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Abstract

Using aggregate, product search data from Amazon.com, we jointly estimate consumer
information search and online demand for durable goods. To estimate the demand and
search primitives, we introduce an optimal sequential search process into a model of choice
and treat the observed market-level product search data as aggregations of individual-level
optimal search sequences. The model builds on the dynamic programming framework by
Weitzman (1979) and combines it with a choice model. The model can accommodate
highly complex demand patterns at the market level, and at the individual level the model
has a number of attractive properties in estimation, including closed-form expressions
for the probability distribution of alternative sets of searched goods and breaking the
curse of dimensionality. Using numerical experiments, we verify the model�s ability to
identify the heterogeneous consumer tastes and the distribution of search cost from product
search data. Empirically, the model is applied to the online market for camcorders and is
used to answer manufacturer questions about market structure and competition and to
address policy maker issues about the e¤ect of recommendation tools on consumer surplus
outcomes. We �nd that consumer online search for camcorders at Amazon.com is typically
limited to less than 10 choice options, and that this a¤ects the estimates of own and cross
elasticities. In a policy simulation, we also �nd that the majority of the households bene�t
from the Amazon.com�s online recommendations via lower search costs. However, lowering
search cost through product recommendations to popular product pages may cause worse
choice outcomes or higher total search cost for households with atypical preferences.

Keywords: cost-bene�t analysis, optimal sequential search, demand for durable goods,
information economics, consideration sets

� Jun B. Kim is a Ph.D. student at the UCLA Anderson Graduate School of Management.
y Bart J. Bronnenberg is Professor of Marketing, and CentER Research Fellow, Tilburg University.
z Paulo Albuquerque is Assistant Professor of Marketing at the Simon School of Business, University of Rochester

1



1 Introduction

Online demand for consumer durables and search goods is large and rapidly growing. Comscore

(2007) estimates that non-travel U.S. online consumer spending in 2006 reached $102.1 billion.

Jupiter Media Metrix (2004) estimated U.S. online consumer spending of $65 billion in 2004, with

$20.2 billion on durable consumer search goods, and another $8.3 billion on information goods.

The Comscore report shows that the fastest growing e-commerce categories include durable search

goods such as video consoles, consumer electronics, furniture, appliances, and equipment, as well

as information goods such as books and magazines, music, and software. These categories saw

annual growth rates for 2007 of 25% to 50% range. PC World reported in 2007 that the �appeal

of online shopping is growing. Between August 2006 and the same month a year later, 14 percent

of the $159 billion that U.S. shoppers spent on consumer electronics was spent online, up from 5

percent a year earlier, according to the Consumer Electronics Association.�

In this paper, we seek to understand online demand and product information acquisition for

durable search goods and/or information goods at Amazon.com using aggregated histories of

search behavior. Our approach is to treat browsing behavior as the outcome of an optimal se-

quential search process across choice options for which the consumer has di¤erent expectations

and uncertainties. In addition, these choice options need not all be equally accessible and may

be o¤ered to consumers at di¤erent search costs (for instance through the use of seller sponsored

recommendation engines). Recognizing that the three demand primitives �expectations, uncer-

tainties, and search cost � can be changed by interested parties, e.g., manufacturers or policy

makers, the substantive goal of this paper is to analyze the impact of di¤erential search cost,

e.g., product recommendations, on the search and choice decisions of the consumers, and on the

competitive structure of the online market for consumer durable goods. Methodologically, we

introduce an optimal sequential search process into a model of choice and identify the demand

parameters of interest from the search data.

Table 1 presents an example of viewing data for camcorders obtained from Amazon.com. The

table lists products that were viewed by consumers conditional on viewing a particular or focal

product, the Sony DCR-DVD108. In addition, the order in which these products are listed is

determined by an Amazon.com algorithm that uses the frequency of same-session viewing of the

focal product and the other products listed1. The table does not list all existing 300+ camcorder

1This data generating mechanism is explained separately in the data section.
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options and re�ects the fact that some options are never viewed together with the focal product

by any consumer in the same online session. The data in Table 1 exist for each of the camcorder

options as the focal product. Because the products in the view list are rank ordered, we refer

to these data as the view-rank data. The paper shows that across viewed items, the view-rank

data are informative about substitution, and that from viewed to non-viewed items, the data

imply either low or lack of substitution. For durable goods, without meaningful observations

of consumer switching, the premise of this paper is that the view-rank data are in the spirit of

revealed measures of substitution.

A related premise is that the view-rank data can be used to estimate the demand systems.

This would be of interest to practitioners and policy makers because the Amazon.com view-rank

data are accessible to anyone, and contain cross-product information that is not present in reports

of sales volume or market share.

The general approach in the paper is to model the view-rank data as the aggregation across

consumers of individual-level optimal search sequences, in which each consumer tries to maximize

her expected utility minus total search cost for the camcorder options that she inspects. At the

individual level, our approach yields a probabilistic model of the optimal sequence of search, is

not subject to the curse of dimensionality, and is purposely suited to be estimable using view-rank

data.

Using data experiments, we �nd that the model is successful at identifying the parameters of

a choice-based demand system with random e¤ects. In addition, the model correctly identi�es

search cost, and search set size. Finally, we show that the model produces the correct predictions

of market shares, despite the fact that market shares are not part of our data.

From an application of our model to the Amazon.com camcorder category, we �nd the fol-

lowing results. The median (average) search set contains 6 (7.2) products and the estimated

distribution of search set size has a long tail to the right. We estimate that the cost of search

is signi�cant and is subject to consumer heterogeneity. We �nd that the search cost is lowered

for products on the Amazon.com web site that have many incoming links, measured as the num-

ber of times a particular product is recommended on the pages of other products. We also �nd

that online competition between many products is e¤ectively 0, because many pairs of products

are not searched jointly by consumers. We estimate that more than 50% of product pairs are

viewed by less than 0.1% of the population. This implies severe limits on substitution, which
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View-rank Brand Media format Optical Zoom � � � Price
1 SONY DVD 25 � � � $443.32
2 PANASONIC MINIDV 32 � � � $248.11
3 SONY DVD 20 � � � $539.00
4 SONY HD 10 � � � $665.20
5 SONY HD 40 � � � $509.84
6 SONY MINIDV 40 � � � $299.99
7 SONY MINIDV 25 � � � $363.88
8 PANASONIC DVD 30 � � � $347.55
9 SONY MINIDV 20 � � � $257.43
10 CANON DVD 25 � � � $345.99
11 SONY MINIDV 10 � � � $552.42
12 HITACHI DVD 10 � � � $378.45
13 SONY DVD 10 � � � $790.22
...

...
...

...
...

37 SONY DVD 10 � � � $752.75
38 CANON DVD 35 � � � $354.78
39 CANON DVD 35 � � � $376.57
40 PANASONIC MINIDV 32 � � � $289.39
41 SONY HD 25 � � � $554.14
42 JVC MINIDV 32 � � � $488.88
43 PANASONIC DVD 32 � � � $361.81

Table 1: Product options searched at Amazon.com, in May 2007, given search of a Sony Camcorder
with DVD media format, 40 � optical zoom, 2.5-Inch swivel screen, etc., selling at $328
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in turn cause for many cross-elasticities to be numerically zero. Finally, our results show that

not everyone bene�ts from selectively lowering search costs on products that are popular (e.g.,

through recommendations). Indeed, those consumers who have atypical preferences and who are

susceptible to product recommendations, will often be worse o¤.

This paper is organized as follows. The next section reviews the literature. Section 3 outlines

the model. Section 4 presents the data and discusses the Amazon.com US Patent on which the

data generation is based. Section 5 explains model operationalization and estimation. Section

6 presents evidence from numerical experiments to show that the model is identi�ed. Section 7

presents empirical results. Section 8 contains two policy experiments. Section 9 concludes.

2 Background

Because of non-zero search cost, product proliferation, and preference dispersion in most indus-

tries, marketing scholars and economists have long recognized that consumers do not in general

search or consider the universal choice set in an industry (e.g., Hauser and Wernerfelt 1989;

Howard and Sheth 1969; Nelson 1970; Stigler 1961). The recent popularity of the choice based

demand system has brought renewed attention to the issue of modeling choice sets and the concern

exists that not taking into account the limited nature of choice sets leads to biased estimates of

demand (Bruno and Vilcassim 2008; Chiang, Chib, and Narasimhan 1999; Goeree 2008). Papers

in this tradition specify a probability of a product being known (Goeree 2008) or accessible (Bruno

and Vilcassim 2008) that is not the outcome of an optimal search process but simply constitutes

a consumer�s response to �rms�actions. In this paper, we advocate that such responses can only

be measured in the context of how they a¤ect the consumer�s search strategies. In addition, if one

has access to outcomes of search behavior, as we do here, those become informative of important

demand primitives when viewed through the lens of optimal information search.

Understanding consumer information search has been an important topic both in marketing

and economics and hence research on consumer information acquisition abounds. Starting with

Stigler (1961), early research on consumer information acquisition focused on consumers searching

for price-quotes in homogeneous goods markets at some e¤ort. Extending the scope of consumer

search to issues of market outcomes, several authors theorized that limited consumer information

search may have a signi�cant impact on market structure (Diamond 1971; Nelson 1974; Anderson

and Renault 1999). In this paper, we model consumer search behavior not only to evaluate market
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structure issues, but also to evaluate the impact of changing search costs by �rms or by online

sellers on consumer utility.

