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Abstract 
 
We define low-latency activity as strategies that respond to market events in the 
millisecond environment, the hallmark of proprietary trading by high-frequency trading 
firms. We propose a new measure of low-latency activity that can be constructed from 
publicly-available NASDAQ data to investigate the impact of high-frequency trading on 
the market environment. Our measure is highly correlated with NASDAQ-constructed 
estimates of high-frequency trading, but it can be computed from data that are more 
widely-available. We use this measure to study how low-latency activity affects market 
quality both during normal market conditions and during a period of declining prices and 
heightened economic uncertainty. Our conclusion is that increased low-latency activity 
improves traditional market quality measures—lowering short-term volatility, decreasing 
spreads, and increasing displayed depth in the limit order book. Of particular importance 
is that our findings suggest that increased low-latency activity need not work to the 
detriment of long-term investors in the current market structure for U.S. equities. 
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I. Introduction  

Our financial environment is characterized by an ever increasing pace of both 

information gathering and the actions prompted by this information. Speed in absolute 

terms is important to traders due to the inherent fundamental volatility of financial 

securities. Relative speed, in the sense of being faster than other traders, is also very 

important because it can create profit opportunities by enabling a prompt response to 

news or market activity. This latter consideration appears to drive an arms race where 

traders employ cutting-edge technology and locate computers in close proximity to the 

trading venue in order to reduce the latency of their orders and gain an advantage. As a 

result, today’s markets experience intense activity in the “millisecond environment,” 

where computer algorithms respond to each other at a pace 100 times faster than it would 

take for a human trader to blink.  

While there are many definitions for the term “latency,” we view it as the time it 

takes to learn about an event (e.g., a change in the bid), generate a response, and have the 

exchange act on the response. Exchanges have been investing heavily in upgrading their 

systems to reduce the time it takes to send information to customers as well as to accept 

and handle customers’ orders. They have also begun to offer traders the ability to co-

locate the traders’ computer systems next to theirs, thereby reducing transmission times 

to under a millisecond (a thousandth of a second). As traders have also invested in the 

technology to process information faster, the entire event/analysis/action cycle has been 

reduced for some traders to a couple of milliseconds. 

The beneficiaries from this massive investment in technology appear to be a new 

breed of high-frequency traders who implement low-latency strategies, which we define 

as strategies that respond to market events in the millisecond environment. These traders 

now generate most message activity in financial markets and according to some accounts 

also take part in the majority of the trades.1 While it appears that intermediated trading is 

                                                 
1 See, for example, the discussion of high-frequency traders in the SEC’s Concept Release on Equity 
Market Structure (2010). 



2 
 

on the rise (with these low-latency traders serving as the intermediaries), it is unclear 

whether intense low-latency activity harms or helps the market.  

Our goal in this paper is to examine the influence of these low-latency traders on 

market quality. In other words, we would like to know how their combined activity 

affects attributes such as the short-term volatility of stocks, the total price impact of 

trades, and the depth of the market. To investigate these questions, we utilize publicly-

available NASDAQ order-level data that are identical to those supplied to subscribers and 

which provide real-time information about orders and executions on the NASDAQ 

system. Each entry (submission, cancellation, or execution of an order) is time-stamped 

to the millisecond, and hence these data provide a very detailed view of activity on the 

NASDAQ system.  

We begin by providing a discussion of the players in this new millisecond 

environment: proprietary and agency algorithms. We document periodicities in the time-

series of market activity, which we attribute to activity by agency algorithms. We also 

look at the speed at which some traders respond to market events—the hallmark of 

proprietary trading by high-frequency trading firms—and find that the fastest traders 

have effective latency of 2-3 millisecond during our sample period.   

We propose a new measure of low-latency activity based on “strategic runs” of 

linked messages that describe dynamic order placement strategies. We view this measure 

as a proxy for the activity of high-frequency traders. An advantage of our measure is that 

it can be constructed from publicly-available data, and therefore does not rely on 

specialty datasets that may be limited in scale and scope. We show that our measure is 

highly correlated with aggregate trading by the high-frequency trading firms featured in a 

small NASDAQ dataset that was studied in Brogaard (2011a, b, c) and Hendershott and 

Riordan (2011).  

We use our measure to examine how the intensity of low-latency activity affects 

various market quality measures. We find that an increase in low-latency activity lowers 

short-term volatility, reduces quoted spreads and the total price impact of trades, and 

increases depth in the limit order book. These results suggest that increased activity of 
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low-latency traders in the current market environment is beneficial to the traditional 

benchmarks of market quality. We use a multitude of econometric specifications and 

robustness tests to substantiate our conclusions. 

Furthermore, we employ two distinct sample periods to investigate whether the 

impact of low-latency trading on market quality differs between normal periods and those 

associated with declining prices and heightened uncertainty. Over October 2007, our first 

sample period, stock prices were relatively flat or slightly increasing. Over our second 

sample period, June 2008, stock prices declined (the NASDAQ index was down 8% in 

that month) and uncertainty was high following the fire sale of Bear Stearns. We find that 

higher low-latency activity enhances market quality in both periods, and is especially 

beneficial in reducing volatility for small stocks during stressful times.2  

Our paper relates to small but growing strands in the empirical literature on speed 

in financial markets and algorithmic trading (especially high-frequency trading). With 

regard to speed, Hendershott and Moulton (2011) and Riordan and Storkenmaier (2012) 

examine market-wide changes in technology that reduce the latency of information 

transmission and execution, but reach conflicting conclusions as to the impact of such 

changes on market quality. There are several papers on algorithmic trading that 

characterize the trading environment on the Deutsche Boerse (Gsell (2008), Gsell and 

Gomber (2008), Groth (2009), Prix, Loistl, and Huetl (2007), Hendershott and Riordan 

(2009)), Euronext and Chi-X (Jovanovic and Menkveld (2010), Menkveld (2011)), the 

interdealer foreign exchange market (Chaboud, Chiquoine, Hjalmarsson, and Vega 

(2009)), the futures market (Kirilenko, Kyle, Samadi, and Tuzun (2011)), and the U.S. 

equity market (Hendershott, Jones, and Menkveld (2009)). In particular, Brogaard 

(2011a, b, c) and Hendershott and Riordan (2011) attempt to evaluate the impact of high-

frequency trading on various aspects of the U.S. market, a goal we share as well. 

The rest of this paper proceeds as follows. The next section describes our sample 

and data. Section III provides an introductory discussion of proprietary and agency 
                                                 
2 We note that this does not imply that the activity of low-latency traders would help curb volatility during 
extremely brief episodes such as the “flash crash” of May 2010.   
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algorithms with some evidence on their activity in the millisecond environment. Section 

IV lays down the measures and methodology we use for studying the impact of low-

latency activity on market quality, while our main results and various robustness tests are 

reported in Section V. In Section VI we discuss related papers and place our findings 

within the context of the literature, and Section VII concludes.  

II. Data and Sample  

II.A. NASDAQ Order-Level Data 

The NASDAQ Stock Market operates an electronic limit order book that utilizes the 

INET architecture (which was purchased by NASDAQ in 2005).3 All submitted orders 

must be price-contingent (i.e., limit orders), and traders who seek immediate execution 

need to price the limit orders to be marketable (e.g., a buy order priced at or above the 

prevailing ask price). Traders can designate their orders to display in the NASDAQ book 

or mark them as “non-displayed,” in which case they reside in the book but are invisible 

to all traders. Execution priority follows price, visibility, and time. All displayed 

quantities at a price are executed before non-displayed quantities at that price can trade. 

The publicly-available NASDAQ data we use, TotalView-ITCH, are identical to 

those supplied to subscribers, providing real-time information about orders and 

executions on the NASDAQ system. These data are comprised of time-sequenced 

messages that describe the history of trade and book activity. Each message is time-

stamped to the millisecond, and hence these data provide a detailed picture of the trading 

process and the state of the NASDAQ book.  

We are able to observe four different types of messages: (i) the addition of a 

displayed order to the book, (ii) the cancellation (or partial cancellation) of a displayed 

order, (iii) the execution (or partial execution) of a displayed order, and (iv) the execution 

(or partial execution) of a non-displayed order. In other words, we observe every 

displayed order that arrives to the NASDAQ market, including the NASDAQ portion of 

                                                 
3 See Hasbrouck and Saar (2009) for a more detailed description of the INET market structure.   
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Reg NMS Intermarket Sweep Orders and odd-lot orders. We do not observe submission 

and cancellation of non-displayed non-marketable limit orders, which are unobservable to 

market participants in real-time and hence are not part of the TotalView-ITCH data feed. 

Since we observe all trades (including odd-lots), however, we know when a non-

displayed limit order is executed.4 

II.B. Sample 

Our sample is constructed to capture variation across firms and across market conditions. 

We begin by identifying all common, domestic stocks in CRSP that are NASDAQ-listed 

in the last quarter of 2007.5 We then take the top 500 stocks, ranked by market 

capitalization as of September 30, 2007. Our first sample period is October of 2007 (23 

trading days). The market was relatively flat during that time, with the S&P 500 Index 

starting the month at 1,547.04 and ending it at 1549.38. The NASDAQ Composite Index 

was relatively flat but ended the month up 4.34%. Our October 2007 sample is intended 

to reflect a “normal” market environment.  

 Our second sample period is June 2008 (21 trading days), which represents a 

period of heightened uncertainty in the market, falling between the fire sale of Bear 

Stearns in March of 2008 and the Chapter 11 filing of Lehman Brothers in September. 

During June, the S&P 500 Index lost 7.58%, and the NASDAQ Composite Index was 

down 7.99%. In this sample period, we continue to follow the firms used in the October 

2007 sample, less 29 stocks that were acquired or switched primary listing. For brevity, 

we refer to the October 2007 and June 2008 samples as “2007” and “2008,” respectively. 

                                                 
4 With respect to executions, we believe that the meaningful economic event is the arrival of the marketable 
order. In the data, when an incoming order executes against multiple standing orders in the book, separate 
messages are generated for each standing order. We view these as a single marketable order arrival, so we 
group as one event multiple execution messages that have the same millisecond time stamp, are in the same 
direction, and occur in a sequence unbroken by any non-execution message.  The component executions 
need not occur at the same price, and some (or all) of the executions may occur against non-displayed 
quantities. 
5 NASDASQ introduced the three-tier initiative for listed stocks in July of 2006. We use CRSP’s 
NMSIND=5 and NMSIND=6 codes to identify eligible NASDAQ stocks for the sample (which is roughly 
equivalent to the former designation of “NASDAQ National Market” stocks). 
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 In our dynamic analysis we use summary statistics constructed over 10-minute 

intervals. To ensure the accuracy of these statistics, we impose a minimum message 

count cutoff. A firm is excluded from a sample if more than ten percent of the 10-minute 

intervals have fewer than 250 messages. Net of these exclusions, the 2007 sample 

contains 351 stocks, and the 2008 sample contains 399 stocks. In Section V we show that 

the results concerning the impact of low-latency trading on market quality are robust to 

imposing a less stringent screen that leaves more than 90% of the stocks in the sample.   

Table 1 provides summary statistics for the stocks in both sample periods using 

information from CRSP and the NASDAQ dataset. Panel A summarizes the measures 

obtained from CRSP. In the 2007 sample, market capitalization ranges from $789 million 

to $276 billion, with a median of slightly over $2 billion. The sample also spans a range 

of trading activity and price levels. The most active stock exhibits an average daily 

volume of 77 million shares; the median is about one million shares. Average closing 

prices range from $2 to $635 with a median of $29. Panel B summarizes data collected 

from NASDAQ. In 2007 the median firm had 26,862 limit order submissions (daily 

average), 24,015 limit order cancellations, and 2,482 marketable order executions.6 

III.   The Millisecond Environment: Proprietary vs. Agency Algorithms 

Much trading and message activity in U.S. equity markets is commonly attributed to 

trading algorithms.7 However, not all algorithms serve the same purpose and therefore 

the patterns they induce in market data and the impact they have on market quality could 

depend on their specific objectives. Broadly speaking, however, we can categorize 

algorithmic activity as agency or proprietary.  
                                                 
6 These counts reflect our execution grouping procedure. In 2007, for example, the mean number of order 
submissions less the mean number of order cancellations implies that the mean number of executed 
standing limit orders is 45,508–40,943=4,565. This is above the reported mean number of marketable 
orders executed (3,791) because a single marketable order may involve multiple standing limit orders. As 
we describe in footnote 4, we group executions of standing limit orders that were triggered by a single 
marketable order into one event. 
7 The SEC’s Concept Release on Equity Market Structure cites media reports that attribute 50% or more of 
equity market volume to proprietary “high-frequency traders.” A report by the Tabb Group (July 14, 2010) 
suggests that buy-side institutions use “low-touch” agency algorithms for about a third of their trading 
needs.  
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Agency algorithms are used by buy-side institutions (and the brokers who serve 

them) to minimize the cost of executing trades in the process of implementing changes in 

their investment portfolios. They have been in existence for about two decades, but the 

last ten years have witnessed a dramatic increase in their appeal due to decimalization (in 

2001) and increased fragmentation in U.S. equity markets (following Reg ATS in 1998 

and Reg NMS in 2005). These algorithms break up large orders into pieces that are then 

sent over time to multiple trading venues. The key characteristic of agency algorithms is 

that the choice of which stock to trade and how much to buy or sell is made by a portfolio 

manager who has an investing (rather than trading) horizon in mind. The algorithms are 

meant to minimize execution costs relative to a specific benchmark (e.g., volume-

weighted average price or market price at the time the order arrives at the trading desk) 

and their ultimate goal is to execute a desired position change. Hence they essentially 

demand liquidity, even though their strategies might utilize nonmarketable limit orders. 

