Bidding heuristics for ad auctions with applications to TAC AA

Jordan Berg
Amy Greenwald
Victor Naroditskiy
Eric Sodomka

BROWN

	View customizations
Web \dagger Show options... \quad Results $1-10$ of about 1,760,000,000 for TV [definition]. (0.23 seconds)	
Hulu - Watch your favorites. Anytime. For free. $\hat{z}-10$ visits - Feb 25 Hulu.com is a free online video service that offers hit TV shows including Family Guy, 30 Rock, and the Daily Show with Jon Stewart, etc. www.hulu.com/- Cached - Similar TV Guide, TV Listings, Online Videos, Entertainment News and ... Find local TV listings, read the latest TV show scoops, celebrity gossip and movie reviews and blog about your favorite TV shows, movies and celebrities. www.tvguide.com/- Cached - Similar TV Listings - Find Local TV Shows and Movie Schedules - Listings ... Nip/Tuck Comes to an End - Criminal Minds' Gubler Makes Directorial Debut • Get Your Oscars Fashion Fix on TV Guide Network ... www.tvguide.com/listings/ - Cached - Similar TV.com - Free Full Episodes \& Clips, Show Info and TV Listings Guide Mar 3, 2010 ... The best source for free videos, show and episode info, TV listings guide, cast lists, TV gossip, and entertainment news. Shows - Browse All - Episode Guide - NCIS www.tv.com/-Cached-Similar	Sponsored Links Google TV Ads Google TV Ads Helps You Buy, Sell, Measure \& Deliver Your Advertising! www.Google.com/TVads Tv Shop The Latest TVs At Best Buy. Buy Online \& Pick Up In-Store. www.BestBuy.com Cheap TV Prices LCD, Plasma, HDTV and Projection! Many Sizes for Sale. Reviews, Too. www.NexTag.com/TVs TV at Amazon Low Prices on TV Free 2-Day Shipping w/Amazon Prime! www.Amazon.com/HDTVs-Video-Audio Top 10 Bestselling TVs Bestselling TVs at Low Prices Compare Great Offers \& Save Big deals.IcdTVprices.net Rhode Island

Google

Web \mp Show options...
 Results 1-10 of about 1,760,000,000 for TV [definition]. ($\mathbf{0 . 2 3}$ seconds)

Hulu - Watch your favorites. Anytime. For free. ≈-10 visits - Feb 25
Hulu.com is a free online video service that offers hit TV shows including Family Guy, 30 Rock, and the Daily Show with Jon Stewart, etc. www.hulu.com/- Cached - Similar

TV Guide, TV Listings, Online Videos, Entertainment News

 and ...Find local TV listings, read the latest TV show scoops, celebrity gossip and movie reviews and blog about your favorite TV shows, movies and celebrities.
www.tvguide.com/ - Cached - Similar

TV Listings - Find Local TV Shows and Movie Schedules - Listings ...

Nip/Tuck Comes to an End • Criminal Minds' Gubler Makes
Directorial Debut • Get Your Oscars Fashion Fix on TV Guide
Network ...
www.tvguide.com/listings/ - Cached - Similar

TV.com - Free Full Episodes \& Clips, Show Info and TV

Listings Guide

Mar 3, 2010 ... The best source for free videos, show and episode info, TV listings guide, cast lists, TV gossip, and entertainment news.
Shows - Browse All - Episode Guide - NCIS
www.tv.com/ - Cached - Similar

Sponsored Links
Google TV Ads
Google TV Ads Helps You Buy, Sell, Measure \& Deliver Your Advertising! www.Google.com/TVads

TV

Shop The Latest TVs At Best Buy.
Buy Online \& Pick Up In-Store.
www.BestBuy.com

Cheap TV Prices

LCD, Plasma, HDTV and Projection! Many Sizes for Sale. Reviews, Too. www.NexTag.com/TVs

TV at Amazon

Low Prices on TV
Free 2-Day Shipping w/Amazon Prime! www.Amazon.com/HDTVs-Video-Audio

Top 10 Bestselling TVs
Bestselling TVs at Low Prices Compare Great Offers \& Save Big
deals.IcdTVprices.net
Rhode Island

Google

Agent Design

Agent Evaluation

Stylized

Capturing interesting real-world elements?