We model the consumer�s willingness to search for choice options by assuming that the con-

sumer is motivated to search only if she bene�ts from doing so. Hence, we are interested in

modeling search behavior as the outcome of a reasoned process. There is already a tradition in

the consideration set literature to represent consideration sets as the outcome of non-sequential

search (Lattin and Roberts 1991; Mehta, Rajiv and Srinivasan 2003). This tradition rests on the

�xed sample strategy proposed in Stigler (1961) as an optimal search policy for a consumer in a

commodities goods market under price uncertainty.

In contrast, McCall (1965) and Nelson (1970) argue that a sequential search strategy is optimal

in terms of total cost2 and since we additionally believe that online search is more correctly

captured as a sequential process, we will model online search for information in this study as a

sequential process and use theory of optimal sequential search. Seminal contributions to sequential

search theory have been made by Weitzman (1979), in the case of single agent problems and by

Reinganum (1982, 1983) in the case of multiple agent problems. We seek to implement the optimal

search strategies of these papers into a single-agent random utility choice model.

In contrast to a large volume of theoretical work, there has been relatively limited empirical

research on consumer information search using secondary data. Two recent exceptions are papers

on empirical search for commodities (Hong and Shum 2006) and for di¤erentiated products (Hor-

taçsu and Syverson 2004). In the former, the authors devise a model that translates the price

dispersion into heterogeneous search cost across population. In the latter, the authors develop a

model to translate the utility distribution into heterogenous search cost. Moraga-Gonzáles (2006)

contains a comprehensive review of several empirical applications. In our case, like Hortaçsu and

Syverson (2004), we model search for di¤erentiated products, but unlike them, we have collected

direct measures of search outcomes, allowing us to estimate a more general demand model. For

instance, in contrast to the homogeneous demand model in Hortaçsu and Syverson (2004), we

estimate both heterogeneous consumer preferences and search costs in a di¤erentiated product

category.

With our choice model that includes optimal sequential search, we seek to explore the in-

�uence of online retailers� product recommendations on consumer search behavior and choice
2Actually, block-sampled search strategies have been argued to be even better (see e.g., Morgan and Manning

1985). However, in online search such strategies can not be executed and therefore they are not considered here.
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outcomes. Given the popularity and ubiquity of recommendations at many online stores, it is

of practical and academic interest to investigate how recommendations a¤ect the consumer in-

formation and product search decisions. In behavioral work, Huang and Chen (2006) report

that the recommendations of other consumers in�uence the choices of subjects more e¤ectively

than recommendations from an expert. Senecal and Nantel (2004) also show that a retailer�s

recommendations will ultimately a¤ect demand.

3 A demand model with costly sequential product search

3.1 Utility

Our modeling assumptions at the individual level are as follows. Consumer i has a utility for

product j = 1; :::; J that is equal to

uij = Vij + eij (1)

with

Vij = Xjbi

bi � N(b; B)

eij � N(0; �2ij):

We assume the matrix B is diagonal. The outside good is the (J + 1)st alternative, and the

consumer is aware of the option not to buy. This option does not require a search and is available

at no cost.

The utility function thus contains an expectation Vij and an unknown component of utility,

eij . Our interpretation is that this decomposition partitions what the consumer knows and does

not know into Vij and eij , and the consumer�s goal of search is to resolve eij : This is not a limiting

assumption.3 Knowledgeable consumers may have lower variance eij�s and less knowledgeable

consumers may have higher-variance eij�s. We assume that eij is zero-mean. Many important

attributes for a product are accessible from landing pages or general category information displays

without retrieving the product web page,4 facilitating the existence of an expectation Vij . When

3Our interpretation is consistent with Nelson (1970) who de�nes consumer search as an information problem to
fully evaluate the utility of each option.

4 In the digital camcorder category at Amazon.com, a consumer already has access to important product char-
acteristics in camcorder such as brand, price, media format, zoom, pixel number, and the dimension.
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consumers request the product detail web page, they see more details about the product which

resolves eij :

Resolving eij upon search comes at some cost. We introduce product and individual spe-

ci�c search cost, cij ; which we interpret mainly as time spent on discovering and evaluating the

product.5 We model search cost as a log normally distributed random e¤ect

cij / exp (Lj
i) ; (2)

with


i � N(
;�)

where the matrix � is diagonal. The lognormal speci�cation ensures that the sign of cij is consis-

tent with theory, i.e., positive: The cost attributes Lj describe the accessibility of product j. For

instance, it may contain the number of links into product j�s page or the number of times it is

recommended, etc.

The consumer�s search and choice process are the outcome of her desire to maximize expected

utility minus total search cost. This involves contrasting the marginal bene�t and marginal costs

of search. The objective of the analyst is to estimate b; B, 
; and � from data.6

3.2 A model of sequential search

In sequential search, a consumer decides to stop or continue search each time after having searched

a product. The theory of optimal sequential search states that consumers only continue search if

the marginal bene�ts of doing so outweigh the marginal costs.

Utility uij of consumer i for product j is Vij + eij : De�ne u�i at any stage of the search process

as the highest utility among the searched product thus far. The consumer�s expected marginal

bene�t from search of product j is

Bij (u�i ) =
Z inf

u�i

(uij � u�i ) f (uij) duij ; (3)

5Search cost is di¤erent between consumer packaged goods and consumer durables. For packaged goods in which
experience is more easily obtained, mental maintenance and processing cost constitute the majority of search cost
(Lattin and Roberts 1991). For one-time purchases such as consumer durable goods, it is more likely that search
costs are determined by the time spent on searching for more information and the need for evaluation. Therefore
in the context of digital camcorders, we interpret marginal search cost as the opportunity cost of time invested in
identifying and evaluating another candidate product.

6 In the empirical analysis, we will assume that �2ij = 1, but in the modeling section we wish to keep the level of
product uncertainty general.
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where f(�) is the probability density distribution of uij . The marginal bene�t is the expectation

of the utility for j given that it is higher than u�i , multiplied by the probability that uij exceeds

u�i :
7 Note that the bene�t of search only depends on the arrangement of utility above u�i : The left

tail of the utility distribution below u�i can be arbitrarily rearranged without a¤ecting search or

choice.

The goal of the consumer is, given the current best option, to maximize expected utility

minus incurred search cost over a set of options that, at the individual level, are characterized by

product speci�c mean utilities, Vij ; product speci�c search costs, cij ; and possibly product speci�c

uncertainties, captured by �2ij . This implies that the consumer continues search if there exists at

least one j such that

cij < Bij (u�i ) ; (4)

i.e., if the expected marginal bene�t of searching is larger than the marginal cost, cij .

The optimal sequential search strategy can be formalized as follows. First, partition the set

of options into Si [ �Si; with Si containing all searched options and �Si containing all non-searched

options. All decision relevant information about Si is contained in u�i = maxj2Si fuij ; 0g ; provided

we assign 0 to the utility of not buying anything.

At any point in the search process, the state of the system is given by
�
u�i ;

�Si
�
: De�ne the value

function W
�
u�i ;

�Si
�
as the expected (discounted) value of following an optimal search policy, from

the current state going forward. This value function must satisfy the following Bellman equation

(Weitzman 1979)

W (u�i ; �Si) = max(u
�
i ;max
j2 �Si

(�cij + �i � [F (u�i ) �W (u�i ; �Si � fjg)| {z }
uij�u�i

+

Z 1

u�i

W (uij ; �Si � fjg)f(uij)duij| {z }
uij>u�i

])) (5)

This equation says that from state
�
u�i ;

�Si
�
; the consumer can terminate search and collect

u�i ; or the consumer can search any j 2 �Si: In the latter case, the consumer gets in expectation
7This can be seen by writing (3) alternatively as

Bij (u�i ) = (1� Fj (u�i ))�
Z inf

u�i

(uij � u�i )
f (uij)

(1� Fj (u�i ))
duij ;

which is the multiplication of the chance that the utility draw is larger than u�i and the expected value of a truncated
draw from the distribution of uij above u�i
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F (u�i ) �W (u�i ; �Si � fjg) +
R1
u�i
W
�
uij ; �Si � fjg

�
f (uij) duij , which she seeks to maximize across j:

Because all online search in a single session is conducted in a short time span, we set the discount

rate �i to 1.

3.3 The optimal strategy

The solution to the above dynamic program is to continue searching until a utility u�i is discovered

that is larger than some limit, which in turn depends on how much option value is still left in

the unsearched set. This limit depends on a quantity that is called a �reservation utility�. To

de�ne this concept, each consumer i has a reservation utility zij for each product j that � if

she had already found a product with that utility �leaves her indi¤erent between searching and

not searching j. In other words, the reservation utility zij obeys the following equation (see also

equation 4, above):

cij = Bij (zij) =
Z inf

zij

(uij � zij) f (uij) duij : (6)

Thus, the reservation utilities solve zij = B�1ij (cij) : For the moment, assume that the reservation

utilities can be computed and are unique. The estimation section establishes that Bij is monotonic

and a separate appendix provides the details of computation.

