

Ṽ (λ) = min
Xs∈D

E

[∫ ∞
0

e−(ρ+q)s max
cs

(
c1−γs

1− γ
− λeρsHsXscs

)
ds+ λ

∫ ∞
0

e−qsHsXsy0ds

]
. (103)

By equation (10) and equation (19) of Proposition 1

V (W0) = min
λ>0

[
Ṽ (λ) + λ

(
W0 −

y0
r + q

)]
, (104)

since y0E
∫∞
0 Hsds = y0

r . Next, for an arbitrary decreasing process Xt let Zt be defined as Zt ≡
λeρsHsXs, and note that Z0 = λ. Applying Ito’s Lemma to Zt gives:

dZt
Zt

= (ρ− r) dt− κdBt +
dXt

Xt
. (105)

With this definition of Zt one can solve the maximization problem inside (103) and rewrite Ṽ (λ)
as

Ṽ (Z0) = min
Xs∈D

E

[∫ ∞
0

e−(ρ+q)s
(

γ

1− γ
Z

1− 1
γ

s + y0Zs

)
ds

]
(106)

From this point on, one can use similar arguments to He and Pages (1993), and treat (106) as
a singular stochastic control problem over the set of decreasing processes Xt. As He and Pages
(1993) show, the optimal solution is to always decrease Xt appropriately, so as to keep Zt in the
interval (0, Z]. Z is a free boundary that is determined next.

Using this conjecture for the optimal policy one can now proceed as He and Pages (1993) to
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establish that Ṽ (Z) satisfies the ordinary differential equation:

κ2

2
ṼZZZ

2 + (ρ− r) ṼZZ − (ρ+ q)Ṽ +
γ

1− γ
Z

1− 1
γ + y0Z = 0 for all Z ∈ (0, Z].

The general solution to this equation is

Ṽ (Z) = C1Z
φ + C2Z

φ− +K
γ

1− γ
Z

1− 1
γ +

y0
r + q

Z, (107)

where K is given in (28), φ in (27) and φ− in (93) and C1, C2 are arbitrary constants. By arguments
similar to He and Pages (1993), one can set C2 = 0 (since φ− < 0). Hence it remains to determine C1

and the free boundary Z. As most singular stochastic control problems, one can employ a “smooth
pasting” and “high contact” principle, namely by determining C1 and Z so that ṼZ

(
Z
)

= 0,

ṼZZ
(
Z
)

= 0. Using the “smooth pasting” and “high contact” conditions, along with the general
solution in (107) and C2 = 0, one can solve for C1 and Z to obtain

Z
− 1
γ =

1

K

y0
r + q

(
φ− 1

1
γ + φ− 1

)
(108)

C1 = −
1
γ
y0
r+q

φZ
φ−1

[
1
γ + φ− 1

] (109)

The next steps to verify that the conjectured policy is indeed optimal are identical to He and Pages
(1993) and are left out.

To conclude the proof, note that sofar the calculations were true for an arbitrary y0. To deter-

mine the y0 that will safeguard that ct ≥ ξ observe that ct = Z
− 1
γ by equation (18). Since the

optimal policy is to control Xt so as to “keep” Zt in the interval (0, Z] it follows that the minimum

level of consumption is given by Z
− 1
γ . Hence, in order to guarantee condition ct ≥ ξ it suffices to

determine y0 so that

ξ = Z
− 1
γ =

1

K

y0
r + q

(
φ− 1

1
γ + φ− 1

)
.

Solving for y0 gives

y0 = ξ(r + q)K

1
γ + φ− 1

φ− 1
.

One can now substitute that level of y0 into (109), (108) and use the resulting expressions to obtain
from (107) the following expression for Ṽ (Z) :

Ṽ (Z) = − Kξ1−γ

γφ (φ− 1)

(
Z

ξ−γ

)φ
+K

γ

1− γ
Z

1− 1
γ +

y0
r + q

Z.

Evaluating this expression at Z0 = λ and using equation (104) gives equation (32), which shows
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that the “constant income” policy of the current proposition attains the upper bound of Proposition
2.

