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Abstract

Linear regressions and latent factors in the residuals may give untrustworthy evidence

against structural models of credit risk. With a large dataset of credit default swap spreads

(CDSs), this paper shows that previous studies might have spuriously generated a strong latent

factor, which appeared to drive the co-movement in the data. The existence of a strong latent

factor is one of the main arguments for the misspeci�cation of structural models of credit risk.

However, a careful signal-to-noise analysis of the latent factor and some insights from the ran-

dom matrix theory reveal that structural models need not be so badly misspeci�ed. Changes in

spreads of CDSs are very noisy and di¢ cult to explain in linear regressions even with very good

regressors. Moreover, I show that a weak latent factor can also be generated by a structural

model of debt.

1 Introduction

In an important calibration study, Huang and Huang (2003) found that several structural models

cannot match the true level of credit spreads when their parameters are calibrated to the observed

default frequencies. More recent papers have found new ways to solve or at least circumvent the

problem of credit spread under-prediction. This paper addresses a related problem of the alleged

structural models�misspeci�cation and credit market segmentation. First, I show that the evidence

for misspeci�cation is much weaker than it was thought. Second, using simulations from a structural

model, I show that statistical patterns that might have been regarded as a proof of misspeci�cation

are in fact consistent with the structural theory.

�I thank Wolfang Bühler, Alois Geyer, Klaus Ritzberger, Leopold Sögner, Ilya Strebulaev, Josef Zechner and
conference participants at EFA, Doctorial Tutorial (Frankfurt 2010) for all comments and discussions. E-mail address:
marcin.jaskowski@vgsf.ac.at
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The focus of this paper is the empirical performance of structural models of credit risk. One will

never be able to show that a particular model is correct, but it is always possible to �nd evidence

that falsi�es the model�s assumptions and main claims. The seminal paper that had the most

devastating e¤ect for the reputation of structural models was Collin-Dufresne, Goldstein and Martin

(2001, henceforth CGM). CGM run regressions of various regressors implied by structural models,

like �rm-speci�c, macro and liquidity measures, on the changes in credit spreads of corporate bonds.

They �nd that more than half of the variation is unexplained by their regressors. But a small R2 did

not seem to be very surprising, neither to the practitioners nor to the academics: �rst of all, because

it is not uncommon in social sciences, and second, it may just re�ect a high level of idiosyncratic

noise. However, what was really puzzling in CGM was the existence of a strong and unexplained

principal component in the residuals. Additionally, the eigenvector of the main principal component

had almost equally sized elements.

That was bad news to the structural models, as it showed that they give a misspeci�ed de-

scription of the credit spreads and consequently of capital structure itself. CGM interpreted their

�ndings as evidence for the segmentation of bond and equity markets. Di¤erent investors would

trade in stocks rather than in bonds. The prices in those markets could be driven by independent

supply/demand shocks in both markets. Yet it is not easy to �nd a convincing justi�cation for

such segmentation of the markets, and to answer the question why equity and bonds should re-

act di¤erently to the same aggregate factors. The practical implication of CGM�s paper was that

structural models of credit risk are severely misspeci�ed and thus untrustworthy. Moreover, the

unobserved, latent factor seemed to have a rather simple structure, since it was constructed from

the eigenvector of almost equally large entries. One would expect that a latent factor represented

by the eigenvector with equally large entries should be easy to �lter out of the data, especially, as

it is di¢ cult to imagine a simpler structure for the latent factor than the eigenvector with equal

weights. On that account, the best choice was to use reduced-form models. Reduced-form models

are agnostic by assumption and they do not attempt to explain the phenomenon, they only attempt

to describe it accurately. Therefore, we might expect them to �t the data better.

Yet, new empirical studies show that the reduced-form models have a better �t to the data but

only in-sample. In a recent paper, Gündüz and Uhrig-Homburg (2008) calibrate both structural and

reduced-form models to the information extracted from balance sheet data, equity and corporate

bonds. Then in the second step, in order to test the out-of-sample performance of the models, they

compare their ability to explain CDS prices. Eventually, it turns out that the di¤erence in the

out-of-sample predictive power of the two methods is statistically insigni�cant.

This paper shows that the evidence for the existence of such a latent factor is dubious. In fact,

I �nd that changes of CDSs are very noisy and that the factor structure of the data is not stable

over time. That means that even with very good regressors, it is still di¢ cult to remove all the

correlation from the residuals. However, that does not mean that residuals contain one strong and
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stable common factor. I present two di¤erent ways how one can spuriously generate such a latent

factor. This way, the importance of a common factor that explains only a relatively small amount

of variance can be unintentionally magni�ed to a very large proportion of the total variance. The

good news is then that structural models of credit risk may after all be better than it was thought.

On the technical side, this paper develops a new numerical bootstrap procedure to determine

the number of factors in non-i.i.d. data, under the assumption of no cross-correlation between

the residuals. This algorithm allows us to apply insights from random matrix theory to the a

priori unspeci�ed non-i.i.d. dataset, where the data generating process is unknown. The essence

of the algorithm lies in the construction of the new dateset, from the given data, where any cross-

correlation is destroyed, and then using it to construct a null hypothesis. I use this algorithm

to remove the correlation from the dataset of CDSs, and then to estimate the possible bias of

eigenvalues due to a sample�s high-dimension.

The paper is organized as follows. The remainder of this introduction describes related literature

and the dataset used in the paper. Section 2 explains the methodology and Section 3 presents results

of regressions. Section 4 presents how the strength of the latent factor may be overestimated.

Section 5 presents a problem of misspeci�cation and market segmentation from the perspective of

the theoretical models. Section 6 concludes. Appendix provides some additional robustness checks,

cites theorems from the literature that were used in the main part of the paper and also gives the

details of David (2008) model used in Section 5.

1.1 Literature review

Results in CGM were so disturbing that already a couple of papers tried to �gure out whether

anything might have gone wrong. The most obvious culprits are bad regressors. Indeed, Crem-

mers, Driessen, Maenhout and Weinbaum (2008) show that the �rm-speci�c equity volatility is an

important determinant of corporate bond spreads and that the economic e¤ects of volatility are

large. They use option-based volatility and implied-volatility skew, while CGM used just the VIX

as the aggregate proxy for the volatility of each company. Then the principal component analysis

on the residuals from regressions does not reveal any signi�cant omitted factors. One caveat here

is that they run their regressions on the levels of CDSs and not on changes like CGM. They just

assume that credit spreads are stationary. Theory says that they should be - although empirically

it is not that certain at all. Then all the regressions at levels have a very high R2 and regressors

have strong explanatory power. Nevertheless, what is most important from the point of view of this

paper, is that Cremmers et al. (2008) �nd no evidence of one large unidenti�ed factor that would

be unrelated to credit risk. Later on in this paper, I show that even with very good regressors one

might generate a spuriously strong factor in the residuals.

Ericsson, Jacobs and Oviedo (2004) analyze the determinants of 5-year CDS spreads from 1999
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to 2002. Using �rm leverage, stock volatility and the risk free rate they are able to explain 61%

of variation at levels and above 22% of variation in CDS spreads changes. They also �nd some

evidence for a common factor in the residuals. However, the common factor is substantially weaker

and explains approximately 32% of the variance in residuals from regressions on changes in CDSs

and not 76% as in CGM. Another di¤erence to CGM was that the eigenvector of the main principal

component in residuals had both positive and negative elements.

The two above studies also perform panel data estimation. Results from panel regressions are

not directly comparable to CGM�s results in all respects. One can compare the explanatory power

of particular theoretical variables. But it may be hard to interpret di¤erences between systematic

latent factors left in the residuals from univariate and panel regressions. In general, it was found that

R2 from both techniques are roughly at the same level. But in each technique di¤erent theoretical

variables appear to be more successful in explaining the variation in CDS premia.

Schaefer and Strebulaev (2008) �nd that poor performance of structural models may be con-

nected to the in�uence of non-credit factors present in the bond price data. But they show that even

the simplest structural model can predict accurate equity hedge ratios. Thus, structural models

can estimate properly at least the credit exposure of corporate debt.