The optimal search strategy (see, e.g., Weitzman 1979) that solves the consumer�s maximiza-

tion problem of equation (5) has three components, a selection rule, which determines the ordering

of the search sequence, a stopping rule, which determines the length of the search sequence, and

a choice rule.

1. Selection rule: Compute all reservation utilities zij , and sort them in descending order. If a

product is to be searched, it should be the product with the highest reservation utility zij

among the products not yet searched.

2. Stopping rule: Stop searching when the highest utility obtained so far, u�i ; is larger than

maxj2 �Si (zij) among the unsearched items.

3. Choice rule: Once search stops, collect u�i by choosing the maximum utility alternative in

Si:

We note that this search and choice process can accommodate that some consumers do not

search at all. Indeed, consumers for whom maxj (zij) < 0 for all j will not �nd it worth their time
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to search brands. They will choose the outside good.8 The same process can also accommodate

that some consumers just browse but do not buy. For such consumers, maxj2Si (zij) > 0; but

maxj2Si (uij) < 0: These two statements are not in con�ict, as will be seen below. These consumers

will also choose the outside good.

Two important points need to be made. First, given a choice set, the choice model above is

not a probit model. For instance, given the stopping rule above, search beyond item k is continued

only if the utility draw for eik is low enough. This implies that conditional on observing a speci�c

choice set, the eij are not distributed normal with mean 0 and variance �2ij : Therefore, given

search, choice probabilities do not follow a standard probit.

Second, Chiang, Chib and Narasimhan (1999) mention that identi�cation of choice sets (or in

this case: search sets) is subject to the curse of dimensionality. Indeed, in a non-sequential search

process, with J possible alternatives, there exist 2J possible search sets. This large number

of permutations would render the computation of the search frequency of any given product

impossible with universal choice set sizes of J = 300+ at Amazon.com. However, an important

computational windfall of the sequential search process is that it is not subject to the curse

of dimensionality. Given the selection rule above, there are only J possible choice sets at the

individual level. Given a set of individual level parameters, there will be an ordering of the choice

alternatives along their reservation utilities zij , and the consumer optimally samples these choice

alternatives in descending order. Thus, if the zij can be computed, the contents of a search set

of size m is known. In sum, whereas, across consumers, the model allows for the existence of any

of the 2J possible search sets as a consequence of consumer heterogeneity, at the individual level

only J of these sets can be an outcome of the optimal sequential search process that belongs to

a particular vector of individual parameters.

Before completing the model, we investigate some properties of the search sequence by means

of an example.

3.4 Some characteristics of the search sequence

In Figure 1, we plot the relation between c; �2; and z, under the assumption of normality of

eij . The left hand panel varies search cost from 0 to 2. For reference, in this example we choose

Vij = 1, and �2ij = 1: The zij ; the reservation utility, or more intuitively the relative attractiveness

8Note that because we estimate our model on search data, we assume that all consumers search. However, the
model can actually accommodate non-search behavior.
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Figure 1: The relation between search cost, c; product uncertainty, �2; and search attractiveness,
z:

of searching j; is decreasing in its search cost. As search cost increases, zij goes to Vij � cij .

This implies that as search costs increase relative to product uncertainty, the attractiveness of

search tends to go to the expected utility net of search cost. On the other hand, if search costs

are low relative to product uncertainty, or product uncertainty is high relative to search cost, zij

goes to in�nity. Indeed, if it is free to search, the option value (upside) of searching any product

that has utility support on R+ is in�nite.

The relation between �2 and z in the right hand side panel shows the option value of noisy

prospects. For reference, in this graph Vij = 1 and cij = 0:1: As outlined above, in sequential

search, the search value of a product is determined by its upside. That is, anything lower than

the current maximum u�i is irrelevant. Per consequence, the reservation utility zij is increasing

in product variance. As a natural consequence, if novice consumers are characterized by having

high �2ij relative to Vij ; they will tend to have higher zij and thus search more than consumers

who have more experience. For completeness, we note that zij increases linearly in Vij .

3.5 Inclusion probabilities and set occurrence

Our data (see the next section) are a function of the frequency with which products are being

viewed or searched, and therefore we seek to derive the probability �ij that a given product j is

included in the optimal search set of consumer i.

Consider that we know zij and Vij for each individual and product. With some abuse of
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notation, denote the rank of zij by r; with r(1) returning the index j of the highest ranked zij

and r(J) returning the index j with the lowest ranked zij for individual i: From these de�nitions,

�i;r(1) is the inclusion probability of the product with the highest ranked zij for consumer i; and

�i;r(j) is the inclusion probability of the product with the jth highest ranked zij :

The contents of set Sik is fully determined by the selection rule (ranking on z) and the stopping

rule (the size k). The probability �i;r(j) that product r(j) is in the set, is equal to the probability

that the �rst j � 1 draws of utilities all fell short of zi;r(j) (which is less than zi;r(j�1) by the

selection rule above). Thus, the inclusion probability of product r(j) is

�i;r(j) = Pr
�
maxj�1k=1

�
Vi;r(k) + ei;r(k)

�
< zi;r(j)

�
=

j�1Y
k=1

F
�
zi;r(j) � Vi;r(k)

�
; j > 1 (7)

with �i;r(1) = 19 and F (�) is the cumulative probability distribution of eij , which in our case is

the normal distribution with mean 0 and variance �2ij :

There are three useful properties of these probabilities of inclusion.

1. First, it is trivial to show that �i;r(j) > �i;r(j+1); or the inclusion probability of the (j + 1)
th

product is always less than the inclusion probability of the jth product.

2. Second, given the sequential nature of search and the selection rule of the optimal strategy,

the probability that r (j) and r (j + k) occur together in a set is equal to the probability

that r (j + k) is in the set.

�i;fr(j) and r(j+k)g = �i;r(j+k) = min
�
�i;r(j); �i;r(j+k)

�
; (8)

where the last step is from the �rst property. In the estimation section, we will use the last

formulation of this property, when we need to determine the probability that two product

j and k are jointly in the set.

3. Third, given the sequential nature of choice and the independence of the eij; the probability

that the set Sik occurs can be computed as follows. First, recall that Sik is the optimal set

of size k for individual i: The probability that Sik occurs is equal to the probability that

search continues beyond r (k � 1) minus the probability of continuing search beyond r (k) :
9Because our data are predicated on the occurrence of search, consumers search at least one product.

13



This is equal to the chance that r (k) is in the choice set minus the chance that r (k + 1) is

in the choice set of consumer i: Thus

Pr
�
Si;r(k)

�
= �i;r(k) � �i;r(k+1); (9)

This concludes the statement of the individual-level model. The aggregation to the level at

which Amazon.com reports its data is explained in the estimation section. For completeness, it

is also explained that an alternative to the approach in this subsection is to use draws of the eij

and compute realizations of the process. This would lead to less computation at the individual

level, but at the aggregate level we would have to use a frequency estimator for market level

behavior, whereas using the model above, we can integrate over a probability model with far

greater precision.

4 Data

4.1 The view-rank data

We have collected, on a daily basis, the view-rank data for all camcorder products from May 2006

until October 2007. The data are also updated on a daily basis by Amazon.com. To ensure that

the analysis is based on a su¢ ciently large sample of viewing behaviors, and because we do not

have information about the temporal window used by Amazon.com in computing the view-rank

data, we aggregated the view-rank data to the monthly level.10 We use data from the month of

May 2007.

In total, we extracted the top 200 camcorders from the Amazon.com website, based on sales-

rank. We removed the niche players Samsonic and DXG who cater to the lowest-price tier only

with di¤erent types of camcorders and which have very low sales-rank. We also removed from the

analysis those camcorders on which we had no observations of media format, and all camcorders

of professional grade. After applying these data �lters, we are left with 113 choice options from

10 manufacturers. The summary statistics of the products are shown in Table 2.

10We use average sales price in our analysis. In the data, we observe that the positions of products in the view-
rank lists �uctuate over time. This calls for an averaging mechanism for the di¤erent positions of a product in the
lists over time. For this averaging procedure, we use the percentile ranking similar to Bajari, Fox and Ryan (2007).
In the percentile ranking, the product with the highest rank among J products is coded as J , not 1. Then we
normalize the rank of product j at time t as

r̂jt =
rjt

maxkfrktg
(10)
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Attributes Ranges

Brand Sony (33), Panasonic (21), Canon (16), JVC (15), other (28)
Media Formats MiniDV (36), DVD (34), FM (24), HD (19)
Price $ 478 (mean), $ 273 (std. dev.)
Form Compact (21), Conventional (92)
High-De�nition Yes (14), No (99)
Pixel 1.77M (mean), 1.51M (std. dev)
Zoom 17.6 (mean), 12.0 (std. dev.)

Table 2: Description of the choice options in the empirical data (with frequency of occurrence in
parenthesis)

All 113 products have their own view-rank lists, i.e., all of the products have a list from which

we observe which other products are closely related, in the order of decreasing relationship. On

average, a given product appears 39 out of 113 times on other products�view list with a standard

deviation of 26. The minimum number of appearances is 0 while the maximum is 109.