Proof of Lemma 2. First note that limγ⇀∞

(
y0
ξ

)
= 1. To show the result, it suffices to show

that
d
(
y0
ξ

)
dγ < 0. Differentiating y0

ξ with respect to γ gives

d
(
y0
ξ

)
dγ

=
(r + q)

φ− 1

B(
γ−1
γ

κ2

2 + γ (r + q) + ρ− r
)2 ,

where

B ≡ (φ− 1) (ρ− r)− (r + q) + (φ− 1)
κ2

2

− (φ− 1)
1

γ

κ2

2
− [γ (φ− 1) + 1]

1

γ2
κ2

2
.

Since φ > 1 and r + q > 0, it follows that
d
(
y0
ξ

)
dγ < 0, as long as (φ− 1) (ρ− r) − (r + q) +

(φ− 1) κ
2

2 < 0. Since φ solves the quadratic equation κ2

2 φ
2+
(
ρ− r − κ2

2

)
φ −(ρ+ q) = 0, it follows

that (φ− 1) (ρ− r) − (r + q) + (φ− 1) κ
2

2 = − (φ− 1)2 κ
2

2 < 0.
Proof of Proposition 4. The proof of this proposition proceeds in steps. The first two

Lemmas establish that the proposed transfer policy will make it possible for an agent who follows
the optimal consumption process of proposition 4 to satisfy the intertemporal budget constraint.
The proof then continues to show that the wealth process associated with the optimal consumption
process of proposition 4, along with the portfolio process (36), will lead to non-negative levels of
wealth at all times. Finally, it is shown that the consumption policy of proposition 4, along with
the portfolio choice (36), are optimal for an agent who is faced with transfers given by (34) and
attain the upper bound of proposition 2.

Lemma 10 Let K and φ be given by (28) and (27) and for any 0 < λ < ξ−γ let Zt = λeρsHsX
∗
s .

Then ∫ ∞
0

Et

(∫ ∞
t

e−q(s−t)HsX
∗
sdGs −

∫ ∞
t

e−q(s−t)HsX
∗
sZ
− 1
γ

s ds

)
dX∗t = 0. (110)

Proof of Lemma 10. It will simplify notation to let

η ≡ −Kξ
(
φ− 1 +

1

γ

)
. (111)

The first step is to compute

Et
∫∞
t e−qsHsX

∗
sdGs

e−qtHtX∗t
= η

Et
∫∞
t e−qsHsdX

∗
s

e−qtHtX∗t
. (112)
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Applying integration by parts and using the definition of Zt gives

Et

(∫ ∞
t

e−qsHsdX
∗
s

)
=

1

λ

[
−e−(ρ+q)tZt + Et

(∫ ∞
t

(r + q) e−(ρ+q)sZsds

)]
. (113)

Using (113) in equation (112) gives

Et
∫∞
t e−qsHsX

∗
sdGs

e−qtHtX∗t
= η

[
(r + q)

Et
(∫∞
t e−(ρ+q)(s−t)Zsds

)
Zt

− 1

]
. (114)

By using a logic similar to equations (92)-(94),

Et

(∫ ∞
t

e−(ρ+q)(s−t)Zsds

)
= − 1

φ

ξ−γ

r + q

(
Zt
ξ−γ

)φ
+

1

r + q
Zt, (115)

where φ is defined in equation (27). Plugging back (115) into (114) gives

Et
∫∞
t e−qsHsX

∗
sdGs

e−qtHtX∗t
= −η

φ

(
Zt
ξ−γ

)φ−1
. (116)

To conclude the proof, note that equations (90) and (95) imply that

Et

(∫∞
t e−qsHsX

∗
sZ
− 1
γ

s ds

)
e−qtHtX∗t

=

Et

(∫∞
t e−(ρ+q)(s−t)Z

1− 1
γ

s ds

)
Zt

=

1
φ
1−γ
γ Kξ1−γ

(
Zt
ξ−γ

)φ
+KZ

1− 1
γ

t

Zt
.