Financial risk and market noise

Agent Evaluation

Trading Agent Competition
Stylized (TAC)

Real World

Capturing interesting real-world elements?

Financial risk and market noise

- 6-8 agents compete simultaneously
- Play many games with different market conditions
- Agent with highest average profit wins tournament

Presentation Outline

- Ad auctions game
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

$$
\therefore
$$

Every day:

I. Advertisers submit bids

Loop:
A. Users place queries
B. Publisher assigns slots/CPCs
C. Users click/convert
2. Advertisers receive summaries

Every day:

I. Advertisers submit bids

Loop:
A. Users place queries
B. Publisher assigns slots/CPCs
C. Users click/convert
2. Advertisers receive summaries

Advertiser
(Retailer)

What types of queries can I bid on?

Targeted Queries

Semi-Targeted Queries

"Electronics"

Generic Query

Semi-Targeted Queries

Targeted Queries

Advertiser decisions

Advertiser decisions

Google .

Google

Big Savings at Walmart

Get The Best Deals on Name Brand
Electronics at Unbeatable Prices.
Walmart.com
Flat Screen Televisions
Extra 10\% Off Sony HDTVs over 40"
Use Coupon Code: SONYLCD at Sears.
www.SEARS.com
KAM Appliances \& TV's
Visit our Showrooms or our Site!
Sales, Service \& Delivery
uww.kamonline.com
Providence, RI-New Bedford, MA
Target.com: Official Site
Find Great Savings Online.
Shop Target.com.
www.Target.com

Google

Sponsored Links

Generic Ad
Big Savings at Walmart
Get The Best Deals on Name Brand
Electronics at Unbeatable Prices.
Walmart.com
Flat Screen Televisions
Extra 10\% Off Sony HDTVs over 40"
Use Coupon Code: SONYLCD at Sears
www.SEARS.com
KAM Appliances \& TV's
Visit our Showrooms or our Site!
Sales, Service \& Delivery
www.kamonline.com
Providence, RI-New Bedford, MA
Generic Ad tragetcom Officasie
Find Great Savings Online.
Shop Target.com.
www.Target.com

Google

Sponsored Links

Generic Ad
Bia Savings at Walmart Get The Best Deals on Name Brand Electronics at Unbeatable Prices. Walmart.com
Flat Screen Televisions
Extra 10\% Off Sony HDTVs over 40" Use Coupon Code: SONYLCD at Sears www.SEARS.com
KAM Appliances \& TV's
Visit our Showrooms or our Site!
Sales, Service \& Delivery
www.kamonline.com
Providence, RI-New Bedford, MA
Generic Ad tracetcom: Officasia
Find Great Savings Online
Shop Target.com
www.Target.com

Google

Generic Ad Gasancs awamat
Get The Best Deals on Name Brand
Electronics at Unbeatable Prices.
Walmart.com
Targeted Ad
Flat Screen Televisions
Extra 10\% Off Sony HDTVs over 40" Use Coupon Code: SONYLCD at Sears. www.SEARS.com
\section*{Semi-Targeted Ad}
\section*{KAM Appliances \& TV's} Visit our Showrooms or our Site! Sales, Service \& Delivery
www.kamonline.com
Providence, RI-New Bedford, MA
Generic Ad raractom: Offilasta
Find Great Savings Online
Shop Target.com.
www.Target.com

Advertiser Summaries

Advertiser	Bid	Quality	Score	Slot	CPC
	\$4	I			
	\$3	3			
	\$2	6			
	\$1	8			

Pl User State Model

巴 User State Model

User Click Model

User Click Model

User Click Model

User Click Model

$\operatorname{Pr}($ Click): advertiser quality, ad type
$\operatorname{Pr}($ Convert $)$: user state, capacity, comp. specialty

User Click Model

User Click Model

Presentation Outline

- Ad auctions game
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

Stylized Knapsack Problem

Google TV Serch semeneme

${ }_{25}$ Hulu -Watch your favoties. Anylime. For fiee.

4-4
TV Guicte. TV Listings. Online Viceos. Entertainment News

suise oner- Cachese - Simier
TV Lastings - Find Local TV Shows and Morio Schoctules

TV com . Froe Fult Episodes a Clios. Show info and TV

Assume: capacity constraint is hard.