Table 3 gives the results of a descriptive regression of the number of appearances on the

viewlists.11 Note that Sony, Panasonic, and Canon appear most frequently of the view-rank lists.

Further, hard drive storage, high de�nition, and pixel size improve the number of appearances,

while higher price reduces it. We conclude that the number of appearances on the view-ranks

depend on demand drivers such as product attributes and prices.

We point out the rich information embedded in the Amazon view-rank data. For every focal

product k, Amazon.com provides a list of top N most related products among the remaining J�1

products.12 Also, product k may appear on the view-rank lists of other J�1 products. Therefore,

the data reveal a complex pattern of relations between a given product k and the other J � 1

products.

Lastly, we discuss the type of consumers who we believe are represented in the product search

data. Moe (2003) classi�es online store browsing behavior of consumers into four di¤erent cat-

egories - directed buying, search and deliberation, hedonic browsing, and knowledge building.

She also classi�es the contents of e-commerce web pages into three di¤erent categories: product,

category, and information pages. She reports that the consumers in directed buying mode will

Once we compute r̂jt, the percentile ranking of the product j at t, we compute the average ranking of product j as
the mean of the daily percentile ranking as r̂j = 1

T

P
t r̂jt.

11 In this regression, all categorical variables are �e¤ects coded,�i.e., rather than setting the response to one level
of these variables to 0, we let the response to that level be the negative sum of the e¤ects of all remaining category
levels. For instance, the e¤ect for the brand Mustek is the negative sum of the e¤ects of all remaining brands.
12During the data collection period, Amazon.com listed up to 45 products that are related to the focal product.
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Variable � std.err.

Intercept 53.32 20.65
Sony 34.40 6.62
Panasonic 22.73 5.77
Canon 24.06 6.12
JVC -0.47 6.82
Samsung 8.01 6.48
Sanyo -37.51 13.22
Aiptek -28.34 9.48
Pure Tech. -15.70 11.12
Hitachi 15.65 11.80
Musteka -22.81 �
MiniDV -0.94 3.50
DVD -10.31 3.88
FM -10.20 8.48
HDa 21.46 �
Compact -0.09 5.85
Non-Compacta 0.09 �
High De�nition 12.80 3.42
Non High De�nitiona -12.80 �
Zoom 0.29 0.263
Screen Size -5.60 7.73
Pixel 8.19 2.19
Price -58.41 12.31
Link 1.87 0.28
R2 0.673
acategorical variable are e¤ects-coded

Table 3: Descriptive regression of the frequency of product appearance against product charac-
teristics
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frequently visit the product page while the consumers in the mode of search and deliberation focus

on both product and category pages. Hedonic browsers focus on category pages while consumers

in knowledge building will focus on information pages. Montgomery et. al (2004) also identify

that the focus of the consumers in the buying mode is product detail pages. Amazon.com�s

product search data are based on the number of consumers who requested product detail pages

from the Amazon.com server. Therefore, consistent with previous research, we conjecture that

Amazon.com�s product search data predominantly re�ect the behaviors of consumers in either a

buying or search phase with a vested interest in the product category.

4.2 Other measures of search at Amazon.com

We now discuss other data that are available at Amazon.com. At each product detail page, Ama-

zon.com lists up to four top products purchased by consumers who searched the product in the

current detail page. These product links serve as shortcuts to other closely relevant products,

thereby reducing consumers�search costs for potentially attractive products. We use this infor-

mation as an explanatory variable that a¤ects search cost. For instance, we hypothesize that a

product with a large number of incoming links to its page will have a smaller search cost compared

to products with a low number of incoming links. Hereafter, we use Lj as the total number of

incoming links to product j:

4.3 Amazon.com�s generation of view-rank data

Amazon lists a set of closely related products for each focal product in the order of decreasing

�strength� of relationship. According to the Amazon.com US Patent 6,912,505 B2 (Linden et

al. 2005), the strength of the relationship between two products, j (focal product) and k (related

product), is measured by a commonality index, (CIjk), de�ned as

CIjk =
njkp
nj �
p
nk
; (11)

where nj and nk are the numbers of consumers who viewed products j and k, respectively, and

njk is the number of consumers who viewed products j and k together in the same session. Note

that nj , nk � njk and that the commonality index is bounded between 0 and 1. The higher the

commonality index is, the stronger the relationship is between two products. Amazon.com orders

its view data, exempli�ed in Table 1, according to the computed CIjk for each product. So, if the

commonality index between product j and k is larger than between product j and `, k appears
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before ` on the view list for j. If we represent the view-rank of k over ` on the view list of j by

(j; k) � (j; `) then

(j; k) � (j; `)  ! CIjk > CIj` (12)

From the view lists in our data, these inequalities are observed directly13. We treat these pair-wise

inequalities as the dependent variables in our analysis. To this end we use the indicator variables,

Ij;k`, de�ned as

Ij;k` =

�
1 if (j; k) � (j; `)
0 otherwise

(13)

For each product j, there are 0:5�(J � 1)�(J � 2) unique inequalities de�ned by (12). Therefore,

across J products, we theoretically have 0:5 � J � (J � 1) � (J � 2) observed inequalities or

pairwise conditional view-ranks. In principle, these data therefore contain a lot of information

about substitution patterns, because given our sequential search model, the pairwise data are

informative of the degree to which two products are related in search, and therefore in expected

utility Vij (as well as other factors such as search cost).

As mentioned above, our empirical study involves 113 products. For these products, and taking

into account that Amazon.com may truncate view-lists, the total number of observed pairwise

ranks is 401,647. The rank information may contain less information compared to continuous

data such as the share information. But, there are many observations of view-ranks and given

the search model, such data are informative about substitution and consumer heterogeneity.

5 Estimation

5.1 General approach

The general approach to estimating the parameters of our model is as follows. Given a set of

parameters and draws from the heterogeneous distributions, we �rst use the optimal sequential

search model to make forecasts of the unobserved commonality indices CIjk in Equation 11. Below

we show how to compute these forecasts. Second, we assume that the model�s forecast of CIjk

di¤ers from its true value by a median-zero error process: Third, we construct a goal function

that counts the number of times that the model correctly predicts the cases where Ij;k` = 1 (see

Equation 13). Finally, we maximize this goal function using the Di¤erential Evolution algorithm

13Not all pairwise combinations are observed. Some products are viewed so infrequently that the view list is
truncated by Amazon.com. While, we do not know the view-rank among products that are not on the view list, we
do know the view ranks among all listed products, and the view ranks of pairs of listed and non-listed products.
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(Price and Storn 1997). Our estimator is a maximum score estimator (Manski 1975). This

estimator is semi-parametric and maximizes the matches between actual and predicted relations

or inequalities.

We decompose the true commonality index between two products, j and k, as

CIjk = cCIjk(X;�)� �jk (14)

where CIjk is the unobserved, true commonality index, cCIjk(X;�) is the model�s prediction of
the commonality index given data X and parameters �, and �jk is median zero error process,

which include measurement or sampling errors that we add directly to the dependent variables

(see Bresnahan 1987 and Bajari et al. 2007 for a similar approach).

A major advantage of the maximum score estimator is that it does not impose knowledge about

functional form of the error distribution. Speci�cally, we merely assume that the error term �jkjX

in Equation 14 is independent and identically distributed across k, within a given product j: We

also assume that the measurement errors on CIjk are independent (but not necessarily identically

distributed) with respect to j. This allows for heteroskedasticity of unknown magnitude among

the CI�s across di¤erent focal products and thus for a more �exible error distribution than a

spherical assumption in which the measurement error on CIjk is assumed to be i.i.d. across j and

k.

Next, we tie the above assumptions to our observations. Unfolding the relations among the

products into a set of pairwise view-ranks, e.g., product j is viewed more often with k than with

`, we obtain

Ij;k` = 1(CIj` < CIjk)

= 1(cCIj`(X;�)� �j` < cCIjk(X;�)� �jk)
= 1(�j;k` < gj;k`(X;�)) (15)

where �j;k` = �jk � �j` and gj;k`(X;�) = cCIjk � cCIj`. Since the error term �jk is assumed to be

i.i.d. with a median equal to zero for a given j, the di¤erence between two such error terms given

j will also have a zero median, i.e., med(�j;k`jj;X)=0. A condition for consistent identi�cation

in the maximum score estimator is that the response probabilities are known almost everywhere

(Manski 1988). We further require one continuous variable in X to break ties in the score, and for

this purpose we use price. Finally, we note that the maximum score estimator does not depend on
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the functional form gj;k` for its identi�cation (Fox 2007) and can be nonlinear in terms of model

parameters (Matzkin 1993).

Next, we discuss the sources of the measurement errors �jk. First, it is possible that there is

sampling or measurement error in Amazon.com�s computation of the CIjk: Second, although we

mainly model consumers engaged in optimal search behavior, the Amazon.com data may contain

traces of consumers in other modes such as hedonic browsing. Third, we aggregate and average

a month�s data to generate the pairwise ranks among the products in the product search data.

Combined, these forces may introduce measurement error in the dependent variable.

