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Index Tracking

- Portfolio performance is evaluated relatively to the
performance of a benchmark (stock, bond or
commodity index)

o Passive vs active (enhanced indexation) portfolio
management

o Tracking error: gy =gy —Ipy
o Tracking error standard deviation (TESD):

St = \/(:UT)Z IszE,t
t

o Probability of underperforming the benchmark
Prob(r, <0)




Cardinality constraint

Constraint on the maximum number of assets

included in the portfolio

Why imposing a cardinality constraint?
Benchmarks with high number of constituent assets

Avoiding holding large portfolios that accrue
management & transaction costs



Cardinality-constraint portfolio optimisation
—

max J(W) (portfolio objective)

W= (w, W, ,...,wy ) ERY

such that

N

d w, =1 (full investment constraint)
1=1

w .o <w <w (floor /ceiling constraint)

N

» s(w,) =K <N (cardinality constraint)

1,w. = 0(asset iin portfolio)
O,w, =0




Combinatorial explosion with CC portfolios
I




Computational issues

CC significantly increase the computational effort
mixed nonlinear-integer programming
N=30, K=15, # combinations~=16x107!!!
combinatorial explosion

CC optimisation problems pose a challenge to traditional
optimisation techniques

Need for more advanced and flexible optimisation
heuristics that can efficiently handle associated
complexities

Simulated Annealing

Genetic Algorithms