 In terms of technological requirements, agency algorithms are mostly based on 

historical estimates of price impact and execution probabilities across multiple trading 

venues and over time, and often do not require much real-time input except for tracking 

the pieces of the orders they execute. For example, volume-weighted average price 

algorithms attempt to distribute executions over time in proportion to the aggregate 

trading and achieve the average price for the stock. While some agency algorithms offer 

functionality such as pegging (e.g., tracking the bid or ask side of the market) or 

discretion (e.g., converting a nonmarketable limit buy order into a marketable order when 

the ask price decreases), typical agency algorithms do not require millisecond responses 

to changing market conditions.  

We believe that agency algorithms drive one of the most curious patterns we 

observe in the millisecond environment: clock-time periodicity.  For a given timestamp t, 

the quantity mod(t,1000) is the millisecond remainder, i.e., a millisecond time stamp 

within the second. Assuming that message arrival rates are constant or (if stochastic) 

well-mixed within a sample, we would expect the millisecond remainders to be uniformly 

distributed over the integers {0,1,…,999}. The data, however, tell a different story.  
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Figure 1 depicts the sample distribution of the millisecond remainders. The null 

hypothesis is indicated by the horizontal line at 0.001. The distributions in both sample 

periods exhibit marked departures from uniformity: large peaks occurring shortly after 

the one-second boundary at roughly 10-30 ms and around 150 ms as well as broad 

elevations around 600 ms. We believe that these peaks are indicative of agency 

algorithms that simply check market conditions and execution status every second (or 

minute), near the second (or the half-second) boundary, and respond to the changes they 

encounter. These periodic checks are subject to latency delays (i.e., if an algorithm is 

programmed to revisit an order exactly on the second boundary, any response would 

occur subsequently). The time elapsed from the one-second mark would depend on the 

latency of the algorithm: how fast the algorithm receives information from the market, 

analyzes it, and responds by sending messages to the market. The observed peaks at 10-

30 ms or at 150 ms could be generated by clustering in transmission time (due to 

geographic clustering of algorithmic trading firms) or technology.8  

The similarities between the 2007 and 2008 samples suggest phenomena that are 

pervasive and do not disappear over time or in different market conditions. One might 

conjecture that these patterns cannot be sustainable because sophisticated algorithms will 

take advantage of them and eliminate them. However, as long as someone is sending 

messages in a periodic manner, strategic responses by others who monitor the market 

continuously could serve to amplify rather than eliminate the periodicity. The clustering 

of agency algorithms means that the provision of liquidity by proprietary algorithms or 

by one investor to another is higher at these times, and hence conceivably helps agency 

algorithms execute their orders by increasing available liquidity. As such, agency 

algorithms would have little incentive to change, making these patterns we identify in the 

data persist over time.9 It is also possible, however, that the major players in the industry 
                                                 
8 We checked with NASDAQ whether their systems that provide traders with more complex order types 
(e.g., RASH) could be the source of these clock-time periodicities. NASDAQ officials contend that their 
systems do not create such periodicities. 
9 This intuition is similar in spirit to Admati and Pfleiderer (1988), where uninformed traders choose to 
concentrate their trading at certain times in order to gain from increased liquidity even in the presence of 
informed traders. 
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that designs and implements agency algorithms were unaware of the periodicity prior to 

our research. If this is indeed the case, and the predictability of buy-side order flow is 

considered undesirable for various reasons, our findings in this paper could lead to 

changes in the design of agency algorithms that would eliminate such periodicities in the 

future. 

Relative to agency algorithms, proprietary algorithms are more diverse and more 

difficult to concisely characterize. Nonetheless, our primary focus in this paper is a new 

breed of proprietary algorithms that utilizes extremely rapid response to the market 

environment. Such algorithms, which are meant to profit from the trading environment 

itself (as opposed to investing in stocks), are employed by hedge funds, proprietary 

trading desk of large financial firms, and independent specialty firms. These algorithms 

can be used, for example, to provide liquidity or to identify a trading interest in the 

market and use that knowledge to generate profit. Brogaard (2011a) reports that 

NASDAQ identifies 26 firms as being involved in high-frequency trading, but these firms 

generate most of the order flow in the market and are involved in 68.5% of NASDAQ 

dollar volume traded over his sample period.10  

The hallmark of high-frequency proprietary algorithms is speed: low-latency 

capabilities. These traders invest in co-location and advanced computing technology to 

create an edge in strategic interactions. Their need to respond to market events 

distinguishes them from agency algorithms, and therefore we define low-latency trading 

as “strategies that respond to market events in the millisecond environment.” How fast 

are the low-latency traders? The definition above, which is formulated in terms of speed 

of response to market events, suggests that an answer to this question could be found by 

focusing on market events that seem especially likely to trigger rapid reactions. One such 

event is the improvement of a quote. An increase in the bid may lead to an immediate 

trade (against the new bid) as potential sellers race to hit it. Alternatively, competing 

                                                 
10 The NASDAQ classification excludes proprietary trading desks of large sell-side firms as well as direct-
access brokers that specialize in providing services to small high-frequency trading firms, and therefore the 
total number of traders utilizing such low-latency strategies may be somewhat larger.  
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buyers may race to cancel and resubmit their own bids to remain competitive and achieve 

or maintain time priority. Events on the sell side of the book, subsequent to a decrease in 

the ask price, can be defined in a similar fashion.  

 We therefore estimate the hazard rates (i.e., the message arrival intensities) of the 

above specific responses subsequent to order submissions that improve the quote. In 

Figure 2 we plot separately the conditional hazard rates for same-side submissions, same-

side cancellations, and executions against the improved quotes (pooled over bid increases 

and ask decreases). We observe pronounced peaks at approximately 2-3 ms, particularly 

for executions. This suggests that the fastest responders—the low-latency traders—are 

subject to 2-3 ms latency.  For comparison purposes, we note that human reaction times 

are generally thought to be on the order of 200 milliseconds (Kosinski (2010)). The 

figure suggests that the time it takes for some low-latency traders to observe a market 

event, process the information, and act on it is indeed very short.  

 Since humans cannot follow such low-latency activity on their trading screens, 

one might wonder what it actually looks like. It is instructive to present two particular 

message sets that we believe are typical. Panel A of Table 2 is an excerpt from the 

message file for ticker symbol ADCT on October 2, 2007 beginning at 09:51:57.849 and 

ending at 09:53:09.365 (roughly 72 seconds). Over this period, there were 35 

submissions (and 35 cancellations) of orders to buy 100 shares, and 34 submissions (and 

33 cancellations) of orders to buy 300 shares. The pricing of the orders caused the bid 

quote to rapidly oscillate between $20.04 and $20.05. The difference in order sizes and 

the brief intervals between cancellations and submissions suggest that the traffic is being 

generated by algorithms responding to each other. Panel B of Table 2 describes messages 

(for the same stock on the same day) between 09:57:18.839 and 09:58:36.268 (about 78 

seconds). Over this period, orders to sell 100 shares were submitted (and quickly 

cancelled) 142 times. During much of this period there was no activity except for these 

messages. As a result of these orders, the ask quote rapidly oscillated between $20.13 and 

$20.14.  
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The underlying logic behind each algorithm that generates such “strategic runs” 

of messages is difficult to reverse engineer. The interaction in Panel A could be driven by 

each algorithm’s attempt to position a limit order, given the strategy of the other 

algorithm, so that it would optimally execute against an incoming marketable order. The 

pattern of submissions and cancellations in Panel B, however, seems more consistent 

with an attempt to trigger an action on the part of other algorithms and then interact with 

them. After all, it is clear that an algorithm that repeatedly submits orders and cancels 

them within 10 ms does not intend to signal anything to human traders (who would not be 

able to discern such rapid changes in the limit order book). Such algorithms create their 

own space in the sense that some of what they do seems to be intended to trigger a 

response from (or respond to) other algorithms. Activity in the limit order book is 

dominated nowadays by the interaction among automated algorithms, in contrast to a 

decade ago when human traders still ruled.  

While agency algorithms are used in the service of buy-side investing and hence 

can be justified by the social benefits often attributed to delegated portfolio management 

(e.g., diversification), the social benefits of high-frequency proprietary trading are more 

elusive. If high-frequency proprietary algorithms engage in electronic liquidity provision, 

then they provide a similar service to that of traditional market makers, bridging the 

intertemporal disaggregation of order flow in continuous markets. However, the social 

benefits of other types of low-latency trading are more difficult to ascertain. One could 

view them as aiding price discovery by eliminating transient price disturbances, but such 

an argument in a millisecond environment is tenuous: at such speeds and in such short 

intervals it is difficult to determine the price component that constitutes a real innovation 

to the true value of a security as opposed to a transitory influence. The social utility in 

algorithms that identify buy-side interest and trade ahead of it is even harder to defend. It 

therefore becomes an empirical question to determine whether these high-frequency 

trading algorithms in the aggregate harm or improve the market quality perceived by 

long-term investors. Our paper seeks to answer this question.   
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IV. Low-Latency Trading and Market Quality: Measures and Methodology 

Agents who engage in low-latency trading and interact with the market over millisecond 

horizons are at one extreme in the continuum of market participants. Most investors 

either cannot or choose not to engage the market at this speed.11 If we believe that 

healthy markets need to attract longer-term investors whose beliefs and preferences are 

essential for the determination of market prices, then market quality should be measured 

using time intervals that are easily observed by these investors. How does low-latency 

activity with its algorithms that interact in milliseconds relate to depth in the market or 

the range of prices that can be observed over minutes or hours? In this section we seek to 

answer this question by characterizing the influence of low-latency trading on measures 

of liquidity and short-term volatility observed over 10-minute intervals throughout the 

day.  

IV.A. Measures 

To construct a measure of low-latency activity, we begin by identifying “strategic runs,” 

which are linked submissions, cancellations, and executions that are likely to be parts of a 

dynamic algorithmic strategy. Our goal is to isolate instances of market activity that look 

like the interactions presented in Table 2. Since our data do not identify individual 

traders, our methodology no doubt introduces some noise into the identification of low-

latency activity. We nevertheless believe that other attributes of the messages can used to 

infer linked sequences.  

In particular, our “strategic runs” (or simply, in this context, “runs”) are 

constructed as follows. Reference numbers supplied with the data unambiguously link an 

individual limit order with its subsequent cancellation or execution. The point of 

inference comes in deciding whether a cancellation can be linked to either a subsequent 

submission of a nonmarketable limit order or a subsequent execution that occurs when 

                                                 
11 The recent SEC Concept Release on Equity Market Structure refers in this context to “long-term 
investors … who provide capital investment and are willing to accept the risk of ownership in listed 
companies for an extended period of time” (p. 33). 
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the same order is resent to the market priced to be marketable. We impute such a link 

when the cancellation is followed within 100 ms by a limit order submission or by an 

execution in the same direction and for the same size. If a limit order is partially 

executed, and the remainder is cancelled, we look for a subsequent resubmission or 

execution of the cancelled quantity. In this manner we construct runs forward throughout 

the day.  

Our procedure links roughly 60 percent of the cancellations in the 2007 sample, 

and 54 percent in the 2008 sample. Although we allow up to 100 ms to elapse from 

cancellation to resubmission, 49 percent of the imputed durations are one or zero ms, and 

less than ten percent exceed 40 ms. The length of a run can be measured by the number 

of linked messages.  The simplest run would have three messages, a submission of a 

nonmarketable limit order, its cancellation, and its resubmission as a marketable limit 

order that executes immediately (i.e., an “active execution”). The shortest run that does 

not involve an execution is a limit order that was submitted, cancelled, resubmitted, and 

cancelled or expired at the end of the day. Our sample periods, however, feature many 

runs of 10 or more linked messages. We identify about 46.0 million runs in the 2007 

sample period and 67.1 million runs in the 2008 sample period.  

Table 3 presents summary statistics for the runs. We observe that around 75% of 

the runs have 3 to 9 messages, but the longer runs (10 or more messages) constitute over 

60% of the messages that are associated with strategic runs. The proportion of runs that 

are (at least partially) executed is 38.1% in 2007 and 30.5% in 2008. About 8.1% (7.1%) 

of the runs in the 2007 (2008) sample period end with a switch to active execution. That 

is, a limit order is cancelled and replaced with a marketable order. These numbers attest 

to the importance of strategies that pursue execution in a gradual fashion.  

To construct a measure of low-latency trading that is more robust to measurement 

error, we transform the raw strategic runs in two ways. The first transformation is to use 

only longer runs—runs of 10 or more messages—to construct the measure. While our 

methodology to impute links between cancellations and resubmissions of orders can 

result in misclassifications, for a run with many resubmissions to arise solely as an 
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artifact of such errors there would have to be an unbroken chain of spurious linkages. 

This suggests that longer runs are likely to be more reliable depictions of the activity of 

actual algorithms than shorter runs. While the 10-message cutoff is somewhat arbitrary, 

these runs represent more than half of the total number of messages that are linked to runs 

in each sample period, and we also believe that such longer runs characterize much low-

latency activity. In Section V we provide robustness analysis demonstrating that our 

conclusions are unchanged when we include all runs. 