Stylized Knapsack Problem

$$
\begin{aligned}
& \max _{\vec{s} \in \mathbb{R}_{+}^{n}} \sum_{q \in Q}\left(\operatorname{rev}_{q}\left(\bar{s}_{q}\right)-\operatorname{cost}_{q}\left(\bar{s}_{q}\right)\right) \\
& \sum_{q \in Q} \operatorname{sales}_{q}\left(\bar{s}_{q}\right) \leq C
\end{aligned}
$$

- Equimarginal principle: equating marginal return on investment (marginal ROI) across uses (queries) maximizes profit, assuming diminishing marginal returns.

$$
\begin{aligned}
& \operatorname{rev}_{q}\left(\bar{s}_{q}\right)=\operatorname{sales}_{q}\left(\bar{s}_{q}\right) U S P_{q} \\
& \operatorname{cost}_{q}\left(\bar{s}_{q}\right)=\text { numClicks }\left(\bar{s}_{q}\right) C P C_{q}\left(\bar{s}_{q}\right) \\
& \operatorname{sales}_{q}\left(\bar{s}_{q}\right)=\operatorname{numClicks}\left(\bar{s}_{q}\right) \operatorname{PrConv}{ }_{q}\left(\bar{s}_{q}\right) \\
& \text { numClicks }\left(\bar{s}_{q}\right)=i_{q} \operatorname{PrClick}{ }_{q}\left(\bar{s}_{q}\right)
\end{aligned}
$$

Presentation Outline

- Ad auctions game
- Agent architecture
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

Model-heavy optimization

Model-heavy optimization

Model-heavy optimization

Model-heavy optimization

$$
\begin{aligned}
& v_{q \bar{s}}=i_{q} \operatorname{PrClick} \\
& q \bar{s} \\
&\left.\operatorname{PrConv}_{q} U S P_{q}-C P C_{q \bar{s}}\right) \\
& w_{q \bar{s}}=i_{q} \operatorname{PrClick} \\
& q \bar{s} \operatorname{PrConv} \\
& q
\end{aligned}
$$

Model-heavy optimization

$$
\begin{aligned}
& v_{q \bar{s}}=i_{q} \operatorname{PrClick} \\
& q \bar{s} \\
&\left.\operatorname{PrConv}_{q} U S P_{q}-C P C_{q \bar{s}}\right) \\
& w_{q \bar{s}}=i_{q} \operatorname{PrClick} \\
& q \bar{s} \operatorname{Pr} \text { Conv }_{q}
\end{aligned}
$$

Model-heavy optimization

Assume: capacity constraint is hard.
This is a multiple-choice knapsack problem (MCKP)!

Multiple Choice Knapsack Problem (MCKP)

$$
\begin{aligned}
\max _{x_{q \bar{s}}} & \sum_{q \in Q} \sum_{\bar{s} \in S} v_{q \bar{s}} x_{q \bar{s}} \\
\text { subject to } \quad & \sum_{q \in Q} \sum_{\bar{s} \in S} w_{q \bar{s}} x_{q \bar{s}} \leq C \\
& \sum_{\bar{s} \in S} x_{q \bar{s}} \leq 1 \quad \forall q \in Q \\
& x_{q \bar{s}} \in\{0,1\}, \quad \forall q \in Q, \bar{s} \in S
\end{aligned}
$$

MCKP Greedy Algorithm

- Remove (LP) dominated items
- Item $(1,100)$ dominates item $(5,20) w_{q_{\overline{\bar{F}}}, v_{q_{\bar{B}}}}$
- Create incremental items
- $(5,20),(8,35) \rightarrow(5,20),(3,15)$
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency
- Convert incremental items taken back into items

$$
\text { Kellerer } 2004
$$

$C=5$
 Model-heavy optimization

Google iv	$w_{q \bar{s}}, v_{q \bar{s}}$
	6,\$76
TV Guide. TV Lisings. Onlice Videss. Entartainment News And.	5,\$75
TV Latings - Find Local TV Shoms and Move. Schedves - Listings.	3,\$60
	2,\$40
	$1, \$ 30$

$C=5$
 Model-heavy optimization

- Remove (LP) dominated items

$C=5$
 Model-heavy optimization

- Remove (LP) dominated items

$C=5$
 Model-heavy optimization

- Remove (LP) dominated items

$C=5$
 Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items

$C=5$
 Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency

$C=5$

Model-heavy optimization

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency
- Convert incremental items taken back into items

Model-heavy optimization

Assume: capacity constraint is hard.
This is a multiple-choice knapsack problem (MCKP)!