A di¤erent but related issue was raised by Drehmann, Patton, Sorensen (2006). They use

aggregate data on corporate credit in the UK in order to investigate the non-linear transmission of

macroeconomic shocks to aggregate corporate default probabilities. First they generalize the vector

autoregression model (VAR) setup and interpret it as a �rst-order Taylor series approximation of

an unknown data generating process. This allows them to estimate more �exible impulse-response

functions which capture possible nonlinearities in the data. Then in the next step they �nd that

nonlinearities matter for the level and shape of impulse response functions of credit risk, following

small as well as large shocks to systematic risk factors. Barrieu and Giammarino (2008) examine

the relation between the iTraxx Europe index and several traded risk factors, like interest rate,

stock index returns and volatility index. They �nd that empirical weights of the systematic factors

display sudden jumps during market crises and a less intense time-dependent behavior during

normal market conditions. In particular, in normal market conditions the risk factor weights are

relatively weak but their signs are consistent with economic intuition and with earlier empirical

�ndings. But in the midst of market turmoil , the magnitudes of the estimated relations change

signi�cantly and their directions defy ordinary economic explanations. These two studies show that

linear regressions may be insu¢ cient to extract relevant information from the data.

An open question arises here. How is it possible that Cremmers et al. (2008) and Ericsson et

al. (2004) found so diametrically di¤erent conclusions from CGM about the missing factor? Can

this di¤erence be attributed only to the better dataset? This paper explains why such di¤erent

conclusions were possible.
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1.2 Data

In this paper, I use data on corporate default swap spreads (CDSs) as a proxy for the theoretical

credit spread. CDS contracts play the role of insurance contracts that allow investors to buy

protection against the event that a �rm defaults on its debt. An important advantage of using

CDS data is that it is typically more liquid than the corresponding bond market, resulting in more

accurate estimates of credit spreads. The claim is that CDSs are a cleaner proxy of the theoretical

credit spread than the spreads extracted from corporate bonds. So, if there are any latent factors or

liquidity problems present in the CDSs, then they are much less pronounced than in the market of

corporate bonds. Furthermore, any biases or estimation artefacts that might a¤ect our conclusions

about the properties of credit spreads from CDSs will be at least as strong when we extract spreads

from corporate bonds. This claim seems to be generally held and should not be very controversial.

The same assumption appeared for instance in Berndt, Douglas, Du¢ e, Ferguson and Schranz

(2004), Hull, Predescu and White (2004) and Longsta¤, Mithal and Neis (2004).

All the balance sheet data were collected from COMPUSTAT, while data on stock prices and

�rms� capitalization and all macroeconomic variables are from Datastream. The data on CDSs

come from Markit Group. These are daily data that span approximately 4.5 years from January

1, 2004 until May 30, 2008. However, in this study I restrict attention only to those companies for

which it is possible to match the CDS data with COMPUSTAT and Datastream. The �nal sample

retains only US �rms that do not take part in M&A activity during the sample period and have

a small number of missing values (less than 15%). Altogether the sample comprises 177 US �rms.

Non of these companies defaulted during the sample period.

2 Problems with eigenvalues in high dimensional data

Recently, large quantities of �nancial data have become more readily available, from high frequency

observations and for many �rms. However, the data abundance is both an opportunity and a

challenge. That is because most of the econometric methods are based on the assumption that

the time dimension is many times larger than the cross-section. Yet in practice, the cross-sectional

dimension is often very high, sometimes close to the number of time points. An important point

is that careless ignorance of the dimensionality problem may back�re. Therefore we need to make

use of new methods that accommodate high-dimensional datasets. Moreover, using new and better

datasets, it is possible to reconsider some of the older results.

2.1 Marµcenko and Pastur distribution for i.i.d. data

Assume that we have a very high dimensional T � N matrix X of data, where T and N are of

the same order of magnitude and all Xi;j entries are i.i.d. Then the true covariance matrix is an
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identity matrix I and obviously the population eigenvalues are all equal to 1. However, the sample

eigenvalues distribution in this case will almost certainly be rather bizarre. The distribution function

of eigenvalues was provided by Marµcenko and Pastur (1967, MP henceforth), for N;T ! 1 and


 = N=T is constant1 , we get

fMP (�) =

q�
�+ � �

� �
�� ��

�
2��


�� = (1�p
)2

� 2
�
��; �+

�
So for T = N , sample eigenvalues will stretch between

�
1�

p
1
�2
= 0 and

�
1 +

p
1
�2
= 4, although

the population eigenvalues are all exactly equal to 1. It is important to note here that the variation

of in-sample eigenvalues is around four orders of magnitude. Here one needs some supporting theory

to explain the strange behavior of eigenvalues. Otherwise, one might erroneously infer from the

sample that the population eigenvalues di¤er from each other and that there exists at least one

strong factor. This has important practical consequences if we intend to use principal component

analysis. That is the case because the MP distribution de�nes the interval where the eigenvalues and

corresponding to them eigenvectors should be regarded either as pure noise or as indistinguishable

from noise.

The distortion of the sample eigenvalues I will call a bias. For the MP distribution the bias of

the highest sample eigenvalue with respect to the population eigenvalue is equal to �+ � 1.

2.2 Spiked population model

Another important implication of the MP distribution is that it allows us to determine the number

of true factors in the data. If a particular eigenvalue does not fall within the MP distribution then

we can regard it as not noisy and thus holding some meaningful information. This result is an

implication of MP, but it has been shown only recently. Here, I will brie�y describe this result

following Paul (2007).

Assume that X1; X2; :::; XT is an N -variate real Gausian distribution with mean zero and co-

variance � = diag (l1; l2; :::; lM ; 1; :::; 1) where l1 > l2 > ::: > lM > 1 and 
 = N=T with N;T !1.
This type of dataset is called "spiked population model" (see Johnstone (2006)). It is "spiked",

because it has most of the population eigenvalues equal to one and only a few eigenvalues which

are larger than one. Population eigenvalues equal to one correspond to noisy eigenvectors, while all

larger than one contain some signal.

Paul (2007) shows that sample eigenvalues exhibit "phase transition phenomenon". Simply,

1N and T are increasing with the same speed, so the ratio 
 = N=T is constant.
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if the non-unit population eigenvalues li are close to one, then their sample versions will behave

in roughly the same way as if the true covariance were the identity. However, if the population

eigenvalues are larger than 1+
p

, the sample eigenvalues can be separated and distinguished from

the noise. In the appendix, I cite two theorems from Paul (2007), which state that upper boundary

of noisy part is exactly equal to �+ from MP distribution.

Given this information, all we have to do is to compute the covariance matrix of the dataset X

and compare its eigenvalues against �+. This is possible because the MP distribution has a compact

support. In other words, �+ de�nes for us the region of no correlation between the columns of the

data. So we can design a simple test to determine the number of factors. The main steps of the

test are the following,

1. For the sample covariance matrix, compute the set of eigenvalues �i and sort them in an

ascending order, such that �i � �j for all i < j.

2. Use the upper bound of the MP distribution, �+ =
�
1 +

p


�2
, as the null hypothesis H0 that

the columns of the dataset are uncorrelated.

3. Any eigenvalue �i that is above the value of �+ < �i indicates that we have found a factor.

For �+ < �i we have exactly N � i+ 1 factors in the data. For example, if �+ < �N�1 then
we have 2 factors.

2.3 Non-i.i.d. noise. Onatski�s test for the number of factors.

There is, however, one simple problem with the MP distribution - it assumes that the data has i.i.d.

distribution. Unfortunately, this does not happen too often. Onatski (2009b) develops a new test

for the number of factors in the data, under weaker assumptions than in any other similar paper so

far. In Onatski (2009b), the data are assumed to be generated by the following process

X = F� + e

where X is a T �N matrix of data, with N columns and observed over T periods. F is a T � r
matrix of factor values and � is an r � N matrix of loadings. Critical here are the assumptions

about the distribution of e. The T �N matrix of idiosyncratic terms is such that

e = A"B

where A and B are two almost unrestricted deterministic matrices and " is a T � N matrix with

i.i.d. Gaussian entries. Matrices A and B determine cross-sectional and temporal correlation of the

idiosyncratic terms. The gaussianity assumption can be relaxed but then either A or B must be

a diagonal matrix, while the other remains relatively unrestricted. The paper by Onatski (2009b)
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gives all technical descriptions of the properties that matrices A and B must meet in terms of their

spectral distributions.

