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1. Introduction

Interest rates are determined by the equilibrium of supply
and demand. Increased demand for credit brings interest
rates higher, while an increase in demand for fixed income
investment causes rates to go down. To determine the
mechanism by which economic forces and investors’ prefer-
ences cause changes in supply and demand, it is necessary to
develop a general equilibrium model of the economy. Such
model provides a means of quantitative analysis of how
economic conditions and scenarios affect interest rates.

Vasicek (2005) investigates an economy in continuous
time with production subject to uncertain technological
changes described by a state variable. Consumption is
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assumed to be in continuous time, with each investor
maximizing the expected utility from lifetime consumption.
The participants have constant relative risk aversion, with
different degrees of risk aversion and different time pre-
ference functions. After identifying the optimal investment
and consumption strategies, the paper derives conditions for
equilibrium and provides a description of interest rates.

For a meaningful economic analysis, it is essential that a
general equilibrium model allows heterogeneous partici-
pants. If all participants have identical preferences, then they
will all hold the same portfolio. Since there is no borrowing
and lending in the aggregate, there is no net holding of debt
securities by any participant, and no investor is exposed to
interest rate risk. Moreover, if the utility functions are all the
same, it does not allow for study of how interest rates depend
on differences in investors’ preferences.

The main difficulty in developing a general equilibrium
model with heterogeneous participants had been
the need to carry the individual wealth levels as state
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variables, because the equilibrium depends on the dis-
tribution of wealth across the participants. This can be
avoided if the aggregate consumption can be expressed as
a function of a Markov process, in which case only this
Markov process becomes a state variable. This is often
simple in models of pure exchange economies, where the
aggregate consumption is exogenously specified.

The situation is different in models of production econo-
mies. In such economies, the aggregate consumption
depends on the social welfare function weights. Because
these weights are determined endogenously, it is necessary
that the individual consumption levels themselves be func-
tions of a Markov process. This has precluded an analysis of
equilibrium in a production economy with any meaningful
number of participants; most explicit results for production
economies had previously been limited to models with one
or two participants.

The above approach is exploited here. Vasicek (2005)
shows that the individual wealth levels can be represented as
functions of a single process, which is jointly Markov with
the technology state variable. This allows construction of
equilibrium models with just two state variables, regardless
of the number of participants in the economy.

In Vasicek (2005), the equilibrium conditions are used
to derive a nonlinear partial differential equation whose
solution determines the term structure of interest rates.
While the solution to the equation can be approximated
by numerical methods, the nonlinearity of the equation
could present some difficulties.

The present paper provides the exact solution for the case
that consumption takes place at a finite number of discrete
times. This solution does not require solving partial differ-
ential equations, and explicit computational procedure is
provided. If the time points are chosen to be dense enough,
the discrete case will approximate the continuous case with
the desired precision. Some may in fact argue that, in reality,
consumption is discrete rather than continuous, and there-
fore the discrete case addressed here is the more relevant.

The following section of this paper summarizes the
relevant results from Vasicek (2005). Section 3 contains
the solution for the equilibrium state price density pro-
cess and the structure of interest rates in the discrete
consumption case. Section 4 gives a proof that the
proposed algorithm converges to the market equilibrium.

2. The equilibrium economy

Assume that a continuous time economy contains a
production process whose rate of return dA/A on invest-
ment is

% = udt+ody, 1)
where y(t) is a Wiener process. The process A(t) represents a
constant return-to-scale production opportunity. An invest-
ment of an amount W in the production at time t yields the
amount WA(s)/A(t) at time s > t. The production process can
be viewed as an exogenously given asset that is available for
investment in any amount. The amount of investment in
production, however, is determined endogenously.

The parameters of the production process can them-
selves be stochastic. It will be assumed that their behavior
is driven by a Markov state variable X, pu=pu(X(t)t),
o=0o(X(t),t). The dynamics of the state variable, which
can be interpreted as representing the state of the
production technology, is given by

dX = {dt+ydy+ @dx, 2

where x(t) is a Wiener process independent of y(t).
The parameters {, ¥, and ¢ are functions of X(t) and t.