Model-heavy optimization

Assume: capacity constraint is hard.
This is a multiple-choice knapsack problem (MCKP)!

Model-heavy optimization

Google iv	Sterch som
)
 TV Gide, TV Leshogs. Onlce Videss. Eniartainment News And.er TVI crimeries. Gelepntes. TV Latings - Find Locel TV Shoms and Move Schedves - Listings. (iptuck Conen ben thd Conisul Mirer Cubier Mives Newnot - TV.com. Free Full Episodes 8 Clips, Show Into and TV Latingl Ouide 	
	20,4
	10,3

You can go over capacity.
Assume: capacity constraint is hard.
This is a multiple-choice knapsack problem (MCKP)!

Penalized

Multiple Choice
Knapsack Problem (PMCKP)

$$
\begin{aligned}
\max _{\vec{x}} & \sum_{q \in Q} \sum_{\bar{s} \in S} v_{q \bar{s}}(\rho, \kappa) x_{q \bar{s}} \\
& \kappa=\sum_{q \in Q} \sum_{\bar{s} \in S} w_{q \bar{s}}(\rho, \kappa) x_{q \bar{s}} \\
& \sum_{\bar{s} \in S} x_{q \bar{s}} \leq 1 \quad \forall q \in Q \\
& x_{q \bar{s}} \in\{0,1\}, \quad \forall q \in Q, \bar{s} \in S
\end{aligned}
$$

PMCKP Algorithms

Google iv	$w_{q \bar{s}}, v_{q \bar{s}}$
Hulu - Watch your tavortes. Anytione. For tree.	
	6,\$76
TV Guide, TV Lisjogs. Onlice Videos. Entartainment Nems 	5,\$75
rypidecon' - Gached - Snlut TV Listing - Find Local TV Shem and Movee Schedules - Listings -	3,\$60
	2,\$40
Noman 	$1, \$ 30$

Exhaustive PMCKP

- For each capacity level,
- get capacity-adjusted values
- solve MCKP with these values

$C=5$
 Model-heavy optimization

Hybrid PMCKP

$C=5$
 Model-heavy optimization

Hybrid PMCKP

- Remove (LP) dominated items

$C=5$
 Model-heavy optimization

Google TV	$W_{q \bar{s}}, U_{q \bar{s}}$
Hulu - Watch your favortes. Anytime. For fee. 140 vass . Fet Hulu com is a fee onlire video seinica hat oforn he TV atows including Fanly Cuy. 30 Wock and The Daly Show win Jon Simat, ete -	$6, \$ 70$
TV Gube. TV Lashas. Onke Videcs. En mataiment Nens 	5,\$75
Selporites wwid Ngeid es. TV Litings - Find Losal TV Shaw ind Move Sshedules Latrose.	3,\$60
Directodal Dobut Ger Your Owcan Fabion Fir on TV Guide Nebwort - www lyguide comblitingw-Cacted-3 mol	2,\$50
TVson. Five Ful Epobedes S Clos. SVow info and TV 	$1, \$ 30$

Google iv	$W_{q \bar{s}}, U_{q \bar{s}}$
Buik-Wach yourtaroses. Arytime. Foc tee. ac 10 vas -Few 	6,\$76
TV Quice. TV Leshos. Onlce Videss. Enlartaiment News And - 	5,\$75
spimontien Gached - Simla TV Litingt - Find Locat TV Shom and Move Schedules Lations.	3,\$60
Dircotal Dobut Col Your Cocin Yation ra on TV Guibe Nwwint-	2,\$40
Latince Ouide The pest source foy hee ulfeos show ang eplovide inta. TV 	$1, \$ 30$