The second transformation we use to reduce measurement error is to utilize time-

weighting of the number of runs rather than simply aggregating the runs or the messages 

in runs. We define our measure of low-latency activity, RunsInProcess, as the time-

weighted average of the number of strategic runs of 10 messages or more the stock 

experiences in an interval.12 Time-weighting helps us combat potential errors because it 

ensures that roughly equivalent patterns of activity contribute equally to our measure, 

which can be demonstrated using the strategic run shown in Panel B of Table 2. This run, 

which lasts 78.5 seconds, contributes 0.129 (78.5/600) to RunsInProcess of stock ADCT 

in the interval 9:50-10:00am on October 2nd, 2007. What if we were wrong and the 

inferred resubmission at time 9:57:20.761 actually came from a different algorithm, so 

that the activity described in Panel B of Table 2 was generated by one 48-message 

algorithm and another 94-message algorithm rather than a single 142-message algorithm? 

This should not alter our inference about the activity of low-latency traders from an 

economic standpoint, because the two shorter algorithms together constitute almost the 

same amount of low-latency activity as the single longer algorithm. The time-weighting 

of RunsInProcess ensures that the measure computed from the two algorithms is almost 

identical to the one originally computed from the single algorithm (the two will differ 

only by 0.005/600=0.000008 due to the 5 millisecond gap between the end of the first 

                                                 
12 The time-weighting of this measure works as follows. Suppose we construct this variable for the interval 
9:50:00am-10:00:00am. If a strategic run started at 9:45:00am and ended at 10:01:00am, it was active for 
the entire interval and hence it adds 1 to the RunsInProcess measure. A run that started at 9:45:00am and 
ended at 9:51:00am was active for one minute (out of ten) in this interval, and hence adds 0.1 to the 
measure. Similarly, a run that was active for 6 seconds within this interval adds 0.01.  
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algorithm and the beginning of the second algorithm), and hence this type of error would 

not affect our empirical analysis.  

It is important to recognize that our measure of low-latency activity does not have 

a positive relationship with market quality by construction. In fact, if liquidity is provided 

by patient limit order traders (which is the case most often described in theoretical 

models), depth in the book is maximized when the cancellation rate is zero. In other 

words, liquidity is highest when limit orders stay in the book until they are executed, in 

which case our measure RunsInProcess is equal to zero. As traders begin cancelling 

orders, liquidity in the book worsens and our measure increases. This suggest that 

holding everything else equal, RunsInProcess should be negatively related to liquidity, 

though liquidity may decline only modestly if traders cancel but replace limit orders with 

other limit orders rather than switch to marketable orders. However, the relationship 

between RunsInProcess and liquidity is more complex because low-latency traders may 

be willing to submit more limit orders and provide more depth if they have the 

technology to cancel limit orders quickly enough to lower the pick-off risk of their 

orders. Hence, we do not know a-priori whether the relationship between our measure of 

low-latency activity and market quality is positive or negative in equilibrium, and this is 

what we test in this section.  

Our measure has one important advantage over the measures of high-frequency 

activity used in Brogaard (2011a, 2011b, 2011c) and Hendershott and Riordan (2011): it 

can be estimated from publicly-available data (NASDAQ’s ITCH data). In contrast, the 

characterization of high-frequency trading in the aforementioned papers uses a specific 

sample constructed by NASDAQ of 26 high-frequency trading firms in 120 stocks during 

2008 and 2009 (henceforth, the HFT dataset). Our measure may include more errors of 

inclusion relative to the NASDAQ proprietary data (i.e., we may capture activity that is 

not originated by high-frequency trading firms), but it has fewer errors of exclusion (the 

NASDAQ classification excludes proprietary trading desks of large sell-side firms as 

well as direct access brokers that specialize in providing services to small high-frequency 

trading firms).  
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Since our second sample period (June 2008) overlaps with the trading data in the 

HFT dataset, we looked at the correlation between our measure of low-latency activity 

and several measures that can be constructed from the HFT dataset. Let “H” denote high-

frequency trading firms and “N” denotes other traders. Each trade in the HFT dataset is 

categorized by one of the following combinations: NH, NN, HN, or HH, where the first 

letter represents the party that takes liquidity and the second letter represents the party 

that supplies liquidity. We use this information to construct the following measures of 

high-frequency trading in each 10-minute interval: 

1. Total HFT executed orders=NH+(2*HH)+HN 

2. HFT-participated trades=NH+HH+HN 

3. Total HFT executed orders that supplied liquidity=NH+HH 

4. Net HFT executed orders that supplies liquidity=NH 

The first two measures represent overall trading by high-frequency trading firms. The last 

two measures denote liquidity supplied by high-frequency trading firms, and we look at 

them to see whether, because strategic runs are comprised mostly of limit orders rather 

than marketable orders, our measure happens to be biased towards liquidity supply by 

high-frequency trading firms (as opposed to their overall trading). For each measure, we 

calculate two versions: one in terms of share volume and the other in terms of number of 

orders. 

Of the 120 firms in the HFT dataset, 60 are NASDAQ stocks for which we use 

ITCH order-level data to construct the RunsInProcess measure.13 Table 4 shows 

Spearman and Pearson correlations between the HFT dataset measures and 

RunsInProcess over all 10-minute intervals for all stocks. Two things are immediately 

apparent. First, the correlation between RunsInProcess and total high-frequency trading 

in the HFT dataset is very high: the Spearman correlation is over 0.8 irrespective of 

whether the measures are expressed in terms of number of orders or share volume. 

                                                 
13 Out of the 60 stocks, 33 were in our June 2008 sample. We created the measure RunsInProcess for the 27 
additional stocks to be able to estimate the correlations in Table 4 using all 60 stocks that are available in 
the HFT dataset. 
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Second, the correlations of RunsInProcess with the total high-frequency trading measures 

are very similar to its correlations with the measures of liquidity supplied by HFT firms. 

In other words, our measure of low-latency activity captures total high-frequency trading 

and is not biased toward capturing just liquidity-supplying trades. 

We want to stress that both our RunsInProcess measure and the trading measures 

from the HFT dataset are only proxies for the activity of high-frequency trading firms. In 

particular, most of the activity by high-frequency traders involves orders that do not 

execute. The measures computed from the HFT dataset use only executed orders, and 

therefore do not necessarily reflect overall activity.14 Still, the fact that our 

RunsInProcess measure and the measures of executed orders from the HFT dataset are 

highly correlated should be reassuring to researchers who carry out empirical analysis 

using either the publicly-available ITCH data or the HFT dataset to discern the overall 

impact of high-frequency trading firms. 

 In addition to our measure of low-latency activity, we use the ITCH order-level 

data to compute several measures that represent different aspects of NASDAQ market 

quality: a measure of short-term volatility and three measures of liquidity. The first 

measure, HighLow, is defined as the highest midquote in an interval minus the lowest 

midquote in the same interval, divided by the midpoint between the high and the low (and 

multiplied by 10,000 to express it in basis points). The second measure, Spread, is the 

time-weighted average quoted spread (ask price minus the bid price) on the NASDAQ 

system in an interval. The third measure, EffSprd, is the average effective spread (or total 

price impact) of all trades on NASDAQ during the ten-minute interval, where the 

effective spread is defined as the transaction price (quote midpoint) minus the quote 

midpoint (transaction price) for buy (sell) marketable orders. The fourth measure, 

NearDepth, is the time-weighted average number of (visible) shares in the book up to 10 

cents from the best posted prices.  

                                                 
14 The HFT dataset contains additional information, depth snapshots and quotes, for several short periods, 
but none of them overlaps with our sample period. Hence, we use the available information on executed 
orders to construct the measures we correlate with RunsInProcess.   
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IV.B. Methodology 

The correlations between our measures of market quality and low-latency activity 

generally suggest a positive relation. For example, the correlations between 

RunsInProcess and short-term volatility (HighLow, an inverse market quality measure) 

are -0.15 in 2007 and -0.24 in 2008.15 Our goal, however, is to assess the causal effects. 

Using MktQualityi,t as a placeholder for any of the market quality measures, pooled panel 

regression specifications of the form , 0 1 , ,...i t i t i tMktQuality a a RunsInProcess u= + + + (for 

firm i and period t) can be motivated in the usual way, as linearized conditional 

expectations, with the 1a  coefficient capturing the impact of an exogenous change in 

RunsInProcess.  

Estimation is complicated, however, by a strong possibility of simultaneity. For 

example, an exogenous drop in short-term volatility (HighLow) might establish a more 

attractive environment for low-latency activity. This mechanism induces correlation 

between RunsInProcess and u, rendering OLS estimates inconsistent, and motivating the 

use of instrumental variables. Our criteria for constructing an instrument are that it should 

be correlated with the explanatory variable (RunsInProcessit), but not be directly affected 

by the dependent variable (HighLowit). To this end we seek to measure the number of 

low-latency traders broadly active in a given interval, but excluding firm i and all firms 

that are likely to be related to i via correlated trading strategies.  

Specifically, our instrument for RunsInProcessi,t  is RunsNotINDi,t, which is the 

average number of runs of 10 messages or more in the same interval for the other stocks 

in our sample excluding: (1) the INDividual stock, stock i, (2) stocks in the same 

INDustry as stock i (as defined by the four-digit SIC code), and (3) stocks in the same 

INDex as stock i, if stock i belongs to either the NASDAQ 100 Index or the S&P 500 

Index. 

                                                 
15 RunsInProcess is also negatively correlated with the quoted spread (-0.32 in 2007 and -0.37 in 2008) and 
the total price impact of trades (-0.16 in 2007 and -0.11 in 2008), and positively correlated with depth in the 
book (0.29 in 2007 and 0.35 in 2008). 
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The intent here is to remove the possible influence of algorithms that implement 

strategies across multiple stocks by excluding the most likely candidates for such cross-

stock strategies. For example, statistical arbitrage strategies like pairs trading often utilize 

stocks in the same industry, which is why RunsNotIND does not contain any stock in the 

same four-digit SIC code. Similarly, algorithms that implement index strategies would 

have no impact on RunsNotIND because if a stock is in one of the two main indexes (the 

NASDAQ 100 or the S&P 500), we exclude all other stocks in that index from the 

computation of RunsNotIND for that stock.  

Beyond stocks in the same industry and the same index that are explicitly omitted 

from the instrument, our results should be robust to multi-stock algorithms that utilize 

concurrent trading in a small number of stocks. The average (minimum) number of stocks 

that are used in the constructions of RunsNotIND is 322.7 (250) in 2007 and 371.3 (290) 

in 2008, making it insensitive to concurrent trading in a handful of related stocks. For 

robustness, we repeated the analysis with an instrument computed as the median of 

RunsInProcessi,t (excluding stock i, stocks in the same industry, and stocks in the same 

index) in each interval because the median should be even less sensitive to a handful of 

outliers. Our results with the median instrument are similar to those with RunsNotIND, 

suggesting that multi-stock algorithms are not a significant problem with respect to the 

validity of this instrument. 

In specifications that jointly model NASDAQ market quality and RunsInProcess 

we also need an instrument for market quality. Here, we use EffSprdNotNASi,t, which is 

the dollar effective spread (absolute value of the distance between the transaction price 

and the midquote) computed for the same stock and during the same time interval but 

only from trades executed on non-NASDAQ trading venues (using the TAQ database).  

This measure reflects the general liquidity of the stock in the interval, but it does not 

utilize information about NASDAQ activity and hence would not be directly determined 

by the number of strategic runs that are taking place on the NASDAQ system, rendering 

it an appropriate instrument.  
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It might be argued that EffSprdNotNASi,t won’t be exogenous if many low-latency 

algorithms pursue cross-market strategies in the same security (i.e., if the same algorithm 

executes trades on both NASDAQ and another market). A cross-market strategy, 

however, cannot operate at the lowest latencies because an algorithmic program cannot 

be co-located at more than one market. This necessarily puts cross-market strategies at a 

disadvantage relative to co-located single-market algorithms. At least at the lowest 

latencies, therefore, we believe that the single-market algorithms are dominant.16 

Considerations of liquidity in multiple markets are also common in agency algorithms 

that create a montage of the fragmented marketplace to guide their order routing logic to 

the different markets. These, however, most likely do not give rise to the long strategic 

runs that we use to measure the activity of proprietary low-latency traders 

(RunsInProcessi,t) and hence would not introduce reverse causality. Nonetheless, while 

we are able to significantly improve on the quality of RunsNotIND by excluding stocks in 

the same industry and index (the most likely candidates for cross-stock algorithms), we 

cannot improve on the quality of EffSprdNotNAS in a similar fashion. We therefore 

employ additional specifications that do not rely on this variable. 

We use several econometric models that allow us to estimate the impact of low-

latency on market quality under different sets of assumptions. The results from the 

various specifications combine to present a consistent picture as to the robustness of our 

conclusions. In Model I, we pool observations across all stocks and all time intervals and 

estimate the following two-equation simultaneous equation model for each market quality 

measure: 

 , 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 (I) 

where 1,...,i N= indexes firms, 1,...,t T= indexes 10-minute time intervals, MktQuality 

represents one of the market quality measures (HighLow, EffSprd, Spread, or 

NearDepth), and the instruments are EffSprdNotNAS and RunsNotIND. To remove stock-

                                                 
16 Conversations with a NASDAQ official provided support to this view. 



21 
 

specific fixed effects, we standardize each variable by subtracting from each observation 

the stock-specific time-series average over the sample period and dividing by the stock-

specific time-series standard deviation. The standardization eliminates the intercepts in 

the specification. 