Given these assumptions Onatski (2009b) derives a new result in random matrix theory, that

the eigenvalues of the idiosyncratic part will cluster around a single point bu, while the meaningful
eigenvalues will be separated. This helps him to develop the test for the number of factors. Simply

put, the test is based on the inspection of the di¤erence between consecutive sample eigenvalues:

�j ��j�1. The di¤erence �j ��j�1 should converge to zero with T;N !1 for the group of "idio-

syncratic eigenvalues", while diverge for "systematic eigenvalues". For �nite samples, an additional

parameter �, is used as a threshold to distinguish between the two groups of eigenvalues. � can be

calibrated with an algorithm also described in Onatski (2009b).

2.4 Random permutation algorithm

The important property of the MP distribution is that the support for eigenvalues of i.i.d. data is

compact. Unfortunately, the real data almost never has an i.i.d. structure. Therefore it is di¢ cult

to decide whether a particular eigenvalue deviates from the MP distribution due to the correlation

of the columns or perhaps due to its non-i.i.d. distribution. The method introduced in this section

develops a new numerical algorithm to determine the number of factors in the data under the

assumption of no cross-correlation.

What we need here is another dataset eX that shares all the speci�c properties of our original

dataset, like jumps and heteroscedasticity, and at the same time is not correlated. One way to

achieve this end is by the permutation of the rows in the original data, but separately in each

column. This should ensure that all the correlation is wiped out, but keep all the sample moments

of the original data intact.

The impact of permutation on the original dataset The intention of the following theorem

is to give some intuition on why permutation of each row separately wipes out the correlation

structure in the dataset. Here, I use a simple example of the matrix with just two columns.

Theorem 1 Assume that we have a T �2 matrix X of data. X is generated by a one factor model:

X =

266664
f1

f2
...

fT

377775�
"
a

b

#0
+

266664
"a1 "b1

"a2 "b2
...

...

"aT "bT

377775
where fi is N (0; �f ), "ai , "

b
i is N (0; �") and f and " are independent. Let X

1 be the �rst and X2

the second column of X. Then, for su¢ ciently long T , the permutation of any column will kill the
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correlation structure between X1 and X2.

Proof. In the proof, I will permute the second column, just by moving each entry one step forward.
That is, X2

1 ! X2
2 , X

2
i ! X2

i+1 and X
2
T ! X2

1 , so we get

X =

266664
af1 + "

a
1 bf1 + "

b
1

af2 + "
a
2 bf2 + "

b
2

...
...

afT + "
a
T bfT + "

b
T

377775! eX =

266664
af1 + "

a
1 bfT + "

b
T

af2 + "
a
2 bf1 + "

b
1

...
...

afT + "
a
T bfT�1 + "

b
T�1

377775
then we have the following o¤-diagonal elements in the covariance of the original matrix:

Cov21 (X) =
1

T

�
ab
�
f21 + f

2
2 + : : :+ f

2
T

�	
| {z }

!ab�2f

+
1

T

�
bf1"

a
1 + af1"

b
1 + "

b
1"
a
1 + � � �

	
| {z }

!0

= ab�2f

but all those terms disappear when we compute the covariance matrix for the permuted matrix eX,
Cov21 (X) =

1

T
fab (f1fT + f1f2 + : : :+ fT fT�1)g| {z }

!0

+
1

T

�
bfT "

a
1 + af1"

b
T + "

b
T "

a
1 + � � �

	
| {z }

!0

= 0

So, we can see here that simple permutation of rows managed to remove the correlation between

the columns. That is, the o¤-diagonal entries of the covariance matrix will be asymptotically equal

to zero for the transformed dataset.

The above simple theorem is necessary to convey an intuition that even this simple permutation

can destroy cross-sectional covariance. It could be made more general by adding more columns,

more factors and applying random permutation of indices. However, I think that it would only

make this example more cumbersome without making it more transparent.

The more important problem is that for real datasets we do not know the true data generating

process. Therefore, in order to be able to use the permutation to destroy cross-sectional correlation,

we have to make a new conjecture.

De�nition 2 Let X be a T � N matrix of data. Then, by random permutation of X, I will

de�ne a random permutation applied to each column of X separately. The random permutation is

implemented by means of Fisher-Yates shu­ e algorithm.

Conjecture 3 Let X be a T �N matrix of data. Assume also that each column in X is generated

by a non-integrated and possibly heteroscedastic time series process with a factor structure:

X = F� + e
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Additionally, assume that factors and noise come from the same data generating process. Then, by

applying random permutation to the columns of matrix X, we are able to destroy cross-sectional

correlation among them.

Remark 4 Obviously, we do not know what is the true data generating process behind true empirical
dataset X. However, if we make the assumption that X has a factor structure: X = F� + e and

F and e come from the same data generating process then we can better describe the relation of X

to its transform eX. If F and e are sampled from the same process then the random permutation

algorithm only reshu­ es elements of the matrix F with the elements of matrix e. This way the new

transformed dataset eX is very much similar to X and only the factor structure is destroyed.

It is di¢ cult to specify the weakest conditions under which the above conjecture holds. However,

there is a very simple way to test it empirically for a given dataset X. If we apply random

permutation to X ! eX, then we should expect to �nd that the highest eigenvalue in X is larger

than the highest eigenvalue in eX. Additionally, we can use intuition from MP distribution and

results on spiked population models. The results from Paul (2007) show that in spiked populations,

a phase transition will cause di¤erent behavior of population eigenvalues that are above and below

a certain threshold (1 +
p

). On the one hand, all the population eigenvalues below the threshold

will behave according to the MP distribution. On the other hand, population eigenvalues above

the threshold will be separated from the rest of eigenvalues within MP distribution. Therefore, we

may expect similar behavior from empirical dataset X and its transform eX.
Indeed, Figure 1 shows an example of what happens when we perform random permutation of

the entries in each column separately. In this example I use the changes in CDS spreads. The solid

line is a distribution of eigenvalues for empirical dataset X and the dotted line shows eigenvalues of

the eX - permuted matrix. Clearly, the circle, indicating the largest eigenvalue for eX, is signi�cantly
below the square, which indicates the largest eigenvalue for X. In other words, the �rst principal

component explains just above 18% of the total variance in the original dataset. After permutation,

in the new transformed dataset, the �rst principal explains just below 2% of the total variance. I

should emphasize that this signi�cant drop happens every time for each random permutation. Thus

the result of random permutation is obvious, it kills the correlation and the eigenvalues are slowly

increasing, just as random matrix theory would predict.

The upper boundary for "idiosyncratic eigenvalues" In order to determine the number

of factors we need to assume that it is possible to �nd an equivalent of the upper boundary �+
from Marµcenko and Pastur distribution by a bootstrapping method for some real dataset with an

unspeci�ed data-generating process. In order to proceed, the following conjecture is necessary.

Conjecture 5 Let X be a T � N matrix of data. Assume also that each column in X is gener-

ated by a non-integrated and possibly heteroscedastic time series. Additionally, assume that there
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Figure 1: Distribution of eigenvalues for the empirical dataset X and permuted dataset eX. On the
vertical axis, we can see the amount of variance explained by eigenvalues.

is no cross-sectional correlation between the columns of X. Let �max be the highest eigenvalue ob-

tained from the correlation matrix of X. Then �max is an in-sample approximation of �+ from

MP distribution. By applying random permutation of columns to X we can investigate how �max
�uctuates.