Hybrid PMCKP

- Remove (LP) dominated items

$C=5$
 Model-heavy optimization

Hybrid PMCKP

- Remove (LP) dominated items

$C=5$

Model-heavy optimization

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items

$C=5$

Model-heavy optimization

Google N	$w_{q \bar{s}}, v_{q \bar{s}}$	
	6,\$70	Dominated
${ }^{\text {anumamomemem}}$	5,\$75	2, \$15
	3,\$60	1,\$10
2msum	2, \$50	1,\$20
	1,\$30	I, \$30

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items

$C=5$

Model-heavy optimization

Google N	$w_{q \bar{s}}, v_{q \bar{s}}$	Dominated$2, \$ 15$
	6,\$70	
Nomrumatrememem	5,\$75	
Smuew	3,\$60	I, \$10
	2,\$50	I, \$20
524xamem	1,\$30	I, \$30

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$

Model-heavy optimization

Google N	$w_{q \bar{s}}, v_{q \bar{s}}$	Dominated$2, \$ 15$
	6,\$70	
	5,\$75	
Smiems	3,\$60	1,\$10
	2,\$50	1,\$20
4	I,\$30	1,\$30

Hybrid PMCKP

$\$ 30=30$

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$
 Model-heavy optimization

Hybrid PMCKP

$\$ 60=30+30$

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$
 Model-heavy optimization

Hybrid PMCKP

$\$ 80=30+30+20$

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$
 Model-heavy optimization

$C=5$
 Model-heavy optimization

$$
\begin{aligned}
& \$ 110=30+30+20+30 \\
& \$ 114=\frac{29+29+19+28+9}{-5}
\end{aligned}
$$

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$
 Model-heavy optimization


```
$110=30+30+20+30-
$114-29+29+19+28+9-
$114= = 26+26+18+26+8+1|
```


Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used

$C=5$
 Model-heavy optimization

Hybrid PMCKP

$\frac{\$ 1+1-26+26+18+26+8+1+1}{-10}$
$\$ 114=24+24+17+23+6+10+10$

$C=5$
 Model-heavy optimization

$$
\begin{aligned}
& \$ 110=30+30+20+30 \\
& \$ 114-\frac{29+29+19+28+9}{-5} \\
& \$ 114=\frac{26+26+18+26+8+11}{-10}
\end{aligned}
$$

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used
- Convert incremental items taken back into items

PMCKP Algorithms

MCKP Greedy (Kellerer 2004)

- Remove (LP) dominated items
- Item $(1,100)$ dominates item $(5,20) w_{q \bar{s}}, v_{q \bar{s}}$
- Create incremental items
- $(5,20),(8,35) \rightarrow(5,20),(3,15)$
- Run a greedy knapsack algorithm on incremental items: i.e., take incremental items in nonincreasing order of efficiency
- Convert incremental items taken back into items

Hybrid PMCKP

- Remove (LP) dominated items
- Create incremental items
- Run a greedy knapsack algorithm on incremental items, penalizing values as capacity is used
- Convert incremental items taken back into items

Exhaustive PMCKP

- For each capacity level,
- get capacity-adjusted values
- solve MCKP with these values
Dynamic PMCKP
Loop:
•For each query,
•Get next undominated item
•Calculate incremental value and weight of this item
•Greedily take highest-efficiency incremental item
•Adjust values after each incremental item is taken
Convert incremental items taken back into items

Presentation Outline

- Ad auctions game
- Agent architecture
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

Model-heavy light optimization

Modets give us these values.

- Model-heavy algorithms equated marginal ROI
- Model light algorithms equate some proxy of marginal ROI using less information

Input: sales, targetROI, targetSales
Output: $\forall q, b i d_{q}$
if sales $>$ targetSales then
targetROI $=$ targetROI $(d) *$ INC_ROI
else
targetROI $=$ targetROI $(d) /$ INC_ROI
for all q do
$C P C_{q}=\left(U S P_{q}-\right.$ targetROI $) * \operatorname{PrConv} v_{q}$
$\operatorname{bid}_{q}=\operatorname{cpc2bid}\left(C P C_{q}\right)$

$$
\begin{aligned}
& \operatorname{ROI}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\frac{\operatorname{CPC}_{q}\left(s_{q}\right) \operatorname{numClicks}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\operatorname{CPC}_{q}\left(s_{q}\right) \frac{1}{\operatorname{PrConv}}{ }_{q}
\end{aligned}
$$