It is assumed that investors can issue and buy any
derivatives of any of the assets and securities in the economy.
The investors can lend and borrow among themselves, either
at a floating short rate or by issuing and buying term bonds.
The resultant market is complete. It is further assumed that
there are no transaction costs and no taxes or other forms of
redistribution of social wealth. The investment wealth and
asset values are measured in terms of a medium of exchange
that cannot be stored unless invested in the production
process. For instance, this wealth unit could be a perishable
consumption good.

Suppose that the economy has n participants and let
W(0) > 0 be the initial wealth of the k-th investor. Each
investor maximizes the expected utility from lifetime
consumption,

T
maxE /0 PeOUK(C(D)E, 3)

where c(t) is the rate of consumption at time t, U(c) is a
utility function with U, >0, U, <0, and p(t)>0,0<t<T
is a time preference function. Consider specifically the
class of isoelastic utility functions, written in the form
Ur(©) = <27 9, >0, 7, #1

Te—1 4
=logc Ye=1. @

Here 7y is the reciprocal of the relative risk aversion
coefficient, 1/y,= —cUj, [U}, which will be called the risk
tolerance.

An economy cannot be in equilibrium if arbitrage
opportunities exist in the sense that the returns on an
asset strictly dominate the returns on another asset.
A necessary and sufficient condition for absence of arbit-
rage is that there exist processes A(t), #(t), called the
market prices of risk for the risk sources y(t), x(t),
respectively, such that the price P of any asset in the
economy satisfies the equation
dp

G = (r+pa+on)de-+fdy-+3dx, )

where f3, 0 are the exposures of the asset to the two risk
sources. In particular,

U=T+G2. (6)

It is assumed that Novikov’s condition holds,
T
Eexp (%/ (/12+n2)dt) < oo. (7)
0

Let Z be the numeraire portfolio of Long (1990) with
the dynamics

dZ—Z - (r+/12+112)dt+/1dy+11dx, 8)
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such that the price P of any asset satisfies
Pty _ g PG

20 =" sy ®
Specifically, the price B(t,s) at time t of a default-free bond
with unit face value maturing at time s is given by the
equation

AU
B(t,s) =E; 76)" (10)
Here and throughout, the symbol E; denotes expectation
conditional on a filtration J3; generated by y(t), x(t).

In integral form, the numeraire portfolio can be written as

Z(S):Z(t)exp(/t.s rdr+%/f(g2 +n2)dr+ /t.s Adyjt/t.s ndx).
(11)

The process Z(t) is the reciprocal of the state price density
process.

Vasicek (2005) shows that the optimal consumption
rate of the k-th investor is a function of the numeraire
process only, given as

C(t) = VDK (HZ7(t), (12)
where
Vi Wk(o) (1 3)

~ ZOE [T pr0Z (dt

is a constant. The individual wealth level W, under an
optimal strategy is

T
Wi = wZE: | p@z @ar. (14)

The behavior of the wealth level W, is fully determined
by the process Z(t). Moreover, the process (X(t), Z(t)) is
Markov. That means that W (t)=W,(X(t),Z(t),t) is a func-
tion of two state variables X and Z only.

In equilibrium, the total wealth

n
W)= > W) (15)
k=1

must be invested in the production process (which
justifies referring to the production process as the market
portfolio). Any lending and borrowing (including lending
and borrowing implicit in issuing and buying contingent
claims) is among the participants in the economy, and its
sum must be zero. Thus, the total exposure to the process
y is that of the total wealth invested in the production,
and the total exposure to the process x is zero. This
produces the equation

n
dW = uwdt+oWdy— >~ vppZdt (16)
k=1
describing the dynamics of the total wealth. The terminal
condition is
W(T)=0. 17)
The process Z is further subject to the requirement that

At) _ AG)

Zo ~ ez (18)

The unique solution of the stochastic differential
Eq. (16) subject to Egs. (17) and (18) is given by

T n
W(t) = Z(H)E; / > vz (yde. (19)

t k=1

In Vasicek (2005), the process Z(t) is determined in the
following manner: Write W(t)=W(X,Z,t) as a function of
the state variables. Expanding dW in Eq. (16) by Ito’s
lemma and comparing the coefficients of dt, dy, and dx
provides equations from which /, # can be eliminated,
resulting in a nonlinear partial differential equation with
known coefficients. Once the function W(X,Z,t) has been
determined as the unique solution of this equation, 4 and
n are calculated from W(X,Zt) as functions of X, Z, and t.
The process Z(t) is obtained by integrating the stochastic
differential Eq. (8). Bond prices are determined from
Eq. (10).