The intuition supporting this conjecture comes here from the results on spiked population models

in Paul (2007). If the distribution of eigenvalues is slowly increasing and does not exhibit visible

spikes (like the dotted line in Figure 1) then intuitively it resembles the compact distribution of

MP. Similarly, Onatski (2009b) uses di¤erences between consecutive eigenvalues to tell apart the

"idiosyncratic eigenvalues" from "systematic eigenvalues". So, if the group of eigenvalues from

the correlation matrix of X lay very close to each other then it is a heuristic evidence that these

eigenvalues are idiosyncratic and �max is an in-sample approximation to �+.

Additionally, �uctuations of �max obtained from di¤erent random permutations of X may be

informative too. If �max does not change signi�cantly in di¤erent permutations then we have some

ground to belief that it is su¢ ciently stable and does not rely on any particular order of the entries

in the matrix. Hence, it can be used as an approximation of noisy eigenvalues that do not contain

cross-sectional information.

11



Bootstrapping algorithm The algorithm implementing this method is described below in 5

steps.

1. Permute randomly each column of the data matrix X, in order to remove the correlation

between the columns. The new arti�cial data matrix eX will still exhibit all the peculiarities

of the original dataset, but without the cross-sectional correlation.

2. Compute the correlation matrix C
� eX� and its spectral decomposition. Sort the vector of

eigenvalues: v� and keep its maximum value �1max.

3. Iterate steps 1 and 2 at least n times and choose the highest �imax from all iterations:

�max = max
i

�
�imax

�
4. Use �max as an in-sample equivalent of �+ from MP distribution.

5. Compare the empirical distribution of the eigenvalues from correlation matrix C (X) to the

estimated �max. All the empirical eigenvalues that are higher than �max can be regarded as

meaningful factors2 , under the assumption that there is no spurious cross-sectional correlation.

On the dataset of changes in CDS spreads, the algorithm usually gives a higher number of factors

than Onatski�s test. So we can view it as an upper bound for the possible number of factors. In

fact it is not surprising that the algorithm �nds more factors. Onatski�s test also takes into account

that residuals might be correlated. If this correlation is not too strong then Onatski�s test will

still be able to pick the correct number of factors from the shape of the eigenvalues�distribution.

However, the numerical permutation algorithm makes no assumptions about the distribution of

residuals. It takes account only of non-i.i.d. distribution of data, but does not adjust for the

fact that idiosyncratic residuals may be spuriously cross-correlated. However, we might use the

algorithm and arti�cially add some controlled cross-correlation to eX in order to check how many

meaningful eigenvalues will get separated. Also, we might want to know how many factors drive

the co-movement of the data, under the assumption that idiosyncratic noise is not correlated.

This method, may be regarded as a complement to the procedure introduced by Onatski

(2009b)3 . It is di¢ cult to assess how good it is in �nding the true number of factors in the data.

Because, �rst it assumes that Conjecture 5 holds for a particular dataset and second it assumes

away any correlation of the error terms. However, later in this paper, I will use the method to

assess the maximum possible bias of the highest noisy eigenvalue in the dataset. This application

2By meaningful factors, I understand factors that have population eigenvalues larger than one.
3Onatski�s test is sensitive to large idiosyncratic deviations and sometimes it gives rather surprising, and most

probably wrong, results. The sugested numerical alghoritm is more stable in this sense, but it may lead to overesti-
mation.
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should be less controversial, because it does not depend so much on the correctness of Conjecture

5. In this case, Conjecture 3 is more important and this one is easier to test empirically. If we

know that in a particular dataset, columns are not correlated with each other then the population

eigenvalues are equal to one. If however, we �nd that sample eigenvalues di¤er from the value of

one then we can use it as an in-sample evidence of the bias.

An obvious disadvantage of the algorithm, shared by all bootstrap methods, is its computational

intensity.

3 Regression results

3.1 Theoretically motivated variables used in regressions

For the regressions, the following theoretical variables are used: return on stocks (ret), leverage

(lev), volatility (vol), volatility index (V IX), 5 year maturity Treasury bond yield (r), square of

5 year yield (r2), the slope of the yield curve (Slope), which is a di¤erence between 10-year and

2-year bond yields, and the return on S&P500 (S&P500). So there are three �rm-speci�c variables

and �ve macroeconomic ones.

Leverage is based on data from Compustat and is de�ned in the same way as in Ericsson at al

(2004), that is

Book Value of Debt + Book Value of Preferred Equity
Market Value of Equity +Book Value of Debt + Book Value of Preferred Equity

Cremmers at al. (2008) show that implied volatility computed from individual option prices

contains useful information. Here, I will use an exponentially weighted historical volatility based

on 180 days of returns. Ericsson at al. (2004) have shown that historical volatility performs almost

as well as the option implied volatility. Volatility ht for each �rm is generated according to

ht = r
2
t (1� �) + ht�1�

where � = 0:94 is �xed constant across all companies. All the macro-variables are obtained from

the Datastream.

3.2 Regressions

The following regression is estimated for each �rm separately, just as in CGM.
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but for two di¤erent time intervals. First, I estimate the regressions on the whole sample, that is

from the very beginning of 2004 until the end of May 2008. Then, I use a shorter time interval

from the beginning of 2004 until July 31, 2007. I choose this particular date, in order to separate

the impact of the subprime crisis.

from 01.01.2004 to 07.31.2007 from 01.01.2004 to 05.30.2008

average beta % signi�cant average beta % signi�cant

constant 0:0000 0:00% 0:0000 0:56%

ret 0:0013 53:67% 0:0027 82:49%

lev 0:0127 33:90% 0:0227 52:54%

vol 0:2787 20:90% 0:2493 11:86%

VIX 0:0000 2:26% 0:0000 1:13%

r 0:0001 5:08% �0:0014 50:28%

r2 0:0000 9:60% 0:0001 38:98%

slope 0:0000 3:95% 0:0004 10:17%

S&P500 0:0000 20:34% 0:0000 53:67%

average R2 0:0743 0:1307

Table 1.

This table presents test statistics (5% signi�cance level) and regression results.

The reported coe¢ cients are averages for regression coe¢ cients from time-series

regressions. The second and fourth columns report also the percentage of signi�cant

coe¢ cients out of 177 companies.

Table 1 presents results of the regressions. The �rst two columns give the results for the shorter

sample, that is from January 1, 2004 until July 31, 2007. The third and fourth columns present the

results from regressions on the whole sample period, from January 1, 2004 until May 30, 2008. Also,

the �rst and third columns show the average over the coe¢ cients from all regressions. The second

and fourth columns show the fraction out of 177 coe¢ cients, which turned out to be signi�cant at
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the level of 0.05. The t-statistics were computed with the Newey-West procedure4 to take account

of heteroscedasticity and serial correlation. The average Durbin-Watson statistics is 1.54 for the

shorter time interval and 1.53 for the whole sample period.

From Table 1 we can clearly see that regressors performed very poorly and also R2 are far from

satisfactory. But this is not unusual for the regressions using daily data. The higher the frequency

of the data, the more noisy it is. However, in this paper I do not concentrate on the question of

true determinants of the CDS spreads, as this topic was already covered extensively by Ericsson et

al (2004). The focus here is on the number and strength of the factors and on the properties of the

residuals.

3.3 Distribution of eigenvalues in the residuals

In order to determine the strength of the factors in the residuals, we need to investigate the distri-

bution of their eigenvalues. The following �gure depicts these distributions, both for the residuals

from the regressions of theoretical variables on the changes in CDSs and also for the changes in

CDSs.

I repeat the same exercise for the whole time interval. The plot looks basically the same as

the one in Figure 2 and only the highest eigenvalues are di¤erent. I will just report how much

variance they explain. Table 2 presents the amount of variance explained by the �rst �ve principal

components for the two subsamples, both in the residuals and in �CDS. The last two rows of the

table also provide results for the number of factors in the data.

from 01.01.2004 to 07.31.2007 from 01.01.2004 to 05.30.2008

�CDS residuals �CDS residuals

PC1 18:5% 17:1% 34:3% 29:5%

PC2 3:0% 2:7% 3:4% 3:1%

PC3 2:7% 2:6% 2:9% 2:8%

PC4 1:9% 1:9% 1:6% 1:8%

PC5 1:7% 1:7% 1:5% 1:6%

] of factors, Onatski test 3 3 5 3

] of factors, bootstrapping alg. 8 6 6 6

Table 2.