(117)

Combining (117) with (116) gives:

Et

(∫∞
t e−qsHsX

∗
sdGs −

∫∞
t e−qsHsX

∗
sZ
− 1
γ

s ds

)
e−qtHtX∗t

=

= −η
φ

(
Zt
ξ−γ

)φ−1
−

1
φ
1−γ
γ Kξ1−γ

(
Zt
ξ−γ

)φ
+KZ

1− 1
γ

t

Zt
.

Since dX∗t 6= 0 when and only when Zt = ξ−γ , equation (110) amounts to checking that:

−η
φ
−
(

1

φ

1− γ
γ

+ 1

)
Kξ = 0

which follows easily from the definition of η.

Lemma 11 Let Zs be as in the statement of the proposition 4 and let Gt be as in (34). Then the
consumption policy:

c∗s = (Zs)
− 1
γ (118)
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satisfies:

E

∫ ∞
0

e−qsHsX
∗
s c
∗
sds = W0 +

∫ ∞
0

e−qsHs (X∗s − 1) dGs (119)

Proof of Lemma 11. Taking any λ ∈ ( 0, ξ−γ ], using the definition of X∗t , and equation (110),
the same reasoning behind (65) leads to

E

(∫ ∞
0

e−(ρ+q)s max
cs

(
c1−γs

1− γ
− λeρsHsX

∗
s cs

)
ds+ λ

∫ ∞
0

e−qsHs (X∗s − 1) dGs

)
+λW0 = (120)

= E

[∫ ∞
0

e−(ρ+q)s
γ

1− γ
(eρsλHsX

∗
s )

γ−1
γ ds+

∫ ∞
0

e−(ρ+q)s (eρsλHsX
∗
s )

1− 1
γ

(
1− 1

X∗s

)
ds

]
+λW0

(121)

Hence the λ∗ that minimizes (32) (and hence minimizes [121]) also minimizes (120). But since
λ minimizes (120), the same argument as in He and Pages (1993) (Proof of Theorem 1) leads to
(119).

Lemma 11 has asserted that the consumption policy (118) satisfies the intertemporal budget
constraint (119). It remains to show that this consumption policy along with the portfolio policy
(36) will lead to a process for financial wealth that satisfies Wt ≥ 0. To that end let η be given as
in (111) and define:

W ∗ (Zt) = −K
(
ξ−γ
)− 1

γ

(
Zt
ξ−γ

)φ−1
+KZ

− 1
γ

t (122)

It is straightforward to verify the following facts about W ∗ (Zt) :

κ2

2
Z2W ∗ZZ +

(
ρ− r + κ2

)
ZW ∗Z − (r + q)W + (Z)

− 1
γ = 0 (123)

W ∗
(
ξ−γ
)

= 0,W ∗ (Z) ≥ 0 for all Z ∈ (0, ξ−γ ] (124)

W ∗Z
(
ξ−γ
)

= −Kξ
(
φ− 1 +

1

γ

)(
ξ−γ
)−1

=
η

ξ−γ
(125)

The next step is to verify that W ∗ (Zt) is the stochastic process for the financial wealth of the
agent. To see this, use the definition of c∗s (equation [118]) along with the definitions of dGt,W

∗
t

(equations [34] and [122] respectively) and apply Ito’s Lemma to obtain:

d

(∫ t

0
c∗sds−

∫ t

0
dGs +W ∗t

)
=
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= c∗tdt− η
dX∗t
X∗t

+W ∗ZdZt +
κ2

2
W ∗ZZZ

2
t dt

=

(
c∗t − Z

− 1
γ

t

)
dt+

[
W ∗Z

(
ξ−γ
)
ξ−γ − η

] dX∗t
X∗t

+ (r + q)W ∗t dt− κ2ZtW ∗Zdt− κW ∗ZZtdBt =

= (r + q)W ∗t dt− κ2ZtW ∗Zdt−
κ

σ
W ∗ZZt

(
dPt
Pt
− µdt

)

= (r + q)W ∗t dt− κ2ZtW ∗Zdt−
κ

σ
W ∗ZZt

(
dPt
Pt
− (µ− r) dt− rdt

)
=

= qW ∗t dt+ r
(
W ∗t +

κ

σ
W ∗ZZt

)
dt− κ

σ
W ∗ZZt

dPt
Pt

=

= qW ∗t dt+ r (W ∗t − π∗t ) dt+ π∗t
dPt
Pt

.