Equate ROI

If sold more than desired, reduce tomorrow's sales
(by increasing target ROI).
Input: sales, targetROI, targetSales
Output: $\forall q, b i d_{q}$
if sales $>$ targetSales then
targetROI $=$ targetROI $(d) *$ INC_ROI
else
targetROI $=$ target $R O I(d) /$ INC_ROI
for all q do
$C P C_{q}=\left(U S P_{q}-\right.$ targetROI $) * \operatorname{PrConv} v_{q}$
$\operatorname{bid}_{q}=\operatorname{cpc2bid}\left(C P C_{q}\right)$

$$
\begin{aligned}
& \operatorname{ROI}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\frac{\operatorname{CPC}_{q}\left(s_{q}\right) \text { numClicks }_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\operatorname{CPC}_{q}\left(s_{q}\right) \frac{1}{\operatorname{PrConv}}
\end{aligned}
$$

Borgs 2007

Equate ROI

If sold more than desired, reduce tomorrow's sales (by increasing target ROI).

Input: sales, targetROI, targetSales
Output: $\forall q, b i d_{q}$
if sales $>$ targetSales then targetROI $=$ targetROI $(d) *$ INC_ROI else
targetROI $=$ targetROI $(d) /$ INC_ROI for all q do
$C P C_{q}=\left(U S P_{q}-\right.$ targetROI $) * \operatorname{PrConv} v_{q}$ $\operatorname{bid}_{q}=\operatorname{cpc2bid}\left(C P C_{q}\right)$

$$
\begin{aligned}
& \text { ROI = "profit per sale" } \\
& \operatorname{ROI}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\frac{\operatorname{CPC}_{q}\left(s_{q}\right) n u m \operatorname{Clicks}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-C P C_{q}\left(s_{q}\right) \frac{1}{P r C o n v_{q}}
\end{aligned}
$$

Equate ROI

If sold more than desired, reduce tomorrow's sales (by increasing target ROI).

Input: sales, targetROI, targetSales
Output: $\forall q, b i d_{q}$
if sales $>$ targetSales then $\operatorname{target} R O I=\operatorname{target} R O I(d) *$ INC_ROI else
targetROI $=$ targetROI $(d) /$ INC_ROI for all q do

$$
\begin{aligned}
& C P C_{q}=\left(U S P_{q}-\operatorname{targetROI}\right) * \operatorname{PrConv} v_{q} \\
& \text { bid }_{q}=\operatorname{cpc} 2 b i d\left(C P C_{q}\right)
\end{aligned}
$$

Approximates equating marginal ROI across queries-solution characterized by equimarginal principle

$$
\begin{aligned}
& \text { ROI = "profit per sale" } \\
& \\
& \quad \begin{aligned}
& \\
& \operatorname{ROI}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\frac{\operatorname{CPC}_{q}\left(s_{q}\right) \operatorname{num}^{\operatorname{Clicks}}{ }_{q}\left(s_{q}\right)}{\operatorname{sales}_{q}\left(s_{q}\right)} \\
& =U S P_{q}-\operatorname{CPC}_{q}\left(s_{q}\right) \frac{1}{\operatorname{PrConv}}{ }_{q}
\end{aligned}
\end{aligned}
$$

Borgs 2007

Equate PM

Input: sales, targetPM, targetSales
Output: $\forall q$, bid $_{q}$
if sales $>$ targetSales then
$\operatorname{target} P M=\operatorname{target} P M(d) *$ INC_PM
else
target $P M=$ target $P M(d) /$ INC_PM for all q do
$C P C_{q}=\left(U S P_{q}-\operatorname{targetPM}\right) * \operatorname{PrConv} v_{q}$
$\operatorname{bid}_{q}=\operatorname{cpc2bid}\left(C P C_{q}\right)$

$$
\begin{aligned}
& \operatorname{PM}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{rev}_{q}\left(s_{q}\right)} \\
& =1-\frac{\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{rev}_{q}\left(s_{q}\right)} \\
& =1-\frac{\operatorname{CPC}_{q}\left(s_{q}\right)}{\operatorname{PrConv} \operatorname{CoSP}_{q}}
\end{aligned}
$$