 In Model I, EffSprdNotNAS serves as an instrument for MktQuality in the 

RunsInProcess equation, and also appears an exogenous variable in the MktQuality 

equation. If cross-market algorithms render EffSprdNotNAS less desirable (both as an 

instrument and as an exogenous variable), it is useful to consider an alternative. In Model 

II, we estimate the following single-equation specification for each market quality 

measure:  

 , 1 , 2 , 1, ,i t i t i t i tMktQuality a RunsInProcess a TradingIntensity e= + +  (II) 

In this variation, TradingIntensity is used (instead of EffSprdNotNAS) as an exogenous 

variable to capture the impact of intraday informational events or liquidity shocks. 

TradingIntensityi,t is defined as stock i’s total trading volume in the entire market (not 

just NASDAQ) immediately prior to interval t (i.e., in the previous 10 minutes), and 

therefore it is not subject to the simultaneity problem. As before, we estimate this 

equation using an IV estimator with RunsNotIND as an instrument for RunsInProcess. 

Our third and fourth specifications are motivated by the tradition in finance that 

emphasizes commonalities in returns and volatilities. Could our results be explained by a 

return or volatility factor that drives both low-latency activity and market liquidity? 

Model III is therefore the following two-equation model: 

 

, 1 , 2 ,

3 , 4 , 1, ,

, 1 , 2 ,

3 , 4 , 2, ,

i t i t i t

QQQQ t QQQQ t i t

i t i t i t

QQQQ t QQQQ t i t

MktQuality a RunsInProcess a EffSprdNotNAS

a R a R e

RunsInProccess b MktQuality b RunsNotI

a R a R e

= +

+ + +

= +

+ + +

 (III) 

and Model IV is the single-equation model: 

, 1 , 2 , 3 , 4 , 1, ,i t i t i t QQQQ t QQQQ t i tMktQuality a RunsInProcess a TradingIntensity a R a R e= + + + +   (IV) 
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Both models seek to rule out the possibility that our results are driven by the potential 

influence of omitted variables related to common factors by adding two independent 

variables to each equation: (i) the market return (in each 10-minute interval), and (ii) the 

absolute value of the market return. Since our sample consists exclusively of NASDAQ 

stocks, we use the NASDAQ 100 Index as a proxy for the market portfolio, and compute 

the 10-minute returns using the QQQQ Exchange Traded Fund that tracks the index.  

The fifth and sixth specifications are motivated by theoretical models that give 

rise to intraday patterns in liquidly (as well as various empirical findings of time-of-day 

effects in liquidity measures). For example, models of adverse selection (e.g., Glosten 

and Milgrom (1985)) generally predict higher spreads in the morning compared to the 

rest of the day. An afternoon increase in spreads is consistent with inelasticity of demand 

(e.g., Brock and Kleidon (1992)), while the analysis in Admati and Pfleiderer (1988) 

could be used to justify morning and afternoon patterns driven by implicit or explicit 

coordination of traders in the market.  

To account for potentially omitted time-of-day effects that could drive both low-

latency trading and market liquidity we add dummy variables for the morning and 

afternoon periods as independent variables in each equation. Model V is therefore the 

following two-equation model: 

 

, 0 1 , 2 ,

3 , 4 , 1, ,

, 0 1 , 2 ,

3 , 4 , 2, ,

i t i t i t

i t i t i t

i t i t i t

i t i t i t

MktQuality a a RunsInProcess a EffSprdNotNAS
a DumAM a DumPM e

RunsInProccess b b MktQuality b RunsNotI
b DumAM b DumPM e

= + +

+ + +

= + +

+ + +

 (V) 

and Model VI is the single-equation model: 

 
, 0 1 , 2 ,

3 , 4 , 1, ,

i t i t i t

i t i t i t

MktQuality a a RunsInProcess a TradingIntensity
a DumAM a DumPM e

= + +

+ + +
 (VI)  

Here, DumAM is equal to one for intervals between 9:30am and 11:00am, and zero 

otherwise, and DumPM is equal to one for intervals between 2:30pm and 4:00pm, and 

zero otherwise. A constant term is added to each equation to represent mid-day effects 

(11:00am-2:30pm).
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We estimate all six models using Two-Stage GMM, and consider two types of 

robust standard errors. The first type (which we report as Clust. p-value) is robust to 

arbitrary heteroskedasticity and clustering on two dimensions: (i) stocks, and (ii) time-

intervals. Hence, the standard errors are robust to serial correlations in the time 

dimension (for each stock) and contemporaneous correlation of the errors across stocks 

(see Thompson (2011)). The second type (denoted in the tables as DK p-value) 

implements the estimator proposed by Driscoll and Kraay (1998). The DK estimator is an 

extension of the Newey-West heteroskedasticity-and-autocorrelation-consistent estimator 

that is also robust to very general spatial dependence (i.e., contemporaneous correlation 

of the errors across stocks).  

V. Low-Latency Trading and Market Quality: Results 

Panel A of Table 5 presents the estimated coefficients of Model I side-by-side for the 

2007 and 2008 sample periods. The most interesting coefficient is a1, which measures the 

impact of low-latency activity on the market quality measures. We observe that higher 

low-latency activity implies lower posted and effective spreads, greater depth, and lower 

short-term volatility. Moreover, the impact of low-latency activity on market quality is 

similar in the 2007 and 2008 sample periods. The coefficients on the two instruments 

have the expected signs and are highly significant. In all regressions, Cragg-Donald 

(1993) statistics reject the null of weak instruments using the Stock and Yogo (2005) 

critical values.  

To gauge the economic magnitudes implied by the a1 coefficients, one can look at 

how the market quality measure for a representative stock changes when we increase the 

amount of low-latency activity. One standard deviation increase in RunsInProcess 

implies a decrease of 29% in short-term volatility (down 12.3 basis points from a mean 

value of 42.1 basis points) in the 2007 sample period, and similarly a decrease of 34% in 

the 2008 sample period. Depth within 10 cents from the best prices increases by 20% 

when we increase low-latency activity by one standard deviation in the 2007 sample 

period (up 2,199 shares from a mean of 11,271 shares) and an even greater increase—
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34%—is observed in the 2008 sample period when the market is under stress. A similar 

pattern where low-latency activity has a greater positive impact on market quality in 2008 

is also observed for spreads, where one standard deviation increase in RunsInProcess 

implies a decrease of 26% in 2007 and 32% in 2008.  

The fact that low-latency activity decreases short-term volatility, lowers spreads, 

and increases depth even to a greater extent in the 2008 sample period—when the market 

is relentlessly going down and there is heightened uncertainty in the economic 

environment—is particularly noteworthy. It seems to suggest that low-latency activity 

creates a positive externality in the market at the time that the market needs it the most.  

To ensure that our results are not driven by outliers and therefore are not an 

artifact of pooling the data, Figure 3 presents histograms of the a1 coefficients from 

stock-by-stock estimations of the model. The first two panels of Figure 3, for example, 

show that almost all of the a1 coefficients are negative when the market quality measure 

is short-term volatility (HighLow). The histograms of all other market quality measures 

demonstrate that the pooled results are not driven by outliers but rather represent a 

reasonable summary of the manner in which low-latency activity affects market quality in 

the cross section of stocks.  

The results of the two-equation model also suggest that low-latency activity is 

attracted to more liquid and less volatile stocks (the estimated b1 coefficients). However, 

this finding is dependent on the quality of the EffSprdNotNAS instrument. To rule out that 

our main results are also affected by the quality of this instrument, Panel B of Table 5 

presents the coefficient estimates from Model II, where we do not use this instrument but 

rather focus exclusively on the impact of low-latency trading on market quality. Here as 

well we observe that higher low-latency activity implies lower posted and effective 

spreads, greater depth, and lower short-term volatility. The results appear even stronger 

than those of the two-equation specification in the sense that the magnitude of some of 

the coefficients suggests a larger effect.  

Panel A of Table 6 presents the results of Model III, where we add common factor 

information (return and volatility of the market) to the two-equation model. Market 
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volatility appears to be an important determinant of the market quality measures in both 

sample periods (the a4 coefficient). As a determinant of low-latency activity, market 

volatility is significant only in 2007 (the b4 coefficient).  Market return has an impact on 

some of the market quality measures (especially short-term volatility and depth), but is 

not significant in the RunsInProcess equation. The important takeaway from this panel is 

that the inclusion of market return and volatility as independent variables does not 

eliminate the significant showing of the low-latency activity as a determinant of the 

market quality measures: all estimated a1 coefficients have the same signs as in Panel A 

of Table 5 and are highly statistically significant.  

Similar results are observed when we look at the results of Model IV in which 

market return and volatility are added to the single-equation specification (in Panel B of 

Table 6). In the presence of the trading intensity variable, market return is not a 

significant determinant of either market quality or low-latency trading. However, higher 

low-latency activity implies lower short-term volatility, lower spreads, and more depth 

exactly as before. 

Table 7 presents the results of Model V (in Panel A) and Model VI (in Panel B), 

where we use dummy variables to account for potential time-of-day effects. The first 

thing to note looking at the column of a1 coefficients in both models is that our results 

that greater low-latency trading implies lower short-term volatility, lower spreads and 

effective spreads, and greater depth remain extremely robust. In addition, we observe that 

time-of-day variables exert their expected influence on market activity: the a3 coefficient, 

for example, demonstrates that stocks are less liquid in the first hour and a half of trading. 

Also, it is interesting to note that the intensity of low-latency trading is lower in the last 

hour and a half of trading (the b4 coefficient in Panel A). Still, it does not appear as if 

omitted variables in the form of time-of-day effects or market factors diminish the impact 

of low-latency activity on market quality, increasing our confidence in the robustness of 

our conclusions.  
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V.A. Additional Robustness Tests 

The conclusion we draw from our main analysis is that low-latency trading positively 

impacts several standard measures of market quality. In this section we examine the 

robustness of this conclusion within subsets of our sample as well as to choices we make 

concerning sample construction and the definition of variables.  

We begin by looking at whether the impact of low-latency activity on market 

quality differs for stocks that are somehow fundamentally dissimilar, like small versus 

large market capitalization stocks. Table 8 contains the estimates from Model I in 

subsamples consisting of four quartiles ranked by the average market capitalization over 

the sample period. The results using the other specifications (Models II-VI) are similar 

with respect to how low-latency trading impacts market quality (the a1 coefficients), and 

are therefore omitted to economize on the size of the table. We observe that the a1 

coefficients in the subsamples have the same sign as in the full sample and are all 

statistically significant. While there is not much pattern across the quartiles in the 2007 

sample period, the picture in the 2008 sample is different: it appears that during more 

stressful times, low-latency activity helps reduce volatility in smaller stocks more than it 

does in larger stocks.  

Another interesting pattern can be observed in the coefficient b1, which tells us 

how market quality affects low-latency trading. While better market quality implies more 

low-latency activity in larger stocks in the 2007 sample period, no such relationship is 

found for smaller stocks. During the stressful period of June 2008, however, the b1 

coefficients suggest a different behavior: higher liquidity encourages low-latency trading 

in smaller stocks but not in the top quartile of stocks by market capitalization. 

We also performed the estimations separately on subsamples formed as quartiles 

of NASDAQ’s market share of traded volume. Trading in the U.S. occurs on multiple 

venues, including competing exchanges, crossing networks, and Electronic 

Communications Networks. This fragmentation might jointly affect market quality and 

low-latency activity.  Our results (not reported here), however, show no significant 

pattern across market-share quartiles. In other words, the beneficial impact of low-latency 
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trading on the market quality measures is similar for stocks that have varying degrees of 

trading concentration on the NASDAQ system. 

The second issue we address in this robustness section is that our sample selection 

procedure (described in Section II) screens for stocks with sufficient amount of message 

activity to reduce the noise in the measures. Specifically, we exclude stocks if more than 

ten percent of the 10-minute intervals have fewer than 250 messages. This reduces the 

number of firms we analyze by approximately 30% (20%) in the 2007 (2008) sample 

period. Panel A of Table 9 presents the results of estimating Model I on an alternative 

sample where we only exclude stocks if more than ten percent of the 10-minute intervals 

have fewer than 100 messages. This screen significantly increases the number of stocks 

in both sample periods (471 in 2007 and 456 in 2008), but the results are very similar to 

those presented in Table 5. In particular, all a1 coefficients are highly statistically 

significant and have similar magnitudes. We obtain the same results when we estimate 

Models II-VI (from Panel B of Table 5 as well as Tables 6 and 7) on this modified 

sample of stocks.   

Panel B of Table 9 presents a test that alters the definition of RunsInProcess, our 

measure of low-latency activity. The discussion in Section IV.A provides the rationale for 

focusing on longer runs (those with ten or more messages) as a way to mitigate the 

potential influence of errors in constructing the strategic runs. To ensure that omitting 

shorter runs does not materially affect our conclusions, however, we use all strategic runs 

to construct an alternative measure of low-latency activity: AllRunsInProcess, and carry 

out exactly the same analysis as before. The results in Panel B of Table 9 are similar to 

those in Table 5, and we reach the same conclusions when using Models II-VI.  

Lastly, we computed an alternative market quality measure that attempted to 

isolate the cost of trading of “regular” investors who are not low-latency traders. The 

measure we created was an average effective spread that uses only trades that were not 

initiated by strategic runs. The results using this measure were very similar, in terms of 

sign and magnitude of the coefficients as well as their statistical significance, to those we 
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obtained with the regular effective spread measure that includes all NASDAQ trades 

(EffSprd).  