Integrating gives∫ t

0
c∗sds+W ∗t = W0 −D0 +

∫ t

0
dGs +

∫ t

0
qW ∗s dt+

∫ t

0
r (W ∗t − π∗t ) dt+

∫ t

0
π∗t
dPt
Pt

.

Hence the process W ∗t satisfies the equation (12) for an agent who chooses a consumption policy
given by (118) and a portfolio policy given by (36). Accordingly, it is the financial wealth process
that is associated with that policy pair. Moreover, by equation (124) the financial wealth process
is non-negative. Accordingly, the policies given by (118) and (36) are feasible for an agent who is
faced with the transfer process (34).

Verifying the optimality of the stated policy pair is simple. According to proposition 1

V (W0) = min
λ>0, Xs∈D

[
E
(∫∞

0 e−(ρ+q)s maxcs

(
c1−γs
1−γ − λe

ρsHsXscs

)
ds+ λ

∫∞
0 e−qsHsXsdGs

)
+λ (W0 −D0)

]
≤ Q(W0),

where

Q(W0) ≡ min
λ>0

[
E
(∫∞

0 e−(ρ+q)s maxcs

(
c1−γs
1−γ − λe

ρsHsX
∗
s cs

)
ds+ λ

∫∞
0 e−qsHsX

∗
sdGs

)
+λ (W0 −D0)

]
.

One can use now Lemma 11 to illustrate that the consumption policy (118) leads to a payoff for
the agent equal to Q(W0) which is an upper bound to the value function of the agent V (W0). Since
the consumption policy (118) is also feasible, the payoff associated with that policy also provides a
lower bound to the value function V (W0). Hence this policy must be optimal. Finally, the easiest
way to show that

D0 = Kξ

1
γ + φ− 1

φ− 1

(
λ∗

ξ−γ

)φ−1
,
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is to observe that the intertemporal budget constraint implies that

Eτ0

(∫ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

c∗sds

)
= Eτ0

(∫ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

dGs

)
,

where τ0 is the first time that Xτ0 ≥ 1 (or equivalently the first time that Wτ0 = 0 and λ∗eρτ0Hτ0 =
ξ−γ) . A few manipulations can be used to show that

Eτ0

(∫ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

c∗sds

)
=
N (ξ−γ , 1)

ξ−γ
= Kξ

1
γ + φ− 1

φ− 1

where N is defined and computed in (97) and (96). Finally, since there are no transfers between 0
and τ0 :

D0 = E
(
e−qτ0Hτ0

)
Kξ

1
γ + φ− 1

φ− 1
=

1

λ∗
E
(
e−(ρ+q)τ0λ∗eρτ0Hτ0

)
Kξ

1
γ + φ− 1

φ− 1
=

=
ξ−γ

λ∗
E
(
e−(ρ+q)τ0

)
Kξ

1
γ + φ− 1

φ− 1
=

(
λ∗

ξ−γ

)φ−1
Kξ

1
γ + φ− 1

φ− 1

where the proof of E
(
e−(ρ+q)τ0

)
=
(
λ∗

ξ−γ

)φ
is identical to the one given in Oksendal (1998), Chapter

10.
Proof of Proposition 5. Take any transfer process Gt such that the resulting consumption

process of the agent satisfies ct ≥ ξ. Proposition 1 implies then that there exists a cumulative

multiplier process XG
t and a constant λG such that ct =

(
λGeρtHtX

G
t

)− 1
γ ≥ ξ. Letting X∗t ≡

min
[
1, ξ−γ/λG

max0≤s≤t(eρsHs)

]
, and P ≡ E

(∫∞
0 e−qsHscsds

)
gives

P = E

(∫ ∞
0

e−qsHs

(
λGeρsHsX

G
s

)− 1
γ ds

)
≥ E

(∫ ∞
0

e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
(126)

since38 X∗s
(
λG
)
≥ XG

s . Equation (99) implies that

E

(∫ ∞
0

e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
=
Kξ1−γ

(φ− 1)

1

γ

(
λG

ξ−γ

)φ
1

λG
+K

(
λG
)− 1

γ .