The score function in our empirical analysis is de�ned as

s (�) =
X
j

X
k 6=j

X
` 6=j;k

1(Ij;k` = 1; cCIjk(X;�) > cCIj`(X;�)) (16)

The score function increases by one when a simulated pairwise rank corresponds to the observed

pairwise rank on the view-rank lists which we show as an example in Table 1. The maximum

score estimator is

�� = argmax
�
s (�) (17)

Below, we provide computational details on how to compute the forecasts cCIjk. We also
explain how the reservation utilities zij can be computed e¢ ciently in estimation.

5.2 Computational details

The commonality index From the de�nition of the commonality index used by Amazon.com,

the estimator for CIjk is cCIjk (X;�) = n̂jkp
n̂j
p
n̂k
: (18)

where n̂j is equal to the forecasted number of simulated individuals that has searched j (given

X and �) and n̂jk is equal to the forecasted number of individuals that has jointly searched

j and k: We can approximate cCIjk to an arbitrary degree of precision by computing it on the
basis of the simulated search histories of many pseudo households (draws from the heterogeneity

distributions). In terms of our model, the prediction n̂j is equal to the sum across individuals of

the probability that product j is included in the search set, i.e., using Equation (7),

n̂j =
X

i=1;:::;I

�ij ; j = 1; :::; J: (19)
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where I is the total number of simulated individuals. Further, the prediction n̂jk is equal to the

sum across individuals of the probability that products j and k are both included in the search

set, i.e., using Equation 8,

n̂jk =
X

i=1;:::;I

min (�ij ; �ik) ; j; k = 1; :::; J: (20)

Therefore, the prediction for CIjk is equal to

cCIjk (X;�) = P
imin (�ij ; �ik)pP
i �ij

pP
i �ik

(21)

Note that since 0 < cCIjk (X;�) < 1 by construction, the predictor is robust.
Computing reservation utilities The right hand side of Equation 21 involves aggregations of

probability distributions of optimal search sets. These optimal choice sets involve individual level

optimal search sequences over product options sorted in descending order of reservation utilities,

zij : To compute the reservation utilities zij in estimation, we develop the following results in

Appendix A. First, the reservation utilities follow

zij = Vij + �

�
cij
�ij

�
� �ij ; (22)

where �
�
cij
�ij

�
is a scalar function that translates standardized search cost cij=�ij into a multiplier

on �ij : Thus, given the assumptions of the model, the reservations utilities are simply the expected

utilities Vij plus a function of search cost cij times the uncertainty about the product �ij :

Second, the appendix shows that the function � (x) solves the following implicit equation

x = (1� � (�)) (� (�)� �) ; (23)

where � is the cumulative standard normal distribution, and � is the standard normal Hazard

rate, � (�) = (1� � (�)) in which � is the standard normal probability distribution function. The

function x (�) in Equation 23 is further shown to be continuous and monotonic. Hence, the inver-

sion to the function � (x) exists. Although the precise solution of Equation 23 is computationally

expensive, it can be solved once for a large set of x outside the estimation algorithm. That is,

� (x) does not need to be solved in estimation because it does not directly involve any model

parameters. Armed with a table of x and � (x) ; we can �during estimation �substitute x = cij
�ij

and look up � (x) from the table, possibly using an interpolation step if the table of � ( ) only cov-

ers a neighborhood of x = cij
�ij
: These computational steps in estimation can be made arbitrarily
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precise and are inexpensive. Thus, we do not need to iteratively solve the reservation utilities in

estimation.

Third, this decomposition of zij has intuitive appeal. If search cost cij is low, relative to

product uncertainty �ij ; �
�
cij
�ij

�
can be shown to be large and positive. Thus, in this case, the

reservation utility or attractiveness of search, zij ; is equal to Vij plus multiples of �ij : With low

cost, consumers focus on the upside of the utility distribution. On the other hand, if cij is large,

then �
�
cij
�ij

�
turns out to become negative and the reservation utility zij is less than Vij .14 In

this case, the stopping rule of optimal search will be met earlier, because it is likely that the

realized utility draws of uij is greater than the low reservation utilities zik of products in the set

of unsearched products k.

5.3 Discussion of identi�cation

In this section, we discuss the empirical identi�cation in an informal manner. We �rst discuss

the identi�cation of heterogeneity in consumer tastes. The random-e¤ects in choice-based de-

mand model is identi�ed from deviations in substitution patterns between the homogenous and

heterogenous model. It is well known that such deviations are di¢ cult to identify from sales

data(e.g., Albuquerque and Bronnenberg 2008, Petrin 2003). Thus, from just observing sales, it

may be di¢ cult to estimate heterogenous tastes. However, in our case, we have direct information

about whether two products are searched together in a single session. As shown in Berry et. al

(2004), having information about other alternatives considered is essential in identifying consumer

heterogeneity.

In a sense, the critical unobserved quantities in our model are nj and njk where j; k = 1; : : : ; J .

Once we have the estimates for these quantities, given our results from the optimal search sequence,

we can infer the relative popularity of product j and its perceived similarity with k. However,

directly estimating nj and njk is subject to the curse of dimensionality since the number of

parameters required to estimate is J(J�1)2 . For J = 113, which is the number of products in our

empirical analysis, this number is 6,328. Instead, we parameterize and estimate nj and njk as an

14We note that these observations are not unique to the Normal distribution. We have derived zij for the Uniform
distribution also. For this case, if utilities are distributed uniform on [Vij � �ij ; Vij + �ij ] ; we also obtain

zij = Vij + �

�
cij
�ij

�
�ij ;

with � () = 1 � 2
p
(): In other words, the decomposition in Equation (22) is virtually identical for the Uniform

distribution.
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aggregate outcome of rational consumers making optimal search decisions and hence reduce the

number of parameters in a drastic manner.

Given that we use a score estimator, we can only set-identify the model parameters. However,

since the number of pairwise view-ranks is very large (i.e, more than 400,000), we are able to

almost point-identify the model parameters.

5.4 Inference

Horsky and Nelson (2006) introduce two methods to statistically test the signi�cance of the math-

ematical programming based estimators in which the dependent variables are pairwise comparison

data. The �rst statistical test compares model �t with and without the parameter of interest to

check its signi�cance. The second method computes the standard error by Jack Knife or Boot-

strap. Since the second type is much more computationally intensive, we use the �rst type. The

idea behind the �rst type is to compute and compare the proportion of correctly predicted in-

equalities between the two models. If s (�) is the score given the parameter vector � in Equation

(16); this proportion is p = s(�)
smax

. We compute this proportion for the full model (pf ) and for a

restricted model (pr) in which we �x a given parameter to 0. We can statistically test the loss of

�t using the standard test for the di¤erence between two proportions. Thus, in the full model, we

estimate all the model parameters freely while in the restricted model we keep the test parameter

to 0. We reject the null hypothesis that jth parameter is 0 if (Horsky and Nelson 2006)

PR =j pf � prr
(
pf + pr
2

)(1� (pf + pr)
2

)
2

M

j� � (�=2) (24)

where we use standard normal distribution (�) for testing since we have a large number of obser-

vations. With n parameters to be estimated, the above testing requires n re-estimations of the

restricted models, one for each parameter.

6 Data experiment

We conducted a numerical experiment to verify that the model can be identi�ed from view-rank

data. To this end, we created 32 product options, from 5 attributes that were arbitrarily named

�Sony,��Panasonic,��Zoom > 10�,��Media: mini DV,�and �Media: Hard Drive.�In addition,

we added a continuous attribute �price.�Finally, we assigned a value for Product Links, Lj to

each of the 32 options.
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We chose a random e¤ects speci�cation on all product attributes, a �xed e¤ects speci�cation

for search cost, cij = exp (
0 + 
1Lj) ; and assumed a set of values for the parameters. As is

often the case in empirical models of choice, we need to �x the variation of the e; which led our

choice of �2ij = 1 as a normalization.
15 The assumed values for the parameters were chosen with

similar magnitudes as those we obtained from preliminary empirical results. Next, we drew 50,000

pseudo households from the distribution of parameters and, for each of these pseudo households,

computed the Vij ; zij and other relevant quantities to obtain the optimal search sequence and

choice. We then aggregated these sequences according to the recipe used by Amazon.com16 to

obtain the lists of view-ranks similar to those exempli�ed in Table 1.

We used the generated view-ranks in estimation. To estimate the model, we generated 3,000

pseudo households: At each candidate parameter vector, we compute the draws of the expected

utilities Vij and the reservation utilities zij to compute the inclusion probabilities �ij . Note again

that the zij takes search cost into account, i.e., low search cost leads to high zij ; etc. The 3,000

draws for the �ij are aggregated and computed according to Equation 21, the forecast of the

commonality index given a set of parameter values. We use this forecast to predict the view-rank

lists which in turn can be matched against the generated view-rank lists.

The goal function in Equation 16 was maximized using the Di¤erential Evolution (DE) algo-

rithm of Storn and Price (1997). This algorithm is a heuristics-based, direct search method for

function maximization.

We discuss two runs of the model. The two runs are based on two separately generated data

sets and they also di¤er in how many iterations the DE algorithm was run. In neither case were

improvements in the score observed in the last 25 iterations. Table 4 shows the results. We

observe that more than 96% of the pairwise view-ranks were correctly �tted by the model. This

high value may be due to the controlled conditions of the experiment and the absence of any

speci�cation error.