The amount of variance explained by the �rst �ve principal components for the two subsamples.

4Following suggestion of Newey and West, the number of lags is set to

q = �oor

 
4

�
T

100

�2=9!
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Figure 2: Eigenvalues distribution for changes in CDS spreads and for residuals from the regressions.

Altogether we can see that the changes in CDSs are not strongly correlated, as the �rst principal

component explains only 18% for the shorter time interval - before the subprime crisis and 29%

for the whole sample together with the crisis period. It is interesting to note, although not very

surprising, that extending the sample period from August 1, 2007 until May 30, 2008 results in

a strong increase in the correlation. In other words, the last 10 out of 53 months in the sample

contribute to the twice-stronger �rst principal component.

We know from Harding (2008) that the strength of the �rst principal components is always

biased upward in �nite samples. Unfortunately, if we do not know the true data generating process,

it may be impossible to assess the magnitude of the bias. However, we can at least try to estimate

the number of factors that drive the co-movement. Using Onatski�s test, we can �nd that there

are 5 factors in �CDS for the time interval between January 1, 2004 and May 30, 2008. In the

residuals, according to the test there are only 3 factors. For the shorter time interval, which ends

just before the subprime crisis, Onatski�s test �nds 3 signi�cant factors both in �CDS and in the

residuals from the regressions, while the numerical algorithm indicates between 6 and 8 factors.

The results of this section are exactly consistent with CGM. I �nd that regressors motivated by

structural models of credit risk can hardly explain daily changes in CDSs. They are also unable to

explain the �rst principal component of the data. This can be seen in Figure 2, where the square
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representing highest eigenvalue in the residuals is only slightly below the circle representing highest

eigenvalue in CDS changes. But, in the next section, I will show that structural models should

not be blamed too much for this dismal state of a¤airs. That is because even very good regressors

cannot fully explain the correlation structure of changes in CDSs.

4 How to generate a spuriously strong latent factor

One of the problems that CGM had to face was a large number of bonds of di¤erent maturities,

very often issued by the same �rms, but a relatively small number of time points. Speci�cally, they

have monthly data spanning 10 years on around 600 bonds, with an average of 56 quotes per bond.

The simple solution that they used was to average the results into 15 bins according to two criteria:

leverage and maturity in the cross-section5 . Such a solution may lead to some severe biases. Below

I present two independent pitfalls of this procedure. First, I would like to address the problem of

high-dimensionality. Second, in subsection 4.2, I will explain in detail how averaging spuriously

magni�es the small correlation that exists in the data.

4.1 High dimensional sample in CGM

CGM used residuals from their regressions to estimate by means of principal components the

strength of the latent factor. However, their matrix of the residuals was at most of the size 120�15,
or perhaps it had an even smaller number of time points. These are matrices with a non-negligible

N=T ratio and we can expect that the highest eigenvalues will have an upward bias, even if the

columns are not correlated.

Here, I will make use of the numerical algorithm described above. The algorithm allows us

to �nd the upper limit of the bias in eigenvalues.6 The logic is the following. First, I remove all

the correlation structure from the dataset of residuals obtained from regression (1). Then in the

second step, using the bootstrap method, I estimate what could be the possible bias. The results

are presented in Table 3. The table presents how much of the total variance is explained by the

�rst two principal components and the sum. Principal components are obtained from correlation

matrices in order to standardize variance. The �rst and second columns are for matrices with

T = 120 and T = 56 rows respectively and N = 15 columns. The third column shows us how

much variance is explained by the true, population eigenvalues when T is su¢ ciently long. In other

words, when we have a T � 15 matrix and there is no correlation between the columns, then each
5 It is di¢ cult to say how many time points the matrix of residuals used by CGM had. Almost certainly it was

something between 56 (average number of quotes) and 120 (10 years of monthly data).
6 Instead of the upper limit of eigenvalues generated by the algorithm, one might use any of the quantiles like 95%

or 99%. But they are all very close and results would not change, thus I do not report those �gures.
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principal component should explain exactly 100=15 � 6:6% of the total variance.

:

120� 15 56� 15 T � 15
PC1 17:7% 22:1% 6:6%

PC2 9:8% 10:6% 6:6%

sum 27:6% 32:7% 13:3%

Table 3.

Possible upward bias of the �rst two PCs

for purely uncorrelated data.

Here we can see that the �rst principal component may appear to be three times stronger than it

really is. In the case of a matrix with 120 � 15 entries, the �rst principal component appears to
explain 17:7%, although its true population value is 6:6%. As was explained above, eigenvalues of

the correlation matrices are biased upward even for purely uncorrelated time series. One should

observe here that these estimates are very conservative, because they were generated for the matrix

without any correlation structure. If, however, there is some undesirable cross-correlation between

the columns, then this additional correlation will magnify the already biased eigenvalues even

further. So, this is one of the reasons why CGM might have overestimated the latent factors. In

the next subsection I present even stronger evidence for this overestimation.

4.2 Averaging out the noise in the residuals

4.2.1 Replicate the procedure of CGM

CGM classify �rms into 5 di¤erent leverage groups and 3 maturities. However, since the 5-year

maturity CDSs are the most liquid, I will at �rst replicate their procedure with 15 leverage groups

and just one range of maturities. The bins are chosen to group in one basket �rms with similar

leverage: under 6:67 percent, from 6:67 to 13:33, from 13:33 to 20 percent and so on. Thus the bins

do not contain the same number of �rms. Table 4 presents what happens if we apply this procedure
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to the residuals that were found in Section 3.

from 01.01.2004 to 07.31.2007 from 01.01.2004 to 05.30.2008

177 columns averages in 15 bins 177 columns averages in 15 bins

PC1 17:1% 43:5% 29:5% 54:6%

PC2 2:7% 7:0% 3:1% 6:3%

Table 4.

This table presents how averaging into smaller baskets spuriously ampli�es

the �rst two largest eigenvalues. Here, the empirical regressors were used.

We can see a rather surprising fact here. For instance, in the �rst time period we know that

residuals from the regressions contain some common factors. But the strongest factor in these

residuals explains no more than 17:1% of the total variance. However, if we average those 177

columns into 15 baskets, then the strength of the �rst principal component jumps up to 43:5%.

This is actually more than twice as strong. But this result is completely spurious. What has

happened? By taking the average into a smaller number of baskets, we magnify the �rst eigenvalue.

That happens because we are averaging out the noisy part and thus we increase the signal-to-noise

ratio7 of the initially weak factor. Taking averages of di¤erent time series into baskets is a good

idea when one wants to have a closer look at the main factor driving the changes. But, certainly it

is not the best idea to do the same with the residuals and then conclude that there exists a strong

unexplained factor.

4.2.2 Principal components as regressors

5 year maturity only One might guess that we would not get such e¤ects if we had used better

regressors in the �rst place. But that is not true, at least not entirely. In order to show that, I will

really use better regressors and I show that we still get correlated residuals. Speci�cally, I will use

principal components estimated from the changes in CDSs. Principal components by construction

explain the largest part of the common variation in the data and therefore we cannot �nd better

regressors than these. The regressions have the form

�CDSi;t = �Xt + "i;t (2)

Here �CDS are at �rst demeaned and so the constant � is not used, and Xt is a set of principal

components. Onatski�s test indicated that in �CDS we can �nd between 3 to 5 signi�cant factors

that drive the co-movement of the data. Therefore, to be on the safe side, I will use two di¤erent

7This fact is remarkably robust. It changes neither when the baskets are chosen randomly nor with smaller
subsamples of the data. This magnifying e¤ect we can also observe on the simulated data.
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sets as X regressors - the �rst 5, and 15 principal components to compare how much information

they can extract8 . Since results are very similar for both time periods, I will report only those for

the shorter time interval - without the subprime crisis.

�rst 5 PCs as regressors �rst 15 PCs as regressors

177 columns averages in 15 bins 177 columns averages in 15 bins

�rst factor 6:8% 16:2% 5:4% 15:9%

second factor 3:6% 8:6% 4:3% 10:8%

Table 5.