VI. Related Literature 

Our paper can be viewed from two related angles: (i) speed of information dissemination 

and activity in financial markets, and (ii) high-frequency trading (or algorithmic trading 

in general) and its impact on the market environment.   

Regarding speed, Hendershott and Moulton (2011) look at the introduction of the 

NYSE’s Hybrid Market in 2006, which expanded automatic execution and reduced the 

execution time for NYSE market orders from ten seconds to under a second. They find 

that this reduction in latency resulted in worsened liquidity (e.g., spreads increased) but 

improved informational efficiency. However, Riordan and Storkenmaier (2012) find that 

a reduction in latency (from 50 to 10 ms) on the Deutsche Boerse’ Xetra system is 

associated with improved liquidity. It could be that the impact of a change in latency on 

market quality depends on how exactly it affects competition among liquidity suppliers 

(e.g., the entrance of electronic market makers who can add liquidity but also crowed out 

traditional liquidity providers) and the level of sophistication of liquidity demanders (e.g., 

their adoption of algorithms to implement dynamic limit order strategies that can both 

supply and demand liquidity).17 

The literature on algorithmic trading seeks both to establish stylized facts related 

to algorithmic activity and to evaluate their impact on the market. Gsell (2008) shows 

that the majority of orders generated by algorithms on the German Xetra system demand 

rather than supply liquidity and are smaller than those sent by human traders, while Groth 
                                                 
17Cespa and Foucault (2008) and Easley, O’Hara, and Yang (2010) provide theoretical models in which 
some traders observe market information with a delay. The two papers employ rather different modeling 
approaches resulting in somewhat conflicting implications on the impact of differential information latency 
on the cost of capital, liquidity, and the efficiency of prices. Boulatov and Dierker (2007) investigate 
information latency from the exchange’s perspective: how can the exchange maximize data revenue? Their 
theoretical model suggests that selling real-time data can be detrimental to liquidity but at the same time 
enhances the informational efficiency of prices. Pagnotta and Philippon (2012) model speed as a 
differentiating attribute of competing exchanges. Moallemi and Sağlam (2010) discuss optimal order 
placement strategy for a seller facing random exogenous buyer arrivals. In their model, the seller pursues a 
pegging strategy, and the delayed monitoring caused by latency leads to costly tracking errors. 
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(2009) finds that algorithmic orders have a higher execution rate than non-algorithmic 

orders. Gsell and Gomber (2008) show evidence consistent with pegging strategies on 

Xetra, while Prix, Loistl, and Huetl (2007) note that there are certain regularities in the 

activity of these algorithms. Hendershott and Riordan (2009) look at the 30 DAX stocks 

and find that algorithmic trades have a larger price impact than non-algorithmic trades 

and seem to contribute more to price discovery. Chaboud, Chiquoine, Hjalmarsson, and 

Vega (2009) look at algorithmic trading in the interdealer foreign exchange market and 

find no evidence of a causal relationship between algorithmic trading and increased 

exchange rate volatility. Boehmer, Fong, and Wu (2012a, 2012b) look at the impact of 

algorithmic trading across 39 exchanges. They conclude that greater intensity of 

algorithmic trading increases short-term volatility, but improves liquidity and 

informational efficiency. They also find that more algorithmic trading is associated with a 

decline in equity capital in the following year, mainly driven by an increase in repurchase 

activity. 

Hendershott, Jones, and Menkveld (2011) use the arrival rate of electronic 

messages on the NYSE as a measure of combined agency and proprietary algorithmic 

activity. Using an event study approach around the introduction of autoquoting by the 

NYSE in 2003, the authors find that increase in normalized message count (their proxy 

for algorithmic trading) impacts liquidity only for large stocks. For these stocks, quoted 

and effective spreads decline, while quoted depth decreases. The largest stocks also 

experience improved price discovery. We, on the other hand, find an improvement in 

market quality using all measures, including depth and short-term volatility, and for all 

stocks rather than just the largest stocks.18 Two considerations could account for the 

difference in findings. Firstly, our measure of low-latency trading is designed to capture 

the activity of high-frequency proprietary algorithms rather than that of agency 

algorithms. Secondly, prior to the NYSE’s introduction of Hybrid Market in 2006, 
                                                 
18 The average market capitalization (in billion dollars) of sample quintiles reported in Table 1 of 
Hendershott, Jones, and Menkveld (2009) is 28.99, 4.09, 1.71, 0.90, and 0.41. This corresponds rather well 
to our sample where the average market capitalization of quintiles is 21.4, 3.8, 2.1, 1.4, and 1.0, though we 
may have fewer very large and very small stocks compared to their sample.    
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specialists may have faced less competition from high-frequency proprietary algorithms. 

The 2003 autoquoting change, therefore, may have mostly affected the activity of agency 

algorithms.  

 In a set of contemporaneous papers, Brogaard (2011a, 2011b, 2011c) investigates 

the impact of high-frequency trading on market quality using two special datasets of 120 

stocks: one from NASDAQ containing the activity of 26 high-frequency traders and the 

other from BATS with 25 high-frequency traders. He reports that high-frequency traders 

contribute to liquidity provision in the market, that their trades help price discovery more 

than trades of other market participants, and that their activity appears to lower volatility. 

Brogaard’s results, therefore, complement our findings on market quality measures in 

Section V, which is especially important given two differences in the design of our study 

compared to his. First, Brogaard’s data covers only a subset of firms that utilize low-

latency algorithms.19 Since our measure of low-latency trading relies on imputed strategic 

runs, we are more likely to capture a broader picture of high-frequency activity. Second, 

Brogaard’s analysis does not focus on periods of market stress. His most detailed data is 

available for only one week in February 2010 when the NASDAQ Composite Index was 

basically flat, while our 2008 sample provides insights on what happens at times of 

declining prices and heightened uncertainty. The ability to study low-latency activity 

during a stressful period for the market is especially important when the conclusion from 

the analysis of “normal times” is that these traders improve, rather than harm, market 

quality. 

We note, though, that traders engaged in low-latency activity could impact the 

market in a negative fashion at times of extreme market stress. The joint CFTC/SEC 

report regarding the “flash crash” of May 6, 2010, presents a detailed picture of such an 

event. The report notes that several high-frequency traders in the equity markets scaled 

down, stopped, or significantly curtailed their trading at some point during this episode. 
                                                 
19 His data do not include two types of proprietary traders that utilize low-latency algorithms. First, they 
lack the proprietary trading desks of larger, integrated firms like Goldman Sachs or JP Morgan. Second, 
they ignore small firms that use direct access brokers (such as Lime Brokerage or Swift Trade) that 
specialize in providing services to high-frequency traders. 
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Furthermore, some of the high-frequency traders escalated their aggressive selling during 

the rapid price decline, removing significant liquidity from the market and hence 

contributing to the decline. Similarly, Kirilenko, Kyle, Samadi, and Tuzun (2011) 

investigate the behavior of high-frequency trading firms in the futures market during the 

flash crash. They define “high-frequency traders” in the S&P 500 E-mini futures contract 

as those traders that execute a large number of daily transactions and fit a certain profile 

of intraday and end-of-day net positions. The authors identify 16 high-frequency traders 

using this definition, and conclude that while these traders did not trigger the flash crash, 

their responses exacerbated market volatility during the event. Our study suggests that 

such behavior is not representative of the manner in which low-latency activity impacts 

market conditions outside of such extreme episodes. 

Lastly, Hendershott and Riordan (2011) use the NASDAQ HFT dataset to 

investigate the role high-frequency trading plays in price discovery. They estimate a 

model of price formation and report that when high-frequency trading firms trade by 

demanding liquidity, they do so in the direction of the permanent price changes and in the 

opposite direction to transitory price changes. Hence, they conclude that high-frequency 

traders help price efficiency. 

Several recent theoretical papers attempt to shed light on the potential impact of 

high-frequency trading in financial markets (Citanic and Kirilenko (2010), Gerig and 

Michayluk (2010), Hoffmann (2010), Jovanovic and Menkveld (2010), Biais, Foucault, 

and Moinas (2011), Cartea and Penalva (2011), Cohen and Szpruch (2011), Jarrow and 

Protter (2011), and Martinez and Rosu (2011)). Some of these papers have specific 

implications as to the relationships between high-frequency trading and liquidity or 

volatility, which we investigate empirically.  

For example, Gerig and Michalyuk (2010) assume that automated liquidity 

providers are more efficient than other market participants in extracting pricing-relevant 

information from multiple securities. By using information from one security to price 

another security, these high-frequency traders are able to offer better prices, lowering the 

transactions costs of investors in the market. Hoffman (2010) introduces fast traders into 



32 
 

the limit order book model of Foucault (1999). Their presence can (in some cases) lower 

transactions costs due to increased competition in liquidity supply. Cartea and Penalva 

(2011) construct a model in the spirit of Grossman and Miller (1988) except that they add 

high-frequency traders who interject themselves between the liquidity traders and the 

market makers. In equilibrium, liquidity traders are worse off in the presence of high-

frequency traders and the volatility of market prices increases.        

In general, the theoretical models demonstrate that high-frequency traders can 

impact the market environment (and other investors) positively or negatively depending 

on the specific assumptions regarding their strategies and the assumed structure of the 

economy (see, for example, the predictions in Jovanovic and Menkveld (2010) and Biais, 

Foucault, and Moinas (2011)). Since different types of proprietary algorithms may 

employ different strategies, a theoretical model that focuses on one type of strategy may 

shed light on the specific impact of such a strategy, but may not predict the overall effect 

that empirical studies find because the mixture of strategies in actual markets may 

overwhelm the effect of one strategy or the other. As such, while our results are more 

consistent with some models than others, we do not view them as necessarily suggesting 

that certain models are wrong. Rather, our results could point to the relative dominance of 

a subset of high-frequency traders who peruse certain strategies that improve market 

quality.  

VII. Conclusions 

Our paper makes two significant contributions. First, we develop a measure of low-

latency activity using publicly-available data that can be used to investigate the impact of 

high-frequency trading on the market environment. Second, we study the impact that 

low-latency activity has on market quality both during normal market conditions and 

during a period of declining prices and heightened economic uncertainty. Our conclusion 

is that in the current market structure for equities, increased low-latency activity 

improves traditional yardsticks of market quality such as liquidity and short-term 

volatility. Of particular importance is our finding that at times of falling prices and 
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anxiety in the market, the nature of the millisecond environment and the positive 

influence of low-latency activity on market quality remains. However, we cannot rule out 

the possibility of a sudden and severe market condition in which high-frequency traders 

contribute to a market failure. The experience of the “flash crash” in May of 2010 

demonstrates that such fragility is certainly possible when a few big players step aside 

and nobody remains to post limit orders. While our results suggest that market quality has 

improved, we believe it is as yet an unresolved question whether low-latency trading 

increases the episodic fragility of markets, and we hope that future research will shed 

light on this issue.   

The millisecond environment we describe—with its clock-time periodicities, 

trading that responds to market events over millisecond horizons, and algorithms that 

“play” with one another—constitutes a fundamental change from the manner in which 

stock markets operated even a few years ago. Still, the economic issues associated with 

latency in financial markets are not new, and the private advantage of relative speed as 

well as concerns over the impact of fast traders on prices were noted well before the 

advent of our current millisecond environment.20 The early advocates of electronic 

markets generally envisioned arrangements wherein all traders would enjoy equal access 

(see Mendelson and Peake (1979), for example). We believe that it is important to 

recognize that guaranteeing equal access to market data when the market is both 

continuous and fragmented (as presently in the U.S.) may be physically impossible.  

The first impediment to equal access is the geographical dispersion of traders (see 

Gode and Sunder (2000)). Our evidence on the speed of execution against improved 

quotes suggests that some players are responding within 2-3 ms, which is faster than it 

would take for information to travel from New York to Chicago and back (1440 miles) 

even at the speed of light (about 8 ms). While co-location could be viewed as the ultimate 

equalizer of dispersed traders, it inevitably leads to the impossibility of achieving equal 
                                                 
20 Barnes (1911) describes stock brokers who, in the pre-telegraph era, established stations on high points 
across New Jersey and used semaphore and light flashes to transmit valuable information between New 
York and Philadelphia. He notes that some of the mysterious movements in the stock markets of 
Philadelphia and New York were popularly ascribed to these brokers. 
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access in fragmented markets. Since the same stock is traded on multiple trading venues, 

a co-located computer near the servers of exchange A would be at a disadvantage in 

responding to market events in the same securities on exchange B compared to computers 

co-located with exchange B. Unless markets change from continuous to periodic, some 

traders will always have lower latency than others. It is of special significance, therefore, 

that our findings in this paper suggest that increased low-latency activity need not 

invariably work to the detriment of long-term investors in the post-Reg NMS market 

structure for U.S. equities.  
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Table 1 
Summary Statistics 

This table presents summary statistics for the stocks in our sample. The universe of stocks used in the study is 
comprised of the 500 largest stocks by market capitalization on September 28, 2007. We investigate trading in these 
stocks in two sample periods: (i) October 2007 (23 trading days), and (ii) June 2008 (21 trading days). Since the 
main econometric analysis in the paper requires sufficient level of activity in the stocks, we apply the following 
screen to the stocks in each sample period: A firm is rejected if the proportion of 10-minute intervals with fewer 
than 250 messages is above 10%. A “message” for the purpose of this screen could be a submission, a cancellation, 
or an execution of a limit order. After applying the screen, our sample consists of 351 stocks in the October 2007 
sample period and 399 stocks in the June 2008 sample period. In Panel A we report summary statistics from the 
CRSP database. MktCap is the market capitalization of the firms computed using closing prices on the last trading 
day prior to the start of the sample period. ClsPrice is the average closing price, AvgVol is the average daily share 
volume, and AvgRet is the average daily return. These variables are averaged across time for each firm, and the table 
entries refer to the sample distribution of these firm-averages. Panel B presents summary statistics from the 
NASDAQ market computed using TotalView-ITCH data. We report the average daily number of limit orders 
submitted and cancelled (or partially cancelled), marketable orders executions, and the average daily number of 
shares executed. The summary measures for the limit order book include the time-weighted average depth in the 
book, the time-weighted average depth near current market prices (i.e., within 10 cents of the best bid or ask prices), 
and the time-weighted average dollar quoted spread (the distance between the bid and ask prices). We also report the 
effective (half) spread, defined as transaction price (quote midpoint) minus the quote midpoint (transaction price) for 
a buy (sell) marketable order, averaged across all transactions. 
 