In the case of discrete consumption dealt with in this
paper, the partial differential equation and the subse-
quent integration of Eq. (8) is replaced by an explicit
algorithm described in Section 3.

Equilibrium is fully described by specification of the
process Z(t), which determines the pricing of all assets in
the economy, such as bonds and derivative contracts, by
means of Eq. (9). Solving for the equilibrium requires
determining the values of the constants vy, vy,..., Vp
The algorithm proposed in this paper utilizes the fact
that any choice of the constants is consistent with a
unique equilibrium described by the process Z(t), except
that the corresponding initial wealth levels calculated as

T
W (0) = Z(0)E /O VD (OZ"(tyde (20)

do not agree with the given initial values W,(0). Repeat-
edly replacing v, by v W(0)/W,(0) and recalculating Z
converges to the required equilibrium, as proven in
Section 4. This is analogous to the method proposed by
Negishi (1960) in a deterministic economy.

In economic literature, the usual approach to investi-
gating the existence and uniqueness of equilibrium has
been the concept of a representative agent (see Negishi,
1960, and Karatzas and Shreve, 1998). The representative
agent maximizes an objective (the social welfare function)

T n
max E /0 oD, 3 APOUEOE 1)

where ¢(t) is the consumption rate of the agent (equal to the
aggregate consumption of all participants) and A4, As,..., 4,
are weights assigned to the individual participants. The
constants vq, V..., v, in Eq. (12) are related to the
representative agent weights. Eq. (4.5.7) in Theorem 4.5.2
of Karatzas and Shreve (1998) can be written as

() =7, " AFDEOZ7(D). (22)
Comparing Eqs. (22) and (12) yields the relationship
A= (23)

for k=1, 2,..., n.
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3. Discrete consumption times

This paper considers an economy in which consump-
tion takes place only at specific discrete dates. The
economy exists in continuous time, and between the
consumption dates the participants are continuously
trading and the production is continuous. The market is
assumed to be complete.

Suppose each investor’s time preference function is
concentrated at positive points t; <ty < ... <typ=T, SO
that the k-th investor maximizes the expected utility

m
maxE » ~ pyUi(Cir), (24)
i=1

where Cj, is the consumption at time t; and Uy is a utility
function given by Eq. (4). It is assumed that

n
Z DPmk > 0. (25)
k=1

Let Y(t)=1/Z(t) be the state price density process.
Put

A=A,
X; = X(ty),
Yi=Y(t) (26)

for i=0, 1,..., m, with to=0. The state variable X(t) can be
a vector. Furthermore, let
W(ti+)
A
fori=0,1,..., m—1, and N,,=0.
The optimal individual consumption is given from Eq.
(12) by

N; =

27

Cik = VDK Y (28)
for i=1, 2,..., m, k=1, 2,..., n, where v, are positive
constants satisfying the equation
Vi = —mYOW"(O) : 29)
EY piyi™
i=1
Eq. (16) takes the form
W) =NA@) fort; <t<tj, 1, i=0,1,.,m-1 (30)
and
Ni 1—N;= K"/f‘y") i=1,2,.,m, 31)
i
where
n
Ki(Y)= Y wipjY ™ i=12,.,m. 32)
k=1
From Eq. (31),
m . .
No= S Kl (33)
A

i=1
From Eq. (18),
Ai

Vig=Fy 3"V i=12..m (34)
i

Note that Egs. (33) and (34) imply

m
W(0) = YloE D YiKi(Yy), (35)
i=1
as is easily established by multiplying Eq. (33) by A;,Ym/Yo
and taking expectation.