The amplifying impact of averaging on the eigenvalues when in-sample principal

components were used as regressors.

The �rst eigenvector of the average from 15 bins, for the shorter period of time, when 5 PCs are

used as regressors (see Figure 3), is the following,

e5 year maturity, 5 PCsv = (0:16; 0:27; 0:39; 0:08; 0:46; 0:20; 0:42; 0:33;�0:13; 0:05; 0:19; 0:26; 0:24; 0:09; 0:11)

Clearly, using principal components helps to extract more information and leaves less correlation

in the residuals. When we used true theoretical regressors then the strongest factor in the residuals

still explained 17:1% of the total variance. However, when we use better arti�cial regressors then

the strength of the factor drops from 17:1% to 6:8% for 5 principal components and to 5:4% with

15 PCs. Interestingly, expanding the number of regressors from 5 to 15 principal components only

slightly reduces the strength of the main factor in the residuals. It is di¢ cult to explain why the

remaining correlation is so insensitive to even a much larger number of principal components. One

possible explanation is that there are not more than 5 common factors, as is indicated by Onatski�s

test, and additional principal components capture only the idiosyncratic part of the variance.

In general, we can observe exactly the same pattern as before. That is, taking the averages

causes a spurious increase in the strength of the �rst factor in the residuals. For instance, we use

�rst 5 principal components as regressors on the changes in CDSs and then average those residuals

into 15 bins according to leverage. This involuntarily magni�es the importance of the factor from

6:8% to 16:2%. The noise is averaged out and the signal to noise ratio increases. Accordingly, we

8Using principal components as regressors removes so much infromation that the correlation matrix of the residuals
may no longer be positive semide�nite. In fact few eigenvalues are almost zero, but have a negative sign. Therefore I
use a numerical algorithm from Sharapov (1997) that �nds the positive semide�nite matrix closest to the estimated
correlation matrix according to the Froebnius norm.
However, this is not clear why the eigenvalues might be negative. I investigate this problem further in the appendix.

The conclusion from the simulated data is that it must be related to some numerical problems, but it is not in any
way important for the results.
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get a spuriously strong factor that seems to explain a larger part of the variance but is in fact only

an artefact of the procedure.

3, 5 and 7 year long maturities Here, I replicate the methodology of CGM even more closely.

I use three di¤erent maturities: 3, 5 and 7 years long and �ve leverage groups: under 20%, from

20% to 40% and so on. Altogether I use information from 531 (3� 177) columns of data. Just like
before, in the �rst step I extract the �rst 5 and then 15 principal components from �CDS. In the

next step, I use residuals to check how much co-movement is still left in the data. The �rst and the

third columns in Table 6 present the strength of the �rst two factors in all residuals after extracting

respectively 5 and 15 principal components. The second and fourth columns show the strength of

the �rst two factors in the residuals, which were grouped into 15 bins according to leverage and

maturity, just as in CGM.

�rst 5 PCs as regressors �rst 15 PCs as regressors

531 columns averages in 15 bins 531 columns averages in 15 bins

�rst factor 12:4% 44:2% 3:4% 16:2%

second factor 3:1% 11:6% 2:6% 14:6%

Table 6.

The amplifying impact of averaging on the eigenvalues when three di¤erent

CDS maturities were used.

The �rst eigenvector, for the second column in Table 6, can be seen in Figure 3. It has the following

entries

edi¤erent maturities, 5 PCsv = (0:28; 0:30; 0:18; 0:22; 0:18; 0:26; 0:32; 0:25; 0:25; 0:22; 0:30; 0:32; 0:24; 0:24; 0:22)

Not surprisingly, once again we can see that taking averages results in a spurious increase in the

strength of the �rst factor in the residuals. Here, when we use additional information from di¤erent

maturities, the e¤ect seems to be even stronger. However, there is one interesting di¤erence. When

we use additional data from di¤erent maturities then the �rst eigenvector has much more uniform

entries9 . One could quote CGM here: "the �rst component is approximately an equally weighted

portfolio across quality and maturity groups". For comparison I present also the �rst eigenvector

9The uniform distribution of entries in the �rst eigenvector seems to be a very robust result. I get almost the
same equally weighted eigenvector when 5 di¤erent maturities are used and 3 di¤erent leverage groups. Also, the
same result obtains when smaller samples of �rms are used divided according to 5 di¤erent maturities and 3 random,
instead of leverage, groups.
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Figure 3: Plot of di¤erent eigenvectors.

from the residuals found by CGM (see also Figure 3),

eCGMv = (0:24; 0:25; 0:28; 0:30; 0:26; 0:23; 0:25; 0:28; 0:29; 0:26; 0:24; 0:22; 0:24; 0:26; 0:27)

So we can see here that the two eigenvectors are very similar. This was not the case when we

used the data only for 5 year maturity CDSs. This result suggests that the special structure of the

eigenvector found by CGM may be just a consequence of insu¢ cient proxies for the term structure.

4.3 Discussion

Results of this section can be summarized in three points. 1) Applying principal component analysis

to the correlation matrices of high-dimensional datasets results in the overestimation of the highest

eigenvalues. 2) By taking the average into a smaller number of baskets, we unintentionally magnify

the signal-to-noise ratio of weaker factors from the data. 3) One needs a lot of very good regressors

in order to remove all the correlation from the residuals in changes of CDSs. Therefore we should

not be too surprised that the empirical regressors, motivated by structural models, leave in the

residuals unexplained variance.
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5 Problem of misspeci�cation in a simulated economy

So far, we have seen (Table 4) that the �rst principal component in residuals of CDS spread changes

explains just above 17% of the total variance for the time period before the subprime crisis and

around 29% together with the crisis. I have also shown how these estimates can be unintentionally

magni�ed to larger proportions. Therefore we have good reasons to suspect that latent factor found

in CGM explains much smaller amount of total variance than 76% that they report in their sample.

So, it seems premature to declare credit market segmentation. In order to link the problems of

misspeci�cation of models with the concept of market segmentation, econometric tests are not

su¢ cient. We need some additional guidance from theory. In this section, I approach the problem

of misspeci�cation from a di¤erent angle. Instead of using empirical dataset, I will run the same

tests on an arti�cial dataset simulated by three di¤erent structural models.

As was said before, it has been recognized that most of the older structural models have prob-

lems with matching the true level of credit spreads when they are calibrated to observed default

frequencies. However, recently structural models were generalized to allow for observable and un-

observable regime switching, or for more general utility functions like utility with Epstein-Zin-Weil

preferences10 . These new theoretical developments allowed structural models to generate both re-

alistic default probabilities and credit spreads. Moreover, some papers like Bhamra at al. (2009),

Chen (2008) and David (2008) obtain these realistically high spreads endogenously.

Here I will concentrate on the implications of the paper by David (2008). It was the �rst

paper to investigate the in�uence of unobservable regime shifts in macroeconomic growth rates

on credit spreads. My main observation is that David�s model, while improving on the level of

credit spreads, simultaneously introduces additional cross-sectional correlation among them. The

mechanism responsible for the cross-correlation is the updating of investors�beliefs. The intuition

is simple: a representative agent updates her beliefs continuously as new information about the

fundamentals arrives. New beliefs about future prospects of the economy are immediately re�ected

in asset prices. But importantly, all asset prices are updated at the same time as a response to the

same information and this results in co-movement.

Simulation experiment I construct a simulation experiment in three steps. First, I generate

credit spreads for arti�cial �rms with structural parameters borrowed from David (2008). These

arti�cial �rms initially have the same leverage ratios as the �rms from my original empirical data

sample. In the second step, I run the regressions of everything that is observable in this economy on

the �rst di¤erences of simulated credit spreads. Finally, I examine R2, t-statistics and the highest

eigenvalues in �rst changes and in residuals obtained from the regressions.