Combining (101) and (102) implies that the right hand side of the above equation is decreasing in

λG whenever λG ≤ ξ−γ . Since c0 =
(
λG
)− 1

γ ≥ ξ this implies furthermore

E

(∫ ∞
0

e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
≥ Kξ1−γ

(φ− 1)

1

γ

1

ξ−γ
+Kξ = Kξ

(
1 +

1

φ− 1

1

γ

)
(127)

= Kξ

(
1
γ + φ− 1

φ− 1

)
.

38This is an implication of the Skorohod equation. See Karatzas and Shreve (1991).
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Combining (126) and (127) concludes the proof.
Proof of Lemma 3. Take any feasible choice of St, L0 that satisfies (43), (44), and (46) and

fix the associated processes for ct,W0. Then that combination of ct,W0 is a feasible choice for the
consumer who solves problem 4.

To see this, note first that W0 ≥Wmin by (43).
Furthermore, the dynamic completeness of markets implies that any combination of ct,W0 is

feasible for problem 4 as long as it satisfies the requirements39

Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
ctdt+ Etbe

−qτ
(
H0

Htb

)
W0 ≤ Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
Y dt, (128)

and

Wt = Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(cu − Y ) du+ Ete

−q(0−t)
(
H0

Ht

)
W0 ≥ 0 for all t ∈ [tb, 0]. (129)

To show that the combination of ct,W0 that is associated with problem 3 satisfies (128), use (51)
and Ito’s Lemma to compute d

(
e−qtHtWt

)
, integrate and use the fact that Wtb = 0, Wt ≥ 0 to

obtain

Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
ctdt+ Etbe

−qτ
(
H0

Htb

)
W0− = (130)

Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
Y dt− Etb

∫ 0

tb
e−q(t−t

b)

(
Ht

Htb

)
dSt.

Using W0 = W0− + L0 and (44) inside (130) implies (128).
Finally, it remains to show (129). Since the processes ct,Wt associated with St, L0 satisfy

Wt ≥ 0, it follows that

Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(cu − Y ) du+Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
dSu+Ete

−q(0−t)
(
H0

Ht

)
W0− ≥ 0. (131)

Adding Ete
−q(0−t)

(
H0
Ht

)
L0 to both sides of the inequality (131) and re-arranging gives

Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(cu − Y ) du+ Ete

−q(0−t)
(
H0

Ht

)
W0

≥ Ete−q(0−t)
(
H0

Ht

)
L0 − Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
dSu ≥ 0,

where the last inequality follows from (46). Since any attainable combination of ct,W0 for problem
3 is feasible for 4, this implies that the value function in problem 4 must be at least as high as the
respective value function of problem 3.

Proof of Lemma 4 . If c∗t ,W
∗
t are optimal consumption and wealth processes that solve

39For a proof, see e.g. Karatzas and Shreve (1998), Chapter 3 or He and Pages (1993).
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problem 4, then they are linked by the present value relation

W ∗t = Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(c∗u − Y ) du+ Ete

−q(0−t)
(
H0

Ht

)
W ∗0 (132)

By construction of χ, it follows that

Eχ

∫ 0

χ
e−q(u−t)

(
Hu

Hχ

)
Y du =

1− e−(r+q)(0−χ)

r + q
Y = e−(r+q)(0−χ)Wmin (133)

= Ete
−q(0−χ)

(
H0

Hχ

)
Wmin.

Adding and subtracting e−(r+q)(0−t)Wmin on the right hand side of (132) implies that for any t > χ

W ∗t = Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
c∗udu+ Ete

−q(0−t)
(
H0

Ht

)(
W ∗0 −Wmin

)
(134)

+ e−(r+q)(0−t)Wmin − 1− e−(r+q)(0−t)

r + q
Y

The first two terms on the right hand side of equation (134) are non-negative (since W ∗0−Wmin ≥ 0),
while the sum of the last two terms on the right hand side of equation (134) is positive40.