The correlation between the actual and the estimated parameters is very high, around 0.995.

15Note that there is potential for estimating some aspects of these variance terms. Indeed, di¤erences in product
uncertainty across options would manifest into low Vij that are searched frequently. Therefore, we envision that the
model may become even more general than currently represented once we combine the view-rank with sales-rank
data.
16There are two ways to do this step. We can generate search histories and use a frequency estimator to compute

n̂j and n̂jk: We can also compute the �ij and �i(j and k) directly without drawing search histories. Both methods
of data generation were used with similar results albeit that the second method is likely more precise with fewer
pseudo households.
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True Run 1 (100 Run 2 (150
parameter values iterations) iterations)

mean e¤ects Sony 1 1.01 0.87
Panasonic -1 -0.57 -1.09

Zoom > 10� 1 0.89 0.90
Media: mini DV -1 -1.20 -1.33

Media: Hard Drive 2 1.86 1.95
Price -2 -1.80 -1.69

heterogeneity Sony 1 1.01 0.99
Panasonic 2 2.05 1.93

Zoom > 10� 1 0.93 0.92
Media HD 2 1.98 1.77

Media mini DV 1 1.04 1.04
Price 1 0.99 1.00

cost base cost -2 -2.40 -2.26
e¤ect of links -3 -3.04 -3.17

fraction of correct view-ranks 1 0.964 0.969
correlation with true parameters 1 0.994 0.996

Table 4: Estimation results from the numerical experiment

This suggests that the model parameters are identi�able from view-rank data. We call attention

to the estimated values of heterogeneity. In both runs, the variances of the distribution of the

random e¤ects are very well recovered. This means that the taste variation in the model is well

identi�ed. We have argued above, and the simulation results seem to agree, that this is because

the view-rank data allow us to directly observe which pairs of products substitute well at an

aggregate level.

Finally, the model also correctly reproduces the value of the cost parameters. In this example,

search costs enter the model as �xed e¤ects. In the empirical results, we will also investigate

heterogeneous search cost speci�cations.

We conclude from this numerical experiment that the model parameters are identi�ed from

the view-rank data.17

17 It is perhaps noteworthy to mention that the model also very accurately forecasts market shares. That is,
whereas we have not used market shares in the analysis (and we do not have market shares empirically), the
simulated data environment of this section allows us to generate market shares using a frequency estimator that
counts the number of times a searched product has the highest utility draw. We can subsequently check that the
model reproduces these market shares. The correlation between generated and forecasted market shares is close to
1.
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7 Empirical analysis

7.1 Speci�cation

We use a random coe¢ cients discrete choice model to represent the utility component of a con-

sumer�s product search decisions. In the utility speci�cation, we represent a product as a bundle

of characteristics. We do not include a product-speci�c intercept in the utility function. Utility

is modeled as

uij = Xj�i � �iPj + eij ; (25)

where Xj is a row vector of product j�s characteristics and Pj is j�s price. �i is a K-dimensional

(column) vector that represents the individual-speci�c sensitivities to product characteristics. eij

is a random error term with N(0; �2) and is i.i.d. across individuals and products. We set �2 = 1

for all i and j: We include K = 8 product characteristics in the utility speci�cation. Jointly, the

responses to the various levels of these 8 characteristics are represented by 18 parameters. We

additionally specify random coe¢ cients on all these e¤ects. Further, we impose a theory-driven

restriction on the price coe¢ cient. Thus,

log(�i) � N(�p; �
2
p)

�i � N(�0;�);

where � is a diagonal matrix containing the variances of the random e¤ects, �2k. Search cost is

speci�ed as

cij = exp(
0i + 
1iLj); 
0i � N(
0; �2
0); 
1i � N(
1; �2
1):

The random e¤ects on search cost re�ect the di¤erent search behaviors or strategies across con-

sumers. For instance, consumers who prefer navigation tools such as sales-ranking or �lters will

be less responsive to the product links, hence will have low 
1i, while consumers who heavily rely

on the products links will have large negative 
1i:

7.2 Parameter estimates

In the estimation, we again run the DE algorithm until we do not observe the score improvement

for more than 25 iterations (which involve 640 function evaluations each). It typically takes

100� 150 iterations for this criterion to be met.

The estimated parameters are shown in Table 5. The estimated parameters satisfy about

86% of the view-rank inequalities. For reference (not shown), we also estimated the model with
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only one random coe¢ cient (price). With this model, the estimates satisfy about 46% of all the

inequalities in the pairwise view-rank data. Compared to this benchmark, the full random e¤ects

model �ts the data much better. Note again that heterogeneity has a large impact on the �t of

the model.

The estimated parameters have face validity. For instance, Sony, the most popular brand, has

the largest mean brand e¤ect. In general, well known brands have higher mean brand e¤ects than

other smaller or unknown brands. Second, the number of incoming product links decreases the

search cost, as can be inferred from the sign of the coe¢ cient 
1, which is negative. The number

of pixels determines the picture quality and is known as an important attribute. Also, among the

four media formats, we �nd that DVD and miniDV are more popular than the other two formats.

We compare our �ndings with Gowrisankaran and Rysman (2007) who also estimated demand

parameters in the camcorder category. Our �nding on consumer sensitivity to pixel18 is consistent

with their dynamic demand analysis. We �nd a large degree of consumer heterogeneity present

in the preference for brands, media formats, form (compact), high de�nition, and price.

Finally, applying the inference procedure of Horsky and Nelson (2006), we �nd that all of the

estimated parameters are signi�cant.19

7.3 Search set analysis

We next interpret the nature of search from the estimation results by analyzing the implied

size and composition of the individual optimal search sets. To this end, we compute the size

and composition of the choice sets drawing 30,000 pseudo-households from the set of estimated

population density of parameters. For each of these pseudo-households, we compute expected

utilities Vij and reservation utilities zij . We next draw their optimal search sets and use various

sample statistics to report on the size and contents of the individual level search sets.

Figure 2 shows the distribution of the estimated number of products searched per individual.

The mean of the search set size distribution is 7.2 while its median value is 6. We note that

about 11% of individuals are estimated to just search one product. The population distribution

of search set size has a long right tail. Our random e¤ects model is �exible enough to produce the

complex patterns of Figure 2. We conclude that the model implies search sets that are of realistic

18We have normalized all our covariates to lie between 0 and 1 while the Gowrisankaran and Rysman have taken
log on their continuous variables so that they fall in similar ranges.
19This is preliminary and awaits further analysis.
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Variable mean e¤ect (�) heterogeneity (�)

Sony 6:410 1:812
Panasonic 4:141 2:668
Canon 4:171 1:621
JVC 3:376 1:200
Samsung 2:066 2:583
Sanyo 1:716 6:302
Aiptek �0:483 0:723
Pure Tech. 1:057 1:506
Hitachi 2:365 1:790
Mustek �24:820a �
MiniDV 1:287 2:220
DVD 0:879 2:838
FM �2:264 0:726
HD 0:099a �
Compact �3:061 4:358
Hi-Def 0:392 1:886
Zoom �0:010 0:086
Screen Size �0:312 0:015
Pixel 0:489 0:397
log (Price) 1:118 3:182

search base cost (
0) �3:140 0:065
e¤ect of incoming links (
1) �3:038 0:117

score 346; 459

percentage of inequalities satis�ed 86:3%
a categorical variables are e¤ects-coded.

Table 5: Estimation results
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Figure 2: The estimated population distribution of set sizes

size, and that consumers generally do not search too many products.

We now comment on some aspects of the contents of the inferred optimal search sets. First, we

present the brand level search set membership. This is important information to manufacturers

and allows them to infer a brand�s search frequency among consumers. It is also informative

about relative �brand strength� or �brand presence� during the pre-purchase phase. The left

hand panel of Figure 3 reveals that Sony accounts for about 50% of all products searched at

Amazon.com. This bestows on Sony a large �mind share.�Panasonic is a distant second followed

by Canon. Given that Panasonic o¤ers about a third more products than Canon does, it seems

that many Panasonic products are searched at a relatively low frequency. The right hand panel

of Figure 3 shows the average share of search volume per product by each brand. The �rst bar in

the graph shows that a typical Sony product has an average share of 1.55% of the total product

search volume. Thus, from the two graphs, we conclude that the Sony dominates search process

of consumers both at the brand level, as well as on a per-product basis.

Next, we look at which brands are more frequently searched together. The left hand panel

in Figure 4 shows the joint search frequency between the Sony and all other brands. The second

bar indicates that about 42% of all consumers who search at least one Sony product also search

at least one Panasonic product. This is the most frequently searched pair for Sony. In the right
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Figure 3: Search volume share by manufacturers and by products. The brands are 1 (Sony), 2
(Panasonic), 3 (Canon), 4 (JVC), 5 (Samsung), 6 (Sanyo), 7 (Aiptek), 8 (Pure Technology), 9
(Hitachi), and 10 (Mustek).
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Figure 4: Joint search share conditional on search on Sony (Left) and Canon (Right). The brands
are 1 (Sony), 2 (Panasonic), 3 (Canon), 4 (JVC), 5 (Samsung), 6 (Sanyo), 7 (Aiptek), 8 (Pure
Technology), 9 (Hitachi), and 10 (Mustek).

hand panel of Figure 4, we show the joint search frequency between Canon and all other products.