10Bhamra, Kuehn and Strebulaev (2009), Chen (2008), Chen, Collin-Dufresne and Goldstein (2009), David (2008),
Hackbarth, Miao and Morellec (2006)
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A short description of the model and details of the simulation are in the appendix. Here, I

will mention only brie�y the details that are directly relevant for this paper. David�s model is a

generalization of Merton�s basic structural model. The essential di¤erence is that his model allows

for an unobserved regime-switching structure of fundamentals. Fundamentals of the economy are

described by the total real earnings and in�ation. Drifts of in�ation and earnings are hidden and

follow a Markov chain process. Investors observe past realizations of earnings and in�ation and

learn about the drifts over time. Also asset volatilities vary over time as investors update their

beliefs about the hidden states and the future growth prospects. At times of higher uncertainty

about the current state of fundamentals, investors revise their beliefs more rapidly and consequently

they generate higher asset volatility. In�ation plays a signalling role here, because it predicts real

growth rates - also called "proxy hypothesis" in Fama (1981).

However, for the purpose of this paper it is important to observe that the belief updating process

induces a covariation among all the assets in this economy. That happens for the simple reason that

investors update their beliefs simultaneously for all companies in the economy. But this additional

covariation of the assets is only indirectly linked to the fundamentals of the economy and directly

to investors�beliefs.

For the simulations I make two assumptions. First, all companies initially have the same leverage

ratios as the true �rms in the empirical sample that I use. Second, I assume that the real earnings

of all �rms have the same correlation with the total earnings process and the correlation coe¢ cient

is � = 0:5. All other parameters, except for the variance of total earnings are from David (2008).

As two benchmark models I use Merton�s model and the dynamic capital structure model from

Dangl and Zechner (2004). Then the procedure of the simulation experiment follows the following

steps:

1. Generate the processes for in�ation, total real earnings, real pricing kernel of the investor and

the idiosyncratic part for 177 �rms�earnings. The data are generated for only one state of

the world.

2. Compute the spreads and equity prices separately for the Merton, Dangl-Zechner and David

models. Spreads for the Merton and Dangl-Zechner models are also computed for nominal

prices.

3. Construct the volatility index speci�c to David�s model. (it is constructed as the assets�

volatility - formula (15) from David (2008)).

4. Run the regressions of everything that is observable in these economies on the �rst changes

in credit spreads for all three models.

5. Repeat this procedure for three di¤erent values of �E , which is a standard deviation of the

real earnings process.
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�E 0.25 0.2 0.15 0.1

A) Results for David�s model
mean R2 0:95 0:87 0:78 0:56

PC1 in changes 25:4% 26:8% 31:2% 40:1%

PC1 in residuals 68:9% 63:5% 58:6% 54:6%

B) Results for Merton�s model
mean R2 0:99 0:98 0:96 0:95

PC1 in changes 24:7% 24:1% 22:0% 24:5%

PC1 in residuals 4:2% 6:5% 7:6% 5:9%

C) Results for Dangl and Zechner model
mean R2 0:93 0:94 0:99 0:99

PC1 in changes 18:3% 25:0% 22:4% 21:6%

PC1 in residuals 4:4% 3:4% 3:3% 5:8%

Table 7. Simulation results.

Essentially, we can see that it is easier to explain changes in credit spreads when �E is high.

However, for lower values of �E linear regressions leave substantially more information in the

residuals. For example, when �E = 0:1 then the R2 for David�s model is only 0:37 and the �rst

principal component in the residuals explains 47:7% of variance. For comparison, in the world

generated by the Merton model, for �E = 0:1 we have R2 = 0:95, but here PC1 in the residuals is

very small.

Therefore, we may conclude that David�s model contains additional dynamics which perturbs

�rst changes in credit spreads in a way that is di¢ cult to capture in linear regressions. However

that does not imply that credit spreads react to di¤erent shocks than returns on stock prices. On

the contrary, it is a heuristic proof of inadequacy of statistical tests. In other words, a factor in the

residuals that is not too strong can be reconciled with the theory of structural models and as such

should not be used as evidence against them.

6 Conclusion

One of the puzzles in the credit risk literature is the existence of a strong latent factor driving the

co-movement in credit spread changes. This single common factor was supposed to be driven by

local supply/demand shocks, independent of both credit risk factors and proxies for liquidity. But
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the evidence supporting this result was based on the high-dimensional dataset with many missing

values. The main conclusion of the present paper is that the single, strong and unexplained factor

in the residuals from regressions on the changes in CDSs most probably does not exist.

As shown, one might spuriously magnify the importance of these factors in the residuals either

by using datasets with a large ratio of columns to rows or simply by taking the averages over the

columns. For instance, in a matrix with 120 � 15 entries and with all uncorrelated columns, we
may have a principal component that appears to explain 17:7% of the total variance, while in fact

it explains only 6:6% of the total variance. Taking averages over the columns increases the signal-

to-noise ratio of initially weak factors. For example, in the residuals from regressions in Section 3,

we �nd that the strongest principal component explains no more than 17:1% of the total variance.

However, if we take the average of the columns into 15 bins, then we �nd that the �rst principal

component suddenly seems to explain 43:5% of the total variance. Additionally, the paper shows

that it is very di¢ cult to remove all the correlation from �CDS by means of linear regressions even

with very good regressors. When the �rst 5 or even 15 principal components of changes in CDSs

are used as regressors, we still get residuals that are cross-sectionally correlated.

Two di¤erent tests for the number of factors were employed here. Both of these tests are based

on insights from random matrix theory. They account for the upward distortion of eigenvalues in

high-dimensional datasets. Additionally they also account for non-i.i.d. distribution of the data.

The di¤erence is that one of the tests - the numerical bootstrapping algorithm - does not allow for

spurious cross-correlation of noise and it indicates between 6 and 8 factors in�CDS. The other one,

according to Onatski (2009b), which accounts for cross-correlation of noise, �nds between 3 and 5

independent factors in the data. The numerical bootstrapping algorithm is a technical contribution

of this paper.

In this paper, the strength of the �rst principal component in the residuals explains very similar

amount of total variance (17:7% and 29:5% for di¤erent time intervals) to what Cremers at al.

(2008) and Ericsson et al. (2004) found (24% and 32% respectively). However, what these two

papers could not explain, was the di¤erence between their estimates and the one in CGM. The

results of this paper may help to clarify this di¤erence. CGM spuriously magni�ed importance of

their latent factor to 76%, while most probably it explains around 20% to 30%, as it was shown in

this paper and in Cremers at al. (2008) and Ericsson et al. (2004).

Finally, I show that weak latent factors are not inconsistent with the theory of structural models.

What we call a segmentation of the markets is a matter of de�nition. But if the segmentation

means that di¤erent shocks are priced in the credit market and in the stock market then the

above simulation experiment demonstrates that we do not have good evidence to support the

segmentation hypothesis. The magnitude of unexplained variance and the strength of the �rst

principal component in the residuals clearly do not prove that investors from credit markets respond

to di¤erent shocks than stock market investors. Obviously, a latent factor as strong as the one
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reported in CGM would be much more di¢ cult to explain as consistent with the theory of structural

models.
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7 Appendix

7.1 Theorems for spiked population model from Paul (2007)

Theorem 1 from Paul (2007) Assume that �i is a sample eigenvalue and li is a population

eigenvalue. If li � 1 +
p

, where N;T !1 , 
 = N=T and 
 2 (0; 1) then

�i ! (1 +
p

)
2 almost surely as N;T !1

Theorem 2 from Paul (2007) Suppose that li > 1 +
p

 and 
 2 (0; 1) then

�i ! li

�
1 +




li � 1

�
almost surely as N;T !1

7.2 Principal components as regressors

In this section I investigate what happens when principal components are used as regressors instead

of some true regressors. It is related to the footnote number 8. It was observed that when prin-

cipal components from changes in CDS spreads are used as regressors in equation (2) then some

eigenvalues from the correlation matrix of residuals (") are very close to zero but negative. This
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is puzzling, because these eigenvalues should be at least zero. If the smallest eigenvalues behave

strangely then one might be worried that the highest eigenvalues might also be distorted.