The solution to Eqgs. (31) and (34) subject to N,,=0,
No=W/(0)/A(0) is obtained by successive elimination of
Yo Ym_1r..., Y1 and Ny_1, Njp_a,..., Ny. Let K, ' be the
inverse of the function K,,, and define recursively two sets
of functions G, H as follows:

Gm(N,AX) =K' (NA) (36)
and G{(N, A, X)=Y is the positive solution of the equation
Y—H, (N— K"Igy) ,A,X) 37)
fori=1, 2,..., m—1; and
AA
Hi(N,AX)=E, { ;qfl Gi1(NA1.Xi1)|[Ai=AXi =X
1
(38)

fori=0, 1,..., m—1. Then
Y; = H;(N;,A;, X)) i=0,1,..,m-1

= Gi(Ni—lsAiin) i= 1,2,...,m. (39)

The state price density process at time t is

A; .

Y(t) = Etzrlt)yi fort; ;<t<t;,i=12,..,m. (40)

The above represents the exact solution to the equili-
brium economy in the case that consumption is limited to
a number of discrete times, provided Eq. (29) hold.

Calculation of the equilibrium solution proceeds as
follows: Choose initial values of the constants vq, v,,..., Vs
A reasonable initial guess is

V=1
ve= VO a1)
E S pAr
i=1

for k=1, 2,..., n. Calculate recursively the functions G;
i=1,2,...,mand H;, i=0, 1,..., m—1 from Egs. (36), (37),
and (38). Calculate Yo=Hg(Ny, Ao, Xo) and determine Y;,
Ys,..., Yy, from Eqgs. (39) and (31). Calculate W,(0) as

, Vi —y
Wi,(0) = Y—’;E S ppey et (42)
i=1
for k=1, 2,..., n. Set new values of constants vq, Vv,..., V,
as
Wk(o)

Vi

Repeat the above calculations with the new values of
the constants until W;(0) are sufficiently close to W,(0),
k=1, 2,..., n. The state price density process is given by
Eq. (40). Bond prices are given as

_p Y©)
B(t,s) =E; Yo (44)
Interest rates are determined by bond prices.
In the special case that y,=7, k=1, 2,..., n, the
functions take the form G{N,AX)=(NA)~"(F{X)+q)'",
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i=1, 2,..., m, H(N,AX)=(NA)~ ”7FW(X) =0,1,..., m-1,
where Fm(X) 0,
Ai i1 =1/ - v
FiX)= | Eq, ( A ) Fi1Xiy )+ 07X =X
1
i=0,1,..,m-1 (45)
and
n By
= Z Vlcpfk~ (46)
k=1
Then
Yo=Ny'7A; o1 (Xo) (47)
and

=1

1)y 4-1/y 1/y = q; vy
Yi=Ng AT FX)+a0" 7 T (1+ i=1,2,..m.
i

4. Proof of convergence

It will first be shown that G{NAX), H{NAX) are
decreasing functions of the first argument. Suppose, for
some 1<i<m, G(NAX) is a decreasing function of N.
It follows from Eq. (38) that H;_1(N,AX) is also decreasing
in N. Denote by N = H; ! (Y,A,X) the inverse of the function
Y=Hi(N, A, X) with respect to the first argument while
keeping the remaining arguments constant. Then, from
Eq. (37),

Ki_1(Gi-1(N.A.X))
A

The expression on the left-hand side of this equation is
a decreasing function of G;_; and therefore the function
Gi_1(NAAX) is decreasing in N. Because G,(NAX) is
decreasing in N, it follows by induction that Gi(N,AX),
i=1,2,..., m, and consequently H(N,AX),i=0,1,...,m— 1,
are all decreasing functions of the first argument.

From Eq. (39),

Yi = Gi(Ni_1,A1X) = Gi(H | (Yi_1,Ai_1.Xi-1).Au X)) (50)
for i=1, 2,..., m. Define the function Q,, as
Qn(N,A1,Az,...AnX1,X2,...Xm)
=Gm(H,,' {(Gn_1(..H7(G1(N,A1,X1),A1,X1)...,
Amn-1,Xm-1)Am-1,Xm-1)Am.Xm). (51

Since there is an odd number of decreasing functions
in the nested expression (51), Q,; is a decreasing function
of N. Then

Yimn = Qm(No,A1,A2,...Am X1,X2,...Xm). (52)

Note that (52) represents the solution to Egs. (33) and
(34), since the intermediate values of Ny, Ny,..., Np_q
have been eliminated.