Equate PM

Input: sales, targetPM, targetSales
Output: $\forall q, b i d_{q}$
if sales $>$ targetSales then
target $P M=\operatorname{target} P M(d) *$ INC_PM
else
target $P M=$ target $P M(d) /$ INC_PM
for all q do
$C P C_{q}=\left(U S P_{q}-\operatorname{targetPM}\right) * \operatorname{PrConv} v_{q}$
$\operatorname{bid}_{q}=\operatorname{cpc2bid}\left(C P C_{q}\right)$

PM = "profit as a fraction of revenue"

$$
\begin{aligned}
& \operatorname{PM}_{q}\left(s_{q}\right)=\frac{\operatorname{rev}_{q}\left(s_{q}\right)-\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{rev}_{q}\left(s_{q}\right)} \\
& =1-\frac{\operatorname{cost}_{q}\left(s_{q}\right)}{\operatorname{rev}_{q}\left(s_{q}\right)} \\
& =1-\frac{C P C_{q}\left(s_{q}\right)}{\operatorname{PrConv} v_{q} U S P_{q}}
\end{aligned}
$$

Presentation Outline

- Ad auctions game
- Agent architecture
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

Experiments

- TAC AA games
- Optimization challenge
- Is it representative of TAC AA games?
- Model accuracy tests
- Fixed vs. dynamic capacity tests

TAC AA Experiments

Agent	Set I	Set 2	Set 3
TacTex	80.76	79.86	81.84
HybridMCKP	77.83		
EquateROI		75.67	
astonTAC	76.30	75.32	77.25
munsey	73.41	72.40	72.01
epflagent	72.43	73.05	72.46
EquatePM			69.63
QuakTAC	70.61	70.53	68.38
MetroClick	70.15	68.73	69.10
mertacor	68.31	68.08	67.63

Optimization algorithms that approximately equate marginal ROI are competitive

EquatePM is not competitive
Opponent scores/rankings are similar, regardless of our agent

Optimization Challenge

Agent	Profit	Avg Pos	CPC	ClickPr		ConvPr		Sales in CS Sales in MS	OverCap
DynamicMCKP	75.93	2.49	0.46	0.21	0.17	0.41	0.85	1.38	
HybridMCKP	75.85	2.42	0.48	0.22	0.17	0.40	0.86	1.40	
ExhaustiveMCKP	75.01	2.70	0.42	0.20	0.14	0.41	0.78	1.45	
EquateROI	73.47	2.33	0.48	0.20	0.14	0.38	0.86	1.40	
EquatePM	64.70	3.06	0.34	0.13	0.11	0.44	0.38	1.53	

Agent	Set I	Set 2	Set 3
TacTex	80.76	79.86	81.84
HybridMCKP	77.83		
EquateROI		75.67	
astonTAC	76.30	75.32	77.25
munsey	73.41	72.40	72.01
epflagent	72.43	73.05	72.46
EquatePM			69.63
QuakTAC	70.61	70.53	68.38
MetroClick	70.15	68.73	69.10
mertacor	68.31	68.08	67.63

- Exhaustive, Hybrid, and Dynamic MCKP earn about the same profit
- Optimization Challenge scores/rankings similar to TAC AA games
- different opponents
- different market conditions
- opponents not responding to our agent

Model Accuracy Experiments

- Add noise to answer:
- is there a point at which rulebased algorithms are more profitable?
- which model improvements will result in highest profits?
- As model accuracy decreases, rules-based algorithms perform better than Hybrid MCKP
- ClickPr accuracy appears to be more important than CPC

Capacity Experiments

- Exhaustive, Hybrid, and Dynamic MCKP all have similar average capacities
- These average capacities are similar to the best fixed capacity
- Value in adjusting capacity dynamically

Presentation Outline

- Ad auctions game
- Agent architecture
- Optimization problem (stylized knapsack problem)
- Model-heavy (greedy multiple choice knapsack algorithm)
- Model-light (rule-based algorithm)
- Experiments
- Future work

Future Work

- Models
- user state predictions
- opponent bid predictions
- Optimization
- Multi-day problem
- Game-theoretic problem
- Controlled testing environments

Questions?