First, I want to check whether this particular approach does not induce some spurious corre-

lation into the residuals from the regressions. In order to show that using principal components

as regressors is a safe procedure, I perform two simple tests. First, I generate the data with one

single factor. Then I show that once the �rst principal component is removed, the residuals behave

just as they should for an uncorrelated dataset. Second, I compute residuals from changes in CDSs

using the method from Zumbach (2009), which is described in details below. This second method

also produces strongly correlated residuals. Therefore, I conclude that in order to describe the

properties of residuals, one can use principal components as arti�cial regressors.

Simulation to check whether residuals from PC analysis retain the correlation from
original data Here, I generate data with one strong factor,

Xt = �Ft + et

where Ft is a random number and � is an N�1 vector of loadings. In the simulation I use T = 1000
andN = 200. Parameters are chosen in such a way that the �rst and the highest eigenvalue obtained

fromX�s correlation matrix, explains 21:0% of the total variance, which is similar to empirical values

in Table 2. The second highest eigenvalue explains only 1:8% of the total variance. Then using

principal component analysis I remove the �rst, strongest factor and compute the residuals, just like

in equation (2). I get a matrix of residuals R(N�T ), which has a T �N size. The expectation is that

residuals R(N�T ) should not be correlated with each other. Indeed, this is the case. The simplest

way to show it, is to check the eigenvalues for correlation matrix of R(N�T ). Figure 4 shows the plot

of these eigenvalues and we can see that this time the highest eigenvalue explains only around 1%

of the total variance. Clearly, there is no evidence for any common factor. Additionally, the lowest

eigenvalue is almost zero but negative (-3.5e-16). There is no reason why the eigenvalue should be

negative. However, since it is almost zero, we can infer that the problem must be related to some

rounding, numerical errors. The main conclusion here is that the principal component analysis was

able to remove all the information from the original X simulated data matrix.

This is not the case with changes in CDS spreads. Because the residuals exhibit distinctly

di¤erent behavior, as can be seen from Figure 5.
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Figure 4: Eigenvalues of the residuals�correlation matrix from the simulated data.
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Figure 5: Eigenvalues of the residual matrix from CDS changes after removing 5, 10 and 15

principal components.

Di¤erent method to �nd residuals In order to be on the safe side, I will compute the residuals

from the changes in CDS spreads with yet another method. In other words, I want to make sure

that spikes in the eigenvalues of residuals that can be seen for example in Figure 5, are not created

unintentionally by the method that I use. Hence, I will use the method from Zumbach (2009b) to

compute the residuals. First, in order to diminish the impact of outliers, logarithms of the CDS

spread levels are computed.

xt = ln(Yt)

xt+�t = xt + rt+�t

rt+�t = �
1=2
t "t+�t
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where Yt = CDSt, which is a vector of 1�N CDS spreads at time t. The vector rt is the return over

the time horizon �t = 1 day. The matrix �t is the variance/covariance over the next time period

�t and "t is the residual. The covariance should capture both the heteroscedasticity of �nancial

returns and the cross-correlations across time series. The usual hypothesis is that the residuals are

independent, but we will see that this is not true for the changes in CDS spreads.

The covariance matrix is given by a cross product of the return vector rt and �i weight for the

past returns.

�t =

imaxX
i=0

�irt�i�tr
0
t�i�t

The three most common choices for �i are equal, exponential and long memory weights11 . Here, I

will use the long memory process, where the weights decay logarithmically slowly

�i = 1�
ln (i�t)

ln (�0)

where imax = 260, which is about one year of data. In the second step the covariance matrix is

shrunk, using the methodology of Ledoit and Wolf (2009)

� (
) = (1� 
) � + 
�diagonal

where �diagonal is the diagonal part of �, which is the volatility of the respective time series. In

essence, this equation shrinks only the o¤-diagonal part by 1� 
.
In order to compute the matrix of residuals ", we need to invert �, because

"t+�t = �
� 1
2

t rt+�t

Provided that all the eigenvalues are positive, the inverse square root covariance matrix is

�
� 1
2

t =
NX
j=1

1
p
ej
vjv

0
j

where ej stands for an eigenvalue vj is its corresponding eigenvector.

However, in applications most of the eigenvalues are close to zero. Zumbach (2009b) suggests

�rst sorting eigenvalues and then choosing some "cut-o¤" eigenvalue ek > 0. Then the inverse �
� 1
2

t

11Simple average is a good example of a long memory weights. Another one, which is used here, is the weights
that decay logarithmically slowly.
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is computed in the following way

�
� 1
2

t =
kX
j=1

1
p
ej
vjv

0
j +

NX
j=k+1

1
p
ek+1

vjv
0
j

so all eigenvalues smaller than ek are �xed at the level of ek+1. The intention of the method is to

preserve information in the eigenvectors corresponding to very small eigenvalues.

Finally, using the method described above I compute the matrix of residuals " and then I check

the eigenvalues of the � ("; ") correlation matrix. The results are qualitatively just the same as those

above for the simple residuals from principal components in Figure 5.

7.2.1 Details of the simulation from David�s model

The fundamentals of the economy are described by three log-normal processes: Qt is the price

process, Et, for the total earnings process and Mt for the real pricing kernel:

dQt
Qt

= �tdt+ �QdWt, �Q = (�Q1; �Q2; 0)

dEt
Et

= �tdt+ �EdWt, �E = (0; �E2; 0)

dMt

Mt
= �ktdt+ �MdWt, �M = (�M1; �M2; �M3)

with a three dimensional vector of independent Wiener processes: Wt = (W1t;W2t;W3t). Drifts �t
and �t can take di¤erent values and kt = �+���t+���t is the real short rate of interest. There are

N distinct states of the world and they are described by a vector vt = (�t; �t;�kt) and so vt follows
an N state continuous-time �nite state Markov chain with generator matrix �. The total risk of

�rm n is assumed to be the same for all �rms and equal to the standard deviation of the market:

�n = �E;2 and the �rm�s di¤usion is an a¢ ne function of two independent Brownian motions:

dWn = �dW2t +
p
1� �2dW id

n;t

where dW id
n;t is an idiosyncratic part of �rm�s n earnings and � = 0:5 for all �rms. The belief

updating process �t = (�1;t; :::; �N;t) follows the N -dimensional system of stochastic di¤erential

equations,

d�it = �i (�t) dt+ �i (�t) dfWt
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where �i (�t) = [�t�]i, �i (�t) = �it [vi � v (�t)]
T �
�T
��1

, � =
�
�TQ; �

T
E ;��M

�T
, v (�t) =

NP
i=1

�itvi

and dfWt = �
�1 (vt � vt (�t)) dt+ dWt. David shows that for �it add up to one for every t,

NP
i=1

�it = 1

The nominal value of asset n is equal to

Vnt =

�
NP
i=1

Ci�it

�
Ent

where Ci represents investors�expectation of future earnings growth conditional on the state being vi
today and discounted with the pricing kernel process fMtg. Hence, a high Ci implies that investors
expect high value relative to current earnings:Constants Ci can be obtained from formulas (11) and

(12) from David (2008). The nominal asset value volatility for �rm n is equal to

�QVn = �E + �Q +

PN
i=1 Ci�it (vi � v (�t))

T �
�T
��1PN

i=1 Ci�it

Formula for the credit spread is an extension of the Merton model, which accounts for stochastic

growth rate and volatility of the asset value,

s (Zt; �t; t; T ) = �
1

T
log

�
�2 (�; �) +

G (�t; zt)

B (�t)
(1��1 (�; �))

�
where

Zt = V Qnt=D
Q
t

zt = logZt

B (�t) = f (zt; 0; �t; T � t)

G (�t; zt) = f (zt; 1=i; �t; T � t) , i =
p
�1

f (zt; !1; �t; T � t) = E
h
e�

R T
t
r(�s)dsei!1zT jzt; �t

i
Here, �1 (�; �) and �2 (�; �) are Arrow-Debreu securities that pay one dollar if the �rm is sol-

vent at time T , under two di¤erent measures and they are obtained by Fourier inversion of the

f (zt; !1; �t; T � t) function. The data in the simulation study are generated only for one state of
the world: v1. Consequently all the variation of beliefs comes only from the di¤usion and not from

the jumps in drifts.
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