Assume that vy, >1, k=1, 2,..., n (corresponding to the
sufficient condition (4.6.4) for uniqueness of the equilibrium
solution in Theorem 4.6.1 in Karatzas and Shreve, 1998). Let
V1, Va,..., V, be arbitrary positive constants and determine
Yo, Y1,..., Y from Eq. (39). Calculate W,(0) from Eq. (42) and

Hi ' (Gi_1(N,AX),AX)+ =N. (49)

v, from Eq. (43), k=1, 2,..., n. Put
Ki(Y) = Z VDY~ (53)

and denote by Yg,Y7,...,Y;, the variables calculated using the

constants v},v5,..,v, in place of vy, v,,..., v, Then
m 4 ’
No= ZKI'X(I') (54)
i=1 1
and
’ Al ’ .
Yi 1 =E: A, Y i=1,2,.,m (55)
Put
Wi(0) = V" ‘E S iy (56)
i=1
and
, Wi(0)
Vk vk W”(O) (57)
Define
= Ve = W0
TV, W0y
. _ Vi _ W0
= — = . 58
Ty, T W) 9
Then
YoE z Y
aj, = i=1 . (59)
YaE,z ply; !
1=
Set
bk — a1/yl<
bk ’1/:/< (60)
k=1, 2,..., n. Let bmin, bmax be the lowest and highest

value, respectively, of by, ba,..., by and b,.b,.« be the

lowest and highest value, respectlvely, of by,b5,....b,,. Put

_ Wk(O)
k=1, 2,..., n. Note that
n n n
S oowae= > o= > oy=1 (62)
k=1 k=1 k=1
and therefore
bmin <1 < bmax. (63)
Define
Vi=bninY; (64)
and put
m . .
M= 32 KVD. ©5)
i=—1
The values Vi, Vs,..., V,, satisfy the relationship
Vi1=E, 1AAI Vi, i=1,2,..m. (66)
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Egs. (65) and (66) have the solution
Vin = Qn(Mo,A1,Az,...Am,X1,X2,...Xm). 67)
Now

, " Ve 1 s
Kit) = 37 G PRY T = > vipif o)™
k=1 k=1

n
= Z Vkp:{;f(bminy)_yk = Ki(bminy) (68)
k=1

for i=1, 2,..., m, and consequently

KD _ - KibminY))

No = SZ A
i

=M. (69)
i=1 Ai i=1

Because Q,, is a decreasing function of its first
argument, Egs. (52) and (67) imply

Ym>Vm=bninYn- (70)
It is proven similarly that
Ym < bmaxY s (71)
and from Egs. (34) and (55) it then follows that
bminY; <Yi <bmaxY; (72)
fori=0, 1,..., m.
From Eq. (59),

b“/k_‘l ﬁ

R
min Y6 == bk (73)

max 76

and consequently

DL (Yo Yo) 7k < bl < DL/ (Yo Y)r. (74)
If Yo/Yy <1, then

bmin < bj, < bL-1/7 < pl-1/7max 5)

and

l;:: = l;:?: Dl max. (76)
If Yo/Yy>1, then

1-1/y, 1-1/y ,
bmin/wmax < bmin/lk <bj, < bmax 77)

and

b;nax < bmax b:r{iﬂililmax. (78)

/
bmin bmin

Thus, either the inequality (76) or (78) holds.
Put bpax/bmin=S>1 and let | be such that b;=bm;n.
Then

n n
1= Z OCkb,}{k = alb;rllin—’_ Zakb}{k

k=1 k=1
k#1
n n
N p7 1/ ~Np Vi
= oS b+ > bl <ousTbl L+ > bl
k=1 k=1
k=1 k1

n
< oysImnbinm+ > o
k=1
k#l

= bm&(als_y"“n +1-o) < b;;;";))é (OminS ™ "min +1—0tmin)  (79)

and therefore
bmax = (Gmins ™ min +1 _O‘min)_]/Vmax~ (80)