Panel A: CRSP Summary Statistics 

 
2007 2008 

MktCap 
($Million) 

ClsPrice 
($) 

AvgVol 
(1,000s) 

AvgRet 
(%)  

MktCap 
($Million) 

ClsPrice 
($) 

AvgVol 
(1,000s) 

AvgRet 
(%)  

Mean 6,609 37.09 3,172 0.109 5,622 31.88 2,931 -0.565 
Median 2,054 29.08 1,074 0.130 1,641 24.96 1,111 -0.516 
Std 20,609 41.54 8,083 0.570 19,348 38.93 6,410 0.615 
Min 789 2.22 202 -2.675 286 2.32 112 -3.449 
Max 275,598 635.39 77,151 1.933 263,752 556.32 74,514 0.817 
 
Panel B. NASDAQ (TotalView-ITCH) Summary Statistics 

 
Number of 
Limit Order 
Submissions 

Number of 
Limit Order 

Cancellations 

Number of 
Marketable Order 

Executions 

Shares 
Executed 
(1,000s) 

Depth  
(1,000s) 

Near 
Depth 

(1,000s) 

Quoted 
Spread 

($) 

Effective 
Spread   

($) 

2007 

Mean 45,508 40,943 3,791 1,400 486 57 0.034 0.025 

Median 26,862 24,015 2,482 548 147 11 0.025 0.019 

Std 73,705 68,204 4,630 3,231 1,616 257 0.032 0.021 

Min 9,658 8,013 695 130 26 1 0.010 0.009 

Max 985,779 905,629 62,216 32,305 15,958 3,110 0.313 0.214 

2008 

Mean 54,287 50,040 3,694 1,203 511 43 0.035 0.023 

Median 34,658 31,426 2,325 483 154 10 0.023 0.016 

Std 61,810 56,728 4,676 2,618 1,767 152 0.041 0.024 

Min 8,889 7,983 291 42 20 1 0.010 0.008 

Max 593,143 525,346 61,013 32,406 25,004 2,482 0.462 0.257 
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Table 2 
Examples of Strategic Runs for Ticker Symbol ADCT on October 2, 2007 

This table presents examples of “strategic runs,” which are linked submissions, cancellations, and executions that are likely to be parts of a dynamic strategy of a 
trading algorithm. The examples are taken from activity in one stock (ATC Telecommunications, ticker symbol ADCT) on October 2, 2007. We identify the 
existence of these strategic runs by imputing links between different submissions, cancellations, and executions based on direction, size, and timing. In the two 
cases presented below, the activity in the table constitutes all messages in this stock (i.e., there are no intervening messages that are unrelated to these strategic 
runs). In Panel A, we present order activity starting around 9:51:57am where two algorithms “play” with each other (i.e., they submit and cancel messages in 
response to one another). The messages sent by the second algorithm are highlighted in the table. The algorithms are active for one minute and 12 seconds, 
sending 137 messages (submissions and cancellations) to the market. In Panel B we present order activity starting around 9:57:18am where one algorithm 
submits and cancels orders. The algorithm is active for one minute and eighteen seconds, sending 142 messages (submissions and cancellations) to the market. 
 
Panel A: ADCT Order Activity Starting 09:51:57.849 
Time Message B/S Shares Price Bid Offer 
09:51:57.849 Submission Buy 100 20.00 20.03 20.05 
09:52:13.860 Submission Buy 300 20.03 20.03 20.04 
09:52:16.580 Cancellation Buy 300 20.03 20.03 20.04 
09:52:16.581 Submission Buy 300 20.03 20.03 20.04 
09:52:23.245 Cancellation Buy 100 20.00 20.04 20.05 
09:52:23.245 Submission Buy 100 20.04 20.04 20.05 
09:52:23.356 Cancellation Buy 300 20.03 20.04 20.05 
09:52:23.357 Submission Buy 300 20.04 20.04 20.05 
09:52:26.307 Cancellation Buy 300 20.04 20.05 20.07 
09:52:26.308 Submission Buy 300 20.05 20.05 20.07 
09:52:29.401 Cancellation Buy 300 20.05 20.04 20.07 
09:52:29.402 Submission Buy 300 20.04 20.04 20.07 
09:52:29.402 Cancellation Buy 100 20.04 20.04 20.07 
09:52:29.403 Submission Buy 100 20.00 20.04 20.07 
09:52:32.665 Cancellation Buy 100 20.00 20.04 20.07 
09:52:32.665 Submission Buy 100 20.05 20.05 20.07 
09:52:32.672 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.678 Submission Buy 100 20.05 20.05 20.07 
09:52:32.707 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.708 Submission Buy 100 20.05 20.05 20.07 

Time Message B/S Shares Price Bid Offer 
09:52:32.717 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.745 Cancellation Buy 300 20.04 20.04 20.07 
09:52:32.745 Submission Buy 100 20.05 20.05 20.07 
09:52:32.746 Submission Buy 300 20.05 20.05 20.07 
09:52:32.747 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.772 Submission Buy 100 20.02 20.05 20.07 
09:52:32.776 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.777 Cancellation Buy 100 20.02 20.04 20.07 
09:52:32.777 Submission Buy 300 20.04 20.04 20.07 
09:52:32.778 Submission Buy 100 20.05 20.05 20.07 
09:52:32.778 Cancellation Buy 300 20.04 20.05 20.07 
09:52:32.779 Submission Buy 300 20.05 20.05 20.07 
09:52:32.779 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.807 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.808 Submission Buy 100 20.02 20.04 20.07 
09:52:32.808 Submission Buy 300 20.04 20.04 20.07 
09:52:32.809 Cancellation Buy 100 20.02 20.04 20.07 
… the interaction between the two strategic runs continues  
for 95 additional messages until a limit order of  the 
300-share run is executed by an incoming marketable order 
at 09:53:09.365.  
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Panel B: ADCT Order Activity Starting 09:57:18.839 
Time Message B/S Shares Price Bid Ask 

09:57:18.839 Submission Sell 100 20.18 20.11 20.14 
09:57:18.869 Cancellation Sell 100 20.18 20.11 20.14 
09:57:18.871 Submission Sell 100 20.13 20.11 20.13 
09:57:18.881 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.892 Submission Sell 100 20.16 20.11 20.14 
09:57:18.899 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.902 Submission Sell 100 20.13 20.11 20.13 
09:57:18.911 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.922 Submission Sell 100 20.16 20.11 20.14 
09:57:18.925 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.942 Submission Sell 100 20.13 20.11 20.13 
09:57:18.954 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.958 Submission Sell 100 20.13 20.11 20.13 
09:57:18.961 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.973 Submission Sell 100 20.13 20.11 20.13 
09:57:18.984 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.985 Submission Sell 100 20.16 20.11 20.14 
09:57:18.995 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.996 Submission Sell 100 20.13 20.11 20.13 
09:57:19.002 Cancellation Sell 100 20.13 20.11 20.14 
09:57:19.004 Submission Sell 100 20.16 20.11 20.14 
09:57:19.807 Cancellation Sell 100 20.16 20.11 20.13 
09:57:19.807 Submission Sell 100 20.13 20.11 20.13 
09:57:20.451 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.461 Submission Sell 100 20.13 20.11 20.13 
09:57:20.471 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.480 Submission Sell 100 20.13 20.11 20.13 
09:57:20.481 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.484 Submission Sell 100 20.13 20.11 20.13 
09:57:20.499 Cancellation Sell 100 20.13 20.11 20.14 

Time Message B/S Shares Price Bid Ask 

09:57:20.513 Submission Sell 100 20.13 20.11 20.13 
09:57:20.521 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.532 Submission Sell 100 20.13 20.11 20.13 
09:57:20.533 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.542 Submission Sell 100 20.13 20.11 20.13 
09:57:20.554 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.562 Submission Sell 100 20.13 20.11 20.13 
09:57:20.571 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.581 Submission Sell 100 20.13 20.11 20.13 
09:57:20.592 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.601 Submission Sell 100 20.13 20.11 20.13 
09:57:20.611 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.622 Submission Sell 100 20.13 20.11 20.13 
09:57:20.667 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.671 Submission Sell 100 20.13 20.11 20.13 
09:57:20.681 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.742 Submission Sell 100 20.13 20.11 20.13 
09:57:20.756 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.761 Submission Sell 100 20.13 20.11 20.13 
… the strategic run continues for 89 additional messages  
until it stops at 09:58:36.268.  
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Table 3 
Strategic Runs 

This table presents summary statistics for “strategic runs,” which are linked submissions, cancellations, and executions that are likely to be parts of a dynamic 
strategy. The imputed links between different submissions, cancellations, and executions are based on direction, size, and timing. Specifically, when a 
cancellation is followed within 100 ms by a submission of a limit order in the same direction and for the same quantity, or by an execution in the same direction 
and for the same quantity, we impute a link between the messages. The methodology that tracks the strategic runs also takes note of partial executions and partial 
cancellations of orders. We sort runs into categories by length (i.e., the number of linked messages), and report information about the number of runs, messages, 
and executions (separately active and passive) within each category. An active execution is when the run ends with a marketable limit order that executes 
immediately. A passive execution is when a standing limit order that is part of a run is executed by an incoming marketable order. One run could potentially 
result in both a passive execution and an active execution if the passive execution did not exhaust the order, and the reminder was cancelled and resubmitted to 
generate an immediate active execution 
  

 
Length 
Of 
Runs 

Runs 
(#) 

Runs 
(%) 

Messages 
(#) 

Messages 
(%) 

Active 
Exec. (#) 

Active 
Exec. Rate 

Passive 
Exec. (#) 

Passive 
Exec. Rate 

Total 
Exec. (#) 

Total 
Exec. 
Rate 

2007 

3-4 20,294,968 44.11% 79,695,563 15.67% 1,954,468 9.63% 4,981,521 24.55% 6,922,605 34.11% 
5-9 13,540,437 29.43% 89,204,570 17.54% 1,012,573 7.48% 4,715,922 34.83% 5,706,905 42.15% 
10-14 5,650,415 12.28% 65,294,103 12.84% 267,517 4.73% 1,808,138 32.00% 2,069,393 36.62% 
15-19 1,854,002 4.03% 31,229,102 6.14% 153,839 8.30% 654,241 35.29% 805,414 43.44% 
20-99 4,337,029 9.43% 153,384,374 30.16% 301,266 6.95% 1,575,876 36.34% 1,871,244 43.15% 
100+ 333,308 0.72% 89,735,209 17.65% 26,039 7.81% 116,465 34.94% 141,962 42.59% 
All 46,010,159 100.00% 508,542,921 100.00% 3,715,702 8.08% 13,852,163 30.11% 17,517,523 38.07% 

2008 

3-4 31,012,203 46.24% 122,325,313 19.53% 2,427,326 7.83% 5,552,338 17.90% 7,970,158 25.70% 
5-9 19,758,076 29.46% 130,370,772 20.82% 1,287,276 6.52% 5,436,189 27.51% 6,705,727 33.94% 
10-14 7,941,089 11.84% 91,486,978 14.61% 385,902 4.86% 2,186,628 27.54% 2,566,974 32.33% 
15-19 2,533,217 3.78% 42,663,802 6.81% 219,403 8.66% 795,483 31.40% 1,012,340 39.96% 
20-99 5,583,768 8.33% 191,395,420 30.56% 398,771 7.14% 1,712,015 30.66% 2,105,346 37.70% 
100+ 239,751 0.36% 48,084,901 7.68% 15,541 6.48% 62,838 26.21% 78,171 32.61% 
All 67,068,104 100.00% 626,327,186 100.00% 4,734,219 7.06% 15,745,491 23.48% 20,438,716 30.47% 
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Table 4 
Correlation of RunsInProcess with High-Frequency Trading from the NASDAQ HFT Dataset 

This table presents the correlations between our measure of low-latency activity and measures of trading by 26 high-
frequency traders from a special NASDAQ HFT dataset. To measure the intensity of low-latency activity in a stock 
in each ten-minute interval, we use the time-weighted average of the number of strategic runs of 10 messages or 
more the stock experiences in the interval (RunsInProcess). Let “H” denote high-frequency trading firms and “N” 
denotes other traders. Each trade in the NASDAQ HFT dataset is categorized by one of the following combinations: 
NH, NN, HN, or HH, where the first letter in each pair identifies the liquidity taker and the second identifies the 
liquidity supplier. We construct four measures: (i) Total HFT Executed Orders=NH+2*HH+HN, (ii) Total HFT 
Trades=NH+HH+HN, (iii) HFT Liquidity Supplied in Executed Orders=NH+HH, and (iv) Net HFT Liquidity 
Supplied in Executed Orders=NH. The first two are measures of the overall trading activity of high-frequency 
trading firms. The last two measures denote liquidity supplied by high-frequency trading firms. For each measure, 
we calculate two variants: one in terms of share volume and the other in terms of number of orders. Of the 120 firms 
in the HFT dataset, 60 are NASDAQ stocks for which we use our order-level data to construct the RunsInProcess 
measure. The correlations are computed for our second sample period, June 2008, over all 10-minute intervals for all 
stocks (60*819=49,410 observations). P-values are computed against the null hypothesis of zero correlation.  
 