Proof of Proposition 6. The fact that the proposed policy satisfies (43) follows from W0− ≥ 0.
The requirement (44) follows by the construction of χ, while the requirement (46) follows from the
fact that dSt is deterministic (see remark in the text).

To conclude the proof, it suffices to show that Vtb ≥ Jtb . To that end, let c∗t ,W
∗
0 denote the

optimal consumption and wealth processes that solve problem 4. Consider an agent faced with the
policy pair < dSt, L0 > in the statement of the proposition. To show Vtb ≥ Jtb , it suffices to show
that c∗t ,W

∗
0 remain feasible choices for this agent.

To that end, note that the wealth process Wt for an agent who chooses ct = c∗t and W0− =
W ∗0 − L0 in the presence of the policy pair < dSt, L0 > given in the proposition, is given by

Wt = Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)(
c∗u − Y × 1{t<χ}

)
du+ Ete

−q(0−t)
(
H0

Ht

)
W0− ,

where 1{t<χ} is an indicator function that takes the value 1 if t < χ and zero otherwise. Clearly,

40Note that

e−(r+q)(0−t)Wmin − 1− e−(r+q)(0−t)

r + q
Y =

e(r+q)(t−χ)
(
e−(r+q)(0−χ)Wmin − e(r+q)(χ−t) − e−(r+q)(0−χ)

r + q
Y

)
> 0,

where the last inequality follows by equation (133) and t > χ.
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W0 ≥ 0 for all t ≥ χ, since c∗u ≥ 0 and W0− ≥ 0. For t < χ, observe that

Wt = Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
c∗udu− Et

∫ χ

t
e−q(u−t)

(
Hu

Ht

)
Y du+ Ete

−q(0−t)
(
H0

Ht

)
W0−

(135)

= Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(c∗u − Y ) du+ Et

∫ 0

χ
e−q(u−t)

(
Hu

Ht

)
Y du+ Ete

−q(0−t)
(
H0

Ht

)
W0−

= Et

∫ 0

t
e−q(u−t)

(
Hu

Ht

)
(c∗u − Y ) du+ Ete

−q(0−t)
(
H0

Ht

)(
W0− +Wmin

)
≥ 0,

where the last line in (135) follows from Et
∫ 0
χ e
−q(u−t)

(
Hu
Ht

)
Y du = Ete

−q(0−t)
(
H0
Ht

)
Wmin, the

definition W0− + Wmin = W0, and the fact that the wealth process in problem 4 is non-negative.
Clearly, Wt = 0 at t = tb, so that the pair ct = c∗t and W0− = W ∗0−L0 also satisfies the intertemporal
budget constraint at t = tb. This verifies that the pair ct = c∗t and W0− = W ∗0 − L0 is a feasible
pair for the agent solving the problem (50) - (52), which implies Vtb ≥ Jtb . Combining this with
Lemma 3 concludes the proof.

Proof of Lemma 5. Writing out the Bellman equation for an agent and proceeding as
in Kobila (1993) leads to the optimality condition

∫∞
0

(
V NIW − ξ−γ

)
dNNIt = 0.Combining this

optimality condition with the first order condition for consumption V NIW =
(
cNI

)−γ
yields the

result.
Proof of Proposition 7. Since the idiosyncratic shock is bounded, and an agent who has

experienced an idiosyncratic shock can always set N0+ − N0 = max|Yt|
r+q , the value function of an

agent who has experienced an idiosyncratic shock is bounded. Therefore, as θ → 0, the objective in
equation (56) converges to the objective of problem 1 (taking into account equation [55]). Also, in
light of Lemma 5, any consumption plan that is feasible (for a consumer that has not experienced
an idiosyncratic shock) under problem 5 is feasible under problem 1 and vice versa. By the theorem
of the maximum the value function of problem 5 converges to the value function of problem 1 as
θ → 0.
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