Similarly, if [ is such that bj=b,ax, then

n n
1= b =obli+ > wbit

k=1 k=1
k<l
n n
— Vi1 7k Y1} Tk
=oys"bll + > oyt > oysTiblt + > " agbl
k=1 k=1
k1 k£l
n
Tmin b7 ?
> oys7minbmax 4 gy b
k=1
el
= b{-ﬁ“&f (O(lsymi" +1 —oy) = b{-ﬁ“&r (O(minsymln +1 —0lmin) (81)

and therefore
bmin < (Omins"™in +1 _Ocmill)_l/yf"ax~ (82)
Here y.in. Vmax are the lowest and highest value, respec-
tively, of vi,7,....7, and omin is the lowest value of
001,002,...,0p. Put
q(s) = max((Gmins~'mn +1 _Ocmin)]/y?"axv

(CtninS"™n 41 _(Xmin)il/}"zmx) <1 (83)

Combining the inequalities (76), (78), (80), and (82)
produces

b, b
s S q(s). (84)
min min
Now consider the sequence of iterations b'®) —
1 , 0 1
bmins b =blin. and b = bmax, bGh =bina- The

series s¥=bY_ /b?. j=0, 1,... is nonincreasing due to
the inequality (84) and bounded from below by unity, so
it converges to a limit s* > 1. Assume that s* > 1. Because
q(s) is a decreasing function of s, q(s¥’) < q(s*) < 1 and the
series sU) decreases at least as fast as a geometric series
with quotient g(s*). In a finite number of terms, it falls
below the level s*. Therefore, the assumption that s* > 1 is

false, and s¥ converges to unity. Then b?,bY,. . bY and
therefore a¥,ay,....aJ converge to unity and from Eq. (58),

the sequence of the iterated values W}P(O) converges to
Wi(0), k=1, 2,..., n.

5. Concluding remarks

This paper provides explicit procedure to obtain the
exact solution of equilibrium pricing in a production
economy with heterogeneous investors. Each investor
maximizes the expected utility from lifetime consump-
tion, taking place at discrete times. Interest rates are
determined by economic variables such as the character-
istics of the production process, the individual investors’
preferences, and the wealth distribution across the parti-
cipants. Such model provides a tool for quantitative study
of the effect of changes in economic conditions on
interest rates.

The algorithm is constructive and converges to the
equilibrium solution. The convergence is proven for the
case of y,>1, k=1, 2,..., n, for which the uniqueness of
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the equilibrium has been established (cf. Karatzas and
Shreve, 1998). All other steps of the procedure, however,
are valid in general for any positive values of the risk
tolerance coefficients. If some of the yq, ya,..., y, are
smaller than unity and the values Wg)(O) fail to converge
to the input values W(0), k=1, 2,..., n after a reasonable
number of iterations, a search over the space of positive
values of v, v,,..., v, need to be made.

While this paper concentrates on the case that the
participants have isoelastic utility functions (4), it can be
extended to more general class of utilities. Suppose the
k-th investor maximizes the objective (24), where U,(C)
has a positive, decreasing continuous derivative U (C)
with Uj(0) =00, Uj(c0)=0, k=1, 2,..., n. Denote the
inverse of the derivative by I(x)= U;ﬂ(x). Then the
optimal consumption is given by

Y;
Cie =1k (Akpik> ' 5
where A, is a positive constant satisfying the condition
W0y = L E Xm: y,-1k( Yi ) (86)
Yo /A AyDi

for k=1, 2,..., n (cf. Karatzas and Shreve, 1998, Theorems
3.6.3 and 4.4.5). Put

1 Y
Ki(Y) = 1( ) i=1,2,..m. (87)
' ,; “\ Ay

Then Egs. (30), (31), and (33) through (40) still hold.
The algorithm consisting of making an initial choice of the
constants A4, Ajy,..., A, determining Yo, Yi,..., Y, from
Egs. (39) and (31), setting new values of the constants
from Eq. (86), and repeating the calculations may still be
applicable, although a proof of convergence is not provided
here.
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