  RunsInProcess 

Spearman Corr p-value RunsInProcess 
Pearson Corr p-value 

Total HFT Executed Orders Shares 0.812 (<.001) 0.654 (<.001) 
Orders 0.809 (<.001) 0.658 (<.001) 

Total HFT Trades Shares 0.818 (<.001) 0.666 (<.001) 
Orders 0.814 (<.001) 0.644 (<.001) 

HFT Liquidity Supplied in Executed Orders Shares 0.817 (<.001) 0.682 (<.001) 
Orders 0.810 (<.001) 0.634 (<.001) 

Net HFT Liquidity Supplied in Executed Orders Shares 0.816 (<.001) 0.685 (<.001) 
Orders 0.809 (<.001) 0.643 (<.001) 
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Table 5 
Low-Latency Trading and Market Quality 

This table presents analysis of the manner in which low-latency trading affects market quality. To measure the 
intensity of low-latency activity in a stock in each ten-minute interval, we use the time-weighted average of the 
number of strategic runs of 10 messages or more the stock experiences in the interval (RunsInProcess). We use 
ITCH order-level data to compute several measures that represent different aspects of NASDAQ market quality: (i) 
HighLow is the highest midquote minus the lowest midquote in the same interval, (ii) EffSprd is the average 
effective spread (or total price impact) of a trade, defined as the average across transactions of the transaction price 
(quote midpoint) minus the quote midpoint (transaction price) for buy (sell) marketable orders, (iii) Spread is the 
time-weighted average quoted spread (ask price minus the bid price), and (iv) NearDepth is the time-weighted 
average number of  (visible) shares in the book up to 10 cents from the best posted prices. Panel A presents Model I, 
which is a two-equation model for RunsInProcess and each of the market quality measures (HighLow, EffSprd, 
Spread, and NearDepth): 

, 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 

As an instrument for RunsInProcessi,t we use RunsNotINDi,t, which is the average number of runs of 10 messages or 
more in the same interval for other stocks in our sample excluding: (1) the INDividual stock i, (2) stocks in the same 
INDustry as stock i (as defined by its four-digit SIC code), and (3) stocks in the same INDex as stock i (if stock i 
belongs to either the NASDAQ 100 Index or the S&P 500 Index). As an instrument for the market quality measures 
we use EffSprdNotNasi,t, which is the average dollar effective spread computed using the TAQ database from trades 
executed in the same stock and during the same time interval on other (non-NASDAQ) trading venues. Panel B 
presents Model II, a single-equation model for each of the market quality measures: 

, 1 , 2 , 1, ,i t i t i t i tMktQuality a RunsInProcess a TradingIntensity e= + +  
where TradingIntensityi,t is defined as stock i’s total trading volume in the entire market (not just NASDAQ) 
immediately prior to interval t (i.e., in the previous 10 minutes). We estimate both specifications by pooling 
observations across all stocks and all time intervals. We standardize each variable by subtracting from each 
observation the stock-specific time-series average and dividing by the stock-specific time-series standard deviation. 
Hence, this formulation essentially implements a fixed-effects specification. We estimate the system using Two-
Stage GMM, and consider two types of robust standard errors. The first type (Clust. p-value) is robust to arbitrary 
heteroskedasticity and clustering on two dimensions: (i) stocks, and (ii) time-intervals. Hence, the standard errors 
are robust to serial correlations in the time dimension (for each stock) and contemporaneous correlation of the errors 
across stocks. The second type (DK p-value) implements the estimator from Driscoll and Kraay (1998). The DK 
estimator is an extension of the Newey-West HAC estimator that is also robust to very general spatial dependence 
(i.e., contemporaneous correlation of the errors across stocks). We report the coefficients and the p-values for both 
estimators (against a two-sided alternative) side-by-side for the 2007 and 2008 sample periods.  
 
Panel A: Estimates of Model I (with Instruments RunsNotIND and EffSprdNotNAS) 
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.350 0.476 -0.063 0.497 -0.475 0.452 -0.125 0.464 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.534 0.567 -0.052 0.494 -0.615 0.526 -0.107 0.461 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.203 0.382 -0.079 0.500 -0.143 0.219 -0.264 0.475 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.380 -0.236 0.123 0.484 0.716 -0.116 0.378 0.360 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
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Panel B: Estimates of Model II (with Instrument RunsNotIND) 
  2007 2008 
  a1 a2 a1 a2 

HighLow 
Coef. -0.396 0.285 -0.568 0.195 
Clust. p-value (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.493 0.075 -0.598 0.030 
Clust. p-value (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.231 0.048 -0.199 0.013 
Clust. p-value (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.467 -0.106 0.813 -0.007 
Clust. p-value (<.001) (<.001) (<.001) (0.702) 
DK p-value (<.001) (<.001) (<.001) (0.715) 
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Table 6 
Low-Latency Trading and Market Quality: Market Factors 

This table looks at how low-latency trading affects market quality when we add to the specifications market return 
and volatility factors to rule out the possibility that our results are driven by the potential influence of omitted 
variables related to common factors. We add to each equation (i) the market return (in each 10-minute interval), and 
(ii) the absolute value of the market return. We use the NASDAQ 100 Index as a proxy for the market portfolio, and 
compute the 10-minute returns using the QQQQ Exchange Traded Fund that tracks the index. Panel A presents 
Model III, which is a two-equation model for RunsInProcess and each of the market quality measures (HighLow, 
EffSprd, Spread, and NearDepth): 

, 1 , 2 , 3 , 4 , 1, ,

, 1 , 2 , 3 , 4 , 2, ,

i t i t i t QQQQ t QQQQ t i t

i t i t i t QQQQ t QQQQ t i t

MktQuality a RunsInProcess a EffSprdNotNAS a R a R e

RunsInProccess b MktQuality b RunsNotIND a R a R e

= + + + +

= + + + +
 

where all variables are standardized as in Table 5 to implement a fixed effect specification. As an instrument for 
RunsInProcessi,t we use RunsNotINDi,t, which is the average number of runs of 10 messages or more in the same 
interval for other stocks in our sample excluding: (1) the INDividual stock i, (2) stocks in the same INDustry as 
stock i (as defined by its four-digit SIC code), and (3) stocks in the same INDex as stock i (if stock i belongs to 
either the NASDAQ 100 Index or the S&P 500 Index). As an instrument for the market quality measures we use 
EffSprdNotNasi,t, which is the average dollar effective spread computed using the TAQ database from trades 
executed in the same stock and during the same time interval on other (non-NASDAQ) trading venues. Panel B 
presents Model IV, a single-equation model for each of the market quality measures: 

, 1 , 2 , 3 , 4 , 1, ,i t i t i t QQQQ t QQQQ t i tMktQuality a RunsInProcess a TradingIntensity a R a R e= + + + +  

where only RunsNotIND is used as an instrument. We estimate the models using Two-Stage GMM, and report 
robust p-values using both two-dimensional-clustering and the Driscoll-Kraay methodology. We report the 
coefficients and the p-values (against a two-sided alternative) for the 2007 and 2008 sample periods.  
 
Panel A: Estimates of Model III (with Market Factors and Instruments RunsNotIND and EffSprdNotNAS) 
   a1 a2 a3 a4 b1 b2 b3 b4 

2007 

HighLow 
Coef. -0.240 0.428 -0.032 0.251 -0.075 0.501 -0.002 0.028 
Clust. p-value (<.001) (<.001) (0.024) (<.001) (<.001) (<.001) (0.592) (<.001) 
DK p-value (<.001) (<.001) (0.027) (<.001) (<.001) (<.001) (0.632) (<.001) 

Spread 
Coef. -0.471 0.539 -0.001 0.139 -0.059 0.496 0.001 0.017 
Clust. p-value (<.001) (<.001) (0.962) (<.001) (<.002) (<.001) (0.871) (0.003) 
DK p-value (<.001) (<.001) (0.966) (<.001) (<.001) (<.001) (0.888) (0.002) 

EffSprd 
Coef. -0.167 0.365 0.051 0.074 -0.089 0.502 0.005 0.015 
Clust. p-value (<.001) (<.001) (0.012) (0.002) (<.001) (<.001) (0.163) (0.008) 
DK p-value (<.001) (<.001) (0.014) (0.002) (<.001) (<.001) (0.192) (0.003) 

NearDepth 
Coef. 0.342 -0.221 0.044 -0.095 0.141 0.485 -0.006 0.022 
Clust. p-value (<.001) (<.001) (0.004) (<.001) (<.001) (<.001) (0.179) (<.001) 
DK p-value (<.001) (<.001) (0.002) (<.001) (0.002) (<.001) (0.199) (<.001) 

2008 

HighLow 
Coef. -0.448 0.430 0.176 0.243 -0.125 0.464 0.007 0.005 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.442) (0.625) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.420) (0.617) 

Spread 
Coef. -0.595 0.509 0.040 0.124 -0.105 0.461 -0.010 -0.012 
Clust. p-value (<.001) (<.001) (0.250) (<.001) (<.001) (<.001) (0.202) (0.137) 
DK p-value (<.001) (<.001) (0.256) (<.001) (<.001) (<.001) (0.223) (0.149) 

EffSprd 
Coef. -0.132 0.210 0.022 0.067 -0.261 0.475 -0.009 -0.009 
Clust. p-value (<.001) (<.001) (0.291) (<.001) (<.001) (<.001) (0.348) (0.417) 
DK p-value (<.001) (<.001) (0.260) (<.001) (<.001) (<.001) (0.355) (0.414) 

NearDepth 
Coef. 0.714 -0.114 -0.056 -0.047 0.368 0.363 0.009 -0.003 
Clust. p-value (<.001) (<.001) (0.043) (0.068) (<.001) (<.001) (0.542) (0.835) 
DK p-value (<.001) (<.001) (0.029) (0.057) (<.001) (<.001) (0.508) (0.839) 

 



 47 

Panel B: Estimates of Model IV (with Market Factors and Instrument RunsNotIND) 
  2007 2008 
  a1 a2 a3 a4 a1 a2 a3 a4 

HighLow 
Coef. -0.324 0.261 -0.004 0.297 -0.512 0.184 0.005 0.702 
Clust. p-value (<.001) (<.001) (0.762) (<.001) (<.001) (<.001) (0.860) (<.001) 
DK p-value (<.001) (<.001) (0.782) (<.001) (<.001) (<.001) (0.846) (<.001) 

Spread 
Coef. -0.461 0.064 -0.004 0.132 -0.580 0.027 -0.026 0.212 
Clust. p-value (<.001) (<.001) (0.796) (<.001) (<.002) (<.001) (0.198) (<.001) 
DK p-value (<.001) (<.001) (0.825) (<.001) (<.001) (<.001) (0.163) (<.001) 

EffSprd 
Coef. -0.220 0.044 -0.001 0.046 -0.193 0.012 -0.005 0.056 
Clust. p-value (<.001) (<.001) (0.829) (0.002) (<.001) (<.001) (0.403) (<.001) 
DK p-value (<.001) (<.001) (0.856) (<.001) (<.001) (<.001) (0.353) (<.001) 

NearDepth 
Coef. 0.431 -0.094 0.034 -0.146 0.801 -0.004 -0.033 -0.149 
Clust. p-value (<.001) (<.001) (0.085) (0.068) (<.001) (0.802) (0.410) (0.004) 
DK p-value (<.001) (<.001) (0.094) (<.001) (<.001) (0.811) (0.394) (0.004) 
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Table 7 
Low-Latency Trading and Market Quality: Time-of-Day Effects 

This table looks at how low-latency trading affects market quality when we add to the specifications time-of-day 
dummy variables to rule out the possibility that our results are driven by the potential influence of omitted variables 
related to intraday time patterns. Panel A presents Model V, which is a two-equation model for RunsInProcess and 
each of the market quality measures (HighLow, EffSprd, Spread, and NearDepth): 

, 0 1 , 2 , 3 , 4 , 1, ,

, 0 1 , 2 , 3 , 4 , 2, ,

i t i t i t i t i t i t

i t i t i t i t i t i t

MktQuality a a RunsInProcess a EffSprdNotNAS a DumAM a DumPM e
RunsInProccess b b MktQuality b RunsNotIND b DumAM b DumPM e

= + + + + +
= + + + + +

 

where DumAMi,t and DumPMi,t are dummy variables for (respectively) 9:30am to 11:00am and 2:30pm to 4:00pm. 
As an instrument for RunsInProcessi,t we use RunsNotINDi,t, which is the average number of runs of 10 messages or 
more in the same interval for other stocks in our sample excluding: (1) the INDividual stock i, (2) stocks in the same 
INDustry as stock i (as defined by its four-digit SIC code), and (3) stocks in the same INDex as stock i (if stock i 
belongs to either the NASDAQ 100 Index or the S&P 500 Index). As an instrument for the market quality measures 
we use EffSprdNotNasi,t, which is the average dollar effective spread computed using the TAQ database from trades 
executed in the same stock and during the same time interval on other (non-NASDAQ) trading venues. Panel B 
presents Model VI, a single-equation model for each of the market quality measures: 

, 0 1 , 2 , 3 , 4 , 1, ,i t i t i t i t i t i tMktQuality a a RunsInProcess a TradingIntensity a DumAM a DumPM e= + + + + +  
where only RunsNotIND is used as an instrument. All non-dummy variables are standardized as in Table 5, but a 
constant term has been added to reflect the midday period. We estimate the models using Two-Stage GMM, and 
report robust p-values using both two-dimensional-clustering and the Driscoll-Kraay methodology. We report the 
coefficients and the p-values (against a two-sided alternative) for the 2007 and 2008 sample periods.  
 