We see that almost 90% of Canon searchers also search at least one Sony product while slightly

more than 50% of them search at least one Panasonic product. Note that the conditional search

shares are asymmetric, i.e., 35% of Sony searchers also search for a Canon, but almost 90% of

Canon searchers will also search for a Sony. Taken together, our results emphasize that joint

search frequencies are generally low. This questions whether assuming full information prior to

choice is realistic even at the brand level among the top brands.

Since our model is at the individual level, we can infer the joint search frequency among the

products in a more granular manner. With 113 products, there are 6328 product pairs. Even

with heterogeneous tastes, of these pairs, a total of 51% is searched by less than 0.1% of the

population. Further, an additional 14% is viewed by more than 0.1% but less than 1%, and

another 14% is viewed by more than 1% but less than 10%. No product pairs are predicted to be

viewed by more than 20% of the population. We conclude from these numbers that the majority of

products is not searched jointly by a meaningful fraction of the population. This limited consumer
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search potentially has important implications on demand estimation and on price competition.

To investigate this further, we next look at price elasticities.

7.4 Price elasticity

Search We now look at substitution patterns by analyzing price elasticities. We investigate the

impact of price on product search volume. To this end, we de�ne the elasticity of search volume

with respect to price as,

�searchi;j =
% search frequency change in j

% price change for i
(26)

For instance, �search1;3 quanti�es the percentage change in search frequency of product 3 (a Sony

Camcorder with HD media format, 10 � optical zoom, 2.7-Inch swivel screen, etc., at $654) with

respect to percentage change in price of product 1 (a Sony Camcorder with DVD media format,

25 � optical zoom, 2.5-Inch swivel screen, etc., at $360). The top panel of Figure 5 shows the

elasticity of search as well as the cross elasticity for product 1. First, note that its own elasticity

is negative at �0:85: This means that if we increase price of product 1 by 1%; its own search

frequency will drop by 0:85%: The price increase of product 1 results in a lower zij , letting its

close competitors enter the search set. For a selection of competing products, we see that a price

increase in product 1 has a positive in�uence on search frequency. For instance, if we make product

1 more expensive, the most closely matched Sony products and products with DVD media format

are searched more. Second, not all products are a¤ected by the product 1�s price change. This

makes sense in our modeling framework since products that are not close substitutes of product

1 will have a very low chance of entering the optimal search set together with product 1 even in

the presence of product 1�s price increase.

Demand A price change a¤ects consumer demand in two ways. First, as explained above,

a price change a¤ects the optimal search sets of consumers. Second, the price change directly

a¤ects the consumer choice from the a¤ected optimal search set. We compute own- and cross-

price elasticities to further understand the competition among products. In this computation,

we �rst predict the optimal search set for each individual i by computing Vij and zij . Next,

we predict the demand for product j by counting the number of times j was the highest utility

product option in i�s optimal search set.
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Figure 5: Price elasticity of search (top) and of demand (bottom) for the product 1 (SONY, DVD,
Zoom 40, and $360).
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The bottom panel of Figure 5 shows the demand elasticities. Own elasticity for product 1 is

-1.8 and is signi�cantly more negative than search elasticity. Indeed, whereas search can happen

for reasons of low cost or of high Vij ; choice given search is impacted by a high Vij but not by

search cost. In other words, a price increase leads to both a direct share loss and an indirect share

loss via search volume loss. Cross-elasticities are numerically zero for product pairs that are never

viewed together. Also, we note that product 21 is predicted to have the largest cross elasticity

with product 1. This has face validity, since product 21 is the most similar Sony to product 1,

sharing the same media format and being the closest in price given media format. The �ndings

strongly support the view that not all products are in direct competition with each other. Our

approach can be used to predict and identify the set of products of direct competition both in

the product search and in the product choice stages.

8 Counterfactual simulations

8.1 The e¤ect of product links on consumer surplus

Providing product links selectively lowers search costs for some products but not for all. The net

e¤ect of such product recommendation is a priori not clear. On one hand, lowering search cost

may increase consumer surplus if it facilitates consumers in �nding their preferred products with

less costs. On the other hand, it may lower consumer surplus if search costs are lowered on the

wrong products or if lowered search costs result in disproportionately more search. To investigate

these issues, we now analyze the role of product recommendations on consumer surplus. We

do so by evaluating the e¤ects of Amazon.com�s links on consumers� search set formation and

their subsequent choices. For this purpose, we simulate the optimal search sets and choices across

population with and without Amazon.com�s product links. We then compute the aggregate change

in the net surplus across the population. The net surplus of a consumer with respect to a search

set Si is de�ned as the highest utility in the search set less the total search cost incurred in the

formation of i�s search set Si.

NS(Si) = max
j2Si
fuijg �

X
j2Si

cij : (27)
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Figure 6: The change in surplus from providing consumers with product links.

The di¤erence between the net surplus with and without the Amazon.com�s product links for the

entire population is computed as

�NS =

IX
i=1

�NS ;i (28)

=
IX
i=1

NS(S�i jL = fLjg)�NS(S�i jL = ;) (29)

where L is the set of Lj , the number of links for product j = 1; : : : ; J and (S�i jL) is i�s opti-

mal search set given links L: The �rst term computes the net surplus across consumers under

the presence of the Amazon.com�s links while the second term computes the net bene�ts across

consumers in a hypothetical case where Amazon.com does not provide any product links. Our

main question is whether consumers are better o¤ or not in the presence of Amazon.com�s links

to other products.

The distribution of�NS ;i is shown in Figure 6. From this simulation, we infer that the majority

of consumers bene�ts from the reduced search cost through the presence of product links. About

84.3% of consumers experience positive net surplus while 7.6% of consumers experience negative

net surplus. The rest of the consumers keep the surplus level unchanged.
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�u�i < 0 �u�i = 0 �u�i > 0 Total

�ci < 0 0.4 76.9 7.1 84.4
�ci = 0 0.0 8.1 0.0 8.1
�ci > 0 0.0 7.3 0.2 7.5

Total 0.4 92.3 7.4 1.00

Table 6: Breakdown of utility and cost changes

We also �nd that in the absence of Amazon�s links, the consumers generally search less. The

median and mean search set size is 2 and 2.83, respectively. This makes sense because higher

search cost discourages consumers from conducting more search.

To explain our �ndings, Table 6 provides a detailed breakdown of how the product links, Lj ,

change utility and search cost. From this table, we see that 76.9% of consumers fall in the cell

where they choose the same products but incur lower total search costs (�u�i = 0, �ci < 0) with

Amazon.com�s links. The �nding that the majority of the consumers bene�ts in the presence of

Amazon.com�s links is intuitive. However, there is also a consumer segment (7.3%) who are worse

o¤ under the presence of the Amazon.com�s links. From Table 6, the consumers who fall in the

cell (�u�i = 0, �ci > 0) are worse o¤ since they choose the same utility products but incur higher

search costs in the presence of Amazon.com�s product links. For this group, the lower search

cost disproportionately increases the reservation utilities, and hence, these individuals will search

for disproportionately more products. So, whereas the per-product search cost may go down,

total search cost goes up. The group of consumers who are worse o¤ in the presence of links

is summarized as those who are (1) highly sensitive to Amazon�s recommendations, (2) whose

demand parameters do not conform to those of �average�population and (3) who are interested

in the product space that is crowded with relatively many products. It is important to understand

the second point. The links at Amazon.com represent the market level demand of the consumers.

If a consumer�s preference conforms to the average preference, the links provide her with a �true�

guide to the products she may be interested in. However, if her demand parameters deviate

from that of the market average, she keeps receiving wrong recommendations. This justi�es the

personalization of the recommendations.

Next, we also notice that there is another consumer segment (7.1%) that achieves both higher

quality choice (�u�i > 0) and lower search cost (�ci < 0) in the presence of Amazon�s links.

These are individuals with (1) high baseline search cost (who would not search a lot in absence

36



of links ) and (2) a large sensitivity to the links. Also, their preferences are consistent with what

is recommended (i.e., popular products).

There are common factors and di¤erences between the two groups who are worse o¤ and who

bene�t the most. Both groups are highly sensitive to the Amazon.com�s product links. The

major di¤erence is that the consumer who is worse o¤ with the links was looking for a feature

not commonly popular among the majority of the population. On the other hand, the consumer

who bene�ted most has a preference that conforms to that of the average utility parameters.

Therefore, we �nd that the recommendations based on market level information may negatively

a¤ect the consumers whose ideal product is far away from those of the �aggregate�consumer.

8.2 Market structure under full and limited search

The literature on information search has argued that limited information search can have a pro-

found impact on market structure. One such example is when popular products are being recom-

mended, thereby overstating their popularity at the expense of less popular and less recommended

products. We empirically investigate this topic by comparing the market shares under two di¤er-

ent scenarios: (1) the limited degree of search implied by the estimated search cost and (2) full

search implied by zero search costs20. Given the ever growing presence of recommendations at

many online stores, this counterfactual exercise helps manufacturers understand the direct impact

of search costs on their products�performance.