Panel A: Estimates of Model V (with Time Dummies and Instruments RunsNotIND and EffSprdNotNAS)  

   a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 

2007 

HighLow 
Coef. -0.128 -0.220 0.466 0.372 0.184 -0.005 -0.067 0.503 0.029 -0.008 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.418) (<.001) (<.001) (0.069) (0.595) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.496) (<.001) (<.001) (<.001) (0.074) 

Spread 
Coef. -0.022 -0.437 0.555 0.215 -0.121 0.002 -0.055 0.498 0.016 -0.026 
Clust. p-value (0.099) (<.001) (<.001) (<.001) (<.001) (0.680) (<.001) (<.001) (0.324) (0.056) 
DK p-value (0.361) (<.001) (<.001) (<.001) (0.002) (0.826) (<.001) (<.001) (0.325) (0.125) 

EffSprd 
Coef. -0.002 -0.184 0.380 0.039 -0.032 0.004 -0.082 0.502 0.008 -0.023 
Clust. p-value (0.830) (<.001) (<.001) (<.001) (<.001) (0.534) (<.001) (<.001) (0.660) (0.097) 
DK p-value (0.876) (<.001) (<.001) (0.027) (0.009) (0.732) (<.001) (<.001) (0.636) (0.170) 

NearDepth 
Coef. 0.033 0.150 -0.207 -0.494 0.350 -0.001 0.149 0.499 0.078 -0.072 
Clust. p-value (0.040) (<.001) (<.001) (<.001) (<.001) (0.848) (<.001) (<.001) (<.001) (<.001) 
DK p-value (0.307) (0.002) (<.001) (<.001) (<.001) (0.914) (<.001) (<.001) (<.001) (0.002) 

2008 

HighLow 
Coef. -0.194 -0.383 0.417 0.508 0.335 0.015 -0.120 0.479 -0.004 -0.061 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.071) (<.001) (<.001) (0.835) (0.031) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.499) (<.001) 

Spread 
Coef. -0.052 -0.566 0.518 0.160 0.063 0.033 -0.095 0.475 -0.049 -0.094 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (0.064) (<.001) (<.001) (<.001) (0.006) (0.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.006 -0.144 0.218 0.011 0.013 0.037 -0.232 0.485 -0.063 -0.099 
Clust. p-value (0.308) (<.001) (<.001) (0.349) (0.299) (<.001) (<.001) (<.001) (0.001) (0.001) 
DK p-value (0.017) (<.001) (<.001) (0.038) (0.005) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.037 0.160 -0.137 -0.646 0.486 0.025 0.361 0.473 0.169 -0.275 
Clust. p-value (0.001) (0.015) (<.001) (<.001) (<.001) (0.003) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
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Panel B: Estimates of Model VI (with Time Dummies and Instrument RunsNotIND) 
  2007 2008 
  a0 a1 a2 a3 a4 a0 a1 a2 a3 a4 

HighLow 
Coef. -0.159 -0.224 0.257 0.411 0.070 -0.249 -0.318 0.148 0.643 0.214 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (0.024) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (0.189) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.120 -0.309 0.060 0.351 -0.171 -0.168 -0.324 0.012 0.401 -0.064 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.130) (<.001) (0.003) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.094) (<.001) (0.011) 

EffSprd 
Coef. -0.059 -0.157 0.042 0.134 -0.069 -0.046 -0.130 0.008 0.102 -0.013 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.034) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.089) 

NearDepth 
Coef. 0.043 0.200 -0.089 -0.524 0.394 0.064 0.152 0.004 -0.708 0.498 
Clust. p-value (0.020) (<.001) (<.001) (<.001) (<.001) (<.001) (0.048) (0.761) (<.001) (<.001) 
DK p-value (0.228) (0.006) (<.001) (<.001) (<.001) (0.006) (0.067) (0.775) (<.001) (<.001) 
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Table 8 

Low-Latency Trading and Market Quality by Size Quartiles 
This table presents the results of a two-equation model of low-latency trading and market quality estimated 
separately for stocks in each firm-size quartile. As in Table 5, we estimate Model I for each of the market quality 
measures (HighLow, EffSprd, Spread, and NearDepth): 

, 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 

with RunsNotIND and EffSprdNotNas as the instruments.  We standardize each variable by subtracting from each 
observation the stock-specific time-series average and dividing by the stock-specific time-series standard deviation. 
We estimate the model using Two-Stage GMM, and report in the table p-values using standard errors that are robust 
to arbitrary heteroskedasticity and clustering on two dimensions: (i) stocks, and (ii) time-intervals. Hence, the 
standard errors are robust to serial correlations in the time dimension (for each stock) and contemporaneous 
correlation of the errors across stocks. We report the coefficients and the p-values (against a two-sided alternative) 
side-by-side for the 2007 and 2008 sample periods. 
 
   2007 2008 
Dep. Var.   a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
 

Q1  Coef. -0.413 0.427 0.012 0.505 -0.658 0.409 -0.173 0.342 
(small) Clust. p-value (<.001) (<.001) (0.688) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.352 0.470 0.054 0.560 -0.568 0.421 -0.182 0.377 
 Clust. p-value (<.001) (<.001) (0.011) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.361 0.472 -0.050 0.511 -0.432 0.473 -0.099 0.514 
 Clust. p-value (<.001) (<.001) (0.035) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4  Coef. -0.297 0.520 -0.204 0.434 -0.292 0.514 0.017 0.691 
(large) Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.466) (<.001) 

Spread 

Q1  Coef. -0.641 0.539 0.009 0.506 -0.819 0.471 -0.149 0.339 
(small) Clust. p-value (<.001) (<.001) (0.688) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.543 0.579 0.044 0.563 -0.731 0.505 -0.150 0.374 
 Clust. p-value (<.001) (<.001) (0.013) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.525 0.598 -0.039 0.509 -0.557 0.544 -0.085 0.511 
 Clust. p-value (<.001) (<.001) (0.035) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4  Coef. -0.456 0.553 -0.187 0.422 -0.411 0.597 0.015 0.691 
(large) Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.456) (<.001) 

EffSprd 

Q1  Coef. -0.204 0.331 0.014 0.504 -0.158 0.161 -0.459 0.358 
(small) Clust. p-value (<.001) (<.001) (0.700) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. -0.171 0.413 0.061 0.556 -0.150 0.197 -0.407 0.394 
 Clust. p-value (<.001) (<.001) (0.013) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. -0.196 0.408 -0.058 0.514 -0.133 0.262 -0.182 0.524 
 Clust. p-value (<.001) (<.001) (0.036) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4  Coef. -0.242 0.355 -0.296 0.429 -0.121 0.281 0.031 0.690 
(large) Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.464) (<.001) 

NearDepth 

Q1  Coef. 0.437 -0.181 -0.028 0.509 0.875 -0.072 0.562 0.196 
(small) Clust. p-value (<.001) (<.001) (0.689) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q2 Coef. 0.453 -0.210 -0.125 0.581 0.712 -0.087 0.577 0.247 
 Clust. p-value (<.001) (<.001) (0.016) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q3 Coef. 0.402 -0.229 0.100 0.499 0.686 -0.116 0.326 0.417 
 Clust. p-value (<.001) (<.001) (0.028) (<.001) (<.001) (<.001) (<.001) (<.001) 
Q4  Coef. 0.238 -0.319 0.326 0.426 0.598 -0.203 -0.044 0.705 
(large) Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.480) (<.001) 
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Table 9 
Robustness Analysis: Sample Screen and Definition of Strategic Runs 

This table presents robustness analysis for our main results in Table 5 on the manner in which low-latency trading 
affects market quality. In Panel A, we estimate Model I (as in Table 5) on a modified sample created by rejecting 
firms if the proportion of 10-minute intervals with fewer than 100 messages is above 10% (which is less stringent 
than the 250-message cutoff we use to generate our main sample). After applying the screen, the modified sample 
consists of 471 stocks in the October 2007 sample period and 456 stocks in the June 2008 sample period. We 
estimate the following two-equation simultaneous equation model for RunsInProcess and each of the market quality 
measures (HighLow, EffSprd, Spread, and NearDepth): 

, 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 

with instruments RunsNotIND and EffSprdNotNas. All variables are defined as in Table 5. In Panel B, we estimate 
Model I on our regular sample but use an alternative measure of low-latency activity: the time-weighted average of 
the number of strategic runs the stock experiences in the interval (AllRunsInProcess). Unlike our main measure 
(RunsInProcess), this alternative definition includes runs shorter than 10 messages. We estimate the following two-
equation simultaneous equation model for AllRunsInProcess and each of the market quality measures (HighLow, 
EffSprd, Spread, and NearDepth): 

, 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a AllRunsInProcess a EffSprdNotNAS e
AllRunsInProccess b MktQuality b AllRunsNotIND e

= + +
= + +

 

with instruments AllRunsNotIND and EffSprdNotNas. We estimate the models by pooling observations across all 
stocks and all time intervals. We standardize each variable by subtracting from each observation the stock-specific 
time-series average and dividing by the stock-specific time-series standard deviation. We estimate the system using 
Two-Stage GMM, and consider two types of standard errors that are robust to heteroskedasticity, serial correlation, 
and contemporaneous correlation of the errors across stocks: the first implements two-dimensional clustering and 
the second implements the estimator from Driscoll and Kraay (1998). We report the coefficients and the p-values for 
both estimators (against a two-sided alternative) side-by-side for the 2007 and 2008 sample periods.  
 
Panel A: Estimates of Model I on Modified Sample Screen 
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.326 0.474 -0.029 0.518 -0.516 0.440 -0.131 0.439 
Clust. p-value (<.001) (<.001) (0.029) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.500 0.584 -0.024 0.517 -0.658 0.514 -0.111 0.436 
Clust. p-value (<.001) (<.001) (0.031) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.192 0.405 -0.035 0.520 -0.153 0.217 -0.273 0.451 
Clust. p-value (<.001) (<.001) (0.031) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.323 -0.231 0.060 0.513 0.708 -0.107 0.410 0.334 
Clust. p-value (<.001) (<.001) (0.025) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
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Panel B: Estimates of Model I using All Runs (with Instruments EffSprdNotNAS and AllRunsNotIND) 
  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

HighLow 
Coef. -0.421 0.436 -0.053 0.550 -0.384 0.458 -0.204 0.497 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

Spread 
Coef. -0.614 0.517 -0.044 0.547 -0.544 0.518 -0.177 0.487 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. -0.215 0.367 -0.063 0.554 -0.131 0.214 -0.445 0.507 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.545 -0.169 0.129 0.522 0.688 -0.088 0.641 0.301 
Clust. p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 
DK p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.008) (<.001) (<.001) 
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Figure 1 
Clock-time Periodicities of Market Activity 

This figure presents clock-time periodicities in message arrival to the market. The original time stamps are milliseconds past midnight. The one-second 
remainder is the time stamp mod 1,000, i.e., the number of milliseconds past the one-second mark. We plot the sample distribution of one-second remainders 
side-by-side for the 2007 and 2008 sample periods. The horizontal lines in the graphs indicate the position of the uniform distribution (the null hypothesis).  
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Figure 2 
Speed of Response to Market Events 

This figure depicts response speeds subsequent to a specific market event. The market event is an improved quote via the submission of a new limit order—either 
an increase in the best bid price or a decrease in the best ask price. Subsequent to this market event, we estimate (separately) the hazard rates for three types of 
responses: (i) a limit order submission on the same side as the improvement (e.g., buy order submitted following an improvement in the bid price), (ii) a 
cancellation of a standing limit order on the same side, and (iii) an execution against the improved quote (e.g., the best bid price is executed by an incoming sell 
order). In all estimations, any event other than the one whose hazard rate is being estimated is taken as an exogenous censoring event. The estimated hazard rate 
plotted at time t is the estimated average over the interval [t–1 ms, t). The hazard rate for a response can be interpreted as the intensity of the response conditional 
on the elapsed time since the conditioning market event.  
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Figure 3 
Histogram of Stock-by-Stock a1 Coefficients  

This figure presents further evidence on how low-latency activity affects market quality by providing histograms of the a1 
coefficients from stock-by-stock estimations of Model I for each of the market quality measures (HighLow, EffSprd, Spread, 
and NearDepth): 

, 1 , 2 , 1, ,

, 1 , 2 , 2, ,

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 

The model is estimated using Two-Stage GMM with instruments RunsNotI and EffSprdNotNas. Each histogram shows the 
distribution of the a1 coefficients that result from 351 (399) separate stock-specific estimations in 2007 (2008) for one of the 
four market quality measures.  
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