Figure 7 shows the percentage di¤erence in the market shares between the limited and the full

search scenarios. A positive number in this �gure means that the share under the limited (directed

and sponsored) search is higher than under the full search. The products on the horizontal axis

are sorted by sales-rank with popular products on the left, and low selling products on the right.

The �rst conclusion from the top graph is that limited search on the Amazon.com website bene�ts

the better selling items and harms the poorer selling items. The bottom graph shows that the

number of incoming links is generally larger for better selling products. Combining the top and

bottom panels in this �gure, we further see that the percentage share di¤erence is greater for

the products that have less incoming links. Indeed, the presence of product links forms a double

jeopardy to lower value products. Namely, not only do these products su¤er from low preferences,

20 If we assume that a consumer conducts a complete search over the entire product space, our model reduces to a
standard probit model. By simulating, as before, a very large number of consumers using the estimated parameters
but now with zero search cost, we can compute market shares under the full search scenario.

37



0 20 40 60 80 100 120
­100

­50

0

50

Sh
ar

e 
di

ffe
re

nc
e(

%
)

0 20 40 60 80 100 120
0

10

20

30

40

50

Products

N
um

be
r o

f i
nc

om
in

g 
lin

ks

Figure 7: The impact of limited product search on market shares. The top panel shows the
forecast of market share under limited search less the share under full search. The bottom panel
shows the number of incoming links for the products.
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they additionally su¤er from high search cost (in the sense of not having many incoming links).

We �nd that the online market for camcorders is more concentrated with than without using

product links. The Her�ndahl concentration index with product links is equal to 0.0297. Without

product links it becomes 0.0288 (a percentage drop of 3%). This may not seem like a large

di¤erence, but as Figure 7 illustrates, in general, shares of popular brands increase with positive

search cost, and decrease with zero-search cost, frequently by as much as 10 to 15%. On the other

hand, the demand for many lower selling camcorders would increase manifold if search cost were

absent. In this sense, non-zero search cost tends to concentrate the online market for camcorders

into demand for popular items. We note that this �polarization�e¤ect of recommendation based

on past popularity may be larger once we simulate over multiple time periods and allow the

recommendation e¤ect to accumulate and settle in. We intend to take this up in future research.

9 Discussion and conclusion

We study online consumer search and choice behavior in a durable goods context. Because

evaluating a product for purchase takes time and e¤ort, a consumer who seeks to maximize

expected utility minus total search cost, needs to decide which product to search �rst, second,

etc., and when to stop search. We have proposed a model of optimal search and choice for

the analysis of online demand and consumer surplus in the case of durable search goods. Our

model can estimate demand primitives for heterogeneous households, as well as a distribution of

household speci�c search cost and its dependence on product recommendations or product links.

Our modeling framework has a number of important virtues. First, it constitutes an internally

consistent theory of information search and demand for durable goods, integrated into a random

utility choice framework. Second, the model has closed form expressions for the probability that

a given brand is included in the search set. It also has closed form expressions for the probability

distribution of entire search sets or consideration sets. Third, the model is not subject to the

�curse of dimensionality.� Rather, because aggregation of individual optimal search sequences

and choices to market level demand outcomes is computationally e¢ cient, the model allows for

the occurrence of all possible search sets at the market level (a �blessing of dimensionality�),

whereas, at the individual level, only as many search sets can be optimal as there are products

to choose from. Fourth, the model is uniquely suited for the analysis of demand systems from

widely available product search data, click-trail data, viewing frequencies, coincidence of pairs of
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brands being viewed in the same session, or observed consideration sets.

We show with data experiments, that the model is identi�ed and that the estimation strategy

works well. From these data experiments, we conclude that it is possible to estimate demand

systems with heterogeneity from product viewing data.

From an application of the model to the online market for camcorders at Amazon.com, we

�nd that consumers do not search many products. This means that the majority of product pairs

are never searched or considered together in an online choice setting. We �nd that whereas most

consumers are better o¤ with product links, households with atypical preferences may experience

worse choice outcomes net of search costs.

We see three areas of further development of our model. First, the current model uses only

the view-rank data. Amazon.com also provides sales-rank data. Recently, Bajari and Fox (2007)

show how these data can be used in demand estimation. We hope that the combination of both

types data may lead to further improvements in model estimation. For instance, we believe that it

is possible to estimate aspects of the uncertainty that is associated with a particular product, i.e.,

to estimate �ij or factorizations thereof. This is because di¤erent �ij will shift the view-ranks,

but should not impact sales-rank (see also Bajari and Fox 2007). Thus, where as view-rank data

allow for the identi�cation of the random e¤ects choice based demand system, the combination

of view and sales-rank data, may provide us with an opportunity to estimate some aspects of

product uncertainty.

A second, but related, avenue for further development is to assume only partial consumer

knowledge of attribute information and study how this a¤ects choice and search outcomes. That

is, in our model, the goal of search would remain to resolve the unknown component of utility eij ;

but we could allow that this component involves (part) of the product attributes. This way, it

becomes possible to rigorously study the consequences for demand and market structure of lack

of information and of expectations about prices or other attributes. We also see application of

our model in research on the e¤ects of advertising, e.g. in lowering search cost, on consideration.

A �nal avenue for future research is to analyze the long run implication of recommendations

of popular products for industry concentration and the demand for new products. That is, if

purchases are in�uenced by recommendation, future recommendations will depend on current

recommendations, in addition to current demand.

40



A Derivation of the reservation utilities

The reservation utilities zij can be expressed rewriting the implicit equation 6 into

cij =

Z inf

zij

(uij � zij) f (uij) duij = (1� F (zij))
"Z inf

zij

(uij � zij)
f (uij)

1� F (zij)
duij

#
; (A.1)

with F (zij) equal to the cumulative probability distribution of uij evaluated at zij : The term

in parenthesis after the second equality sign is the probability that, upon search, uij exceeds

zij ; whereas the term in square brackets is the expected value of the truncated distribution of

uij � zij given that uij larger than zij : Using the assumption of normality uij � N (Vij ; �ij) and

substituting the expectation of a truncated normal distribution (e.g., Johnson and Kotz 1970) in

equation A.1, we obtain,

cij =
�
1� �

�
�ij
�� 

Vij � zij + �ij
�
�
�ij
�

1� �
�
�ij
�! ;

with � and � the standard Normal density and CDF, and �ij =
zij�Vij
�ij

. Dividing both sides of

the last equation by �ij , we need to solve zij out of the equation,

xij =
�
1� �

�
�ij
�� �

�
�ij
�

1� �
�
�ij
� � �ij

!
;

where xij =
cij
�ij
. Finally, write the standard normal hazard rate

�(�ij)
1��(�ij)

by �
�
�ij
�
: It is noted

that this hazard rate is the inverse of Mills�Ratio (Johnson and Kotz 1970). Dropping subscripts

because this equation holds for any i and j; we obtain the following implicit equation.

x = (1� � (�)) (� (�)� �) : (A.2)

This equation is identical to equation (23) in the main text. Note that if we know �, we can

compute z = V + � � � from the de�nition of � = z�V
� ; above.

There are a number of properties of this equation that deserve further mentioning. First, and

importantly, we propose to solve � out of equation (A.2), which expresses a function between two

variables x and �; not directly involving any model parameters.

Second, from Barrow and Cohen (1954), we use that the derivative of the hazard rate (the

inverse of Mills�Ratio) can be implicitly expressed as, �0 (�) = � (�) (� (�)� �). Using this result

and taking derivatives on both sides of A.2 with respect to �, we obtain that

@x

@�
= � (1� � (�)) : (A.3)
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Thus the derivative of x with respect to � is negative. Thus, x is a decreasing function of �: This

implies also that � is a decreasing function of x: From monotonicity, solutions to equation (A.2)

yields unique pairs of x and �:

Third, from results on Mills� ratio, � (�) � � > 0 and lim�!1 � (�) = �: Therefore, as one

expects, x; the normalized cost of search (cost , c; divided by product uncertainty, �; is always

positive. Also, one obvious solution to this equation is x = 0 and � = inf : Indeed, at 0 cost, the

attractiveness to search an item is determined by the maximum upside of product utility which

is + inf :

The results above justify that we can construct a table of combinations of x and � that solve

this equation. This table does not depend on model parameters, and therefore it can be solved

once and it can subsequently be used in estimation, possibly with an interpolation step. Namely,

at any stage in the estimation, we can use the current value for �ij and cij to compute xij =
cij
�ij
.

Given xij ; we can look up � (xij) that solves equation A.2 and compute zij from the de�nition of

z�ij and the current values for Vij and �ij ; i.e.,

zij = Vij + �

�
cij
�ij

�
� �ij (A.4)

With reference to equation (22) in the text, in this appendix we have shown that zij can be

decomposed into the expected utility Vij and �xed function of normalized search cost
cij
�ij
; which

translates how product uncertainty is valued in search. The computational steps involved are

trivial and inexpensive. The table of x and � can be solved fast for an arbitrarily �ne grid on

x: As this table is constructed outside the estimation, the marginal impact of extra precision in

computing the z�s on estimation time is 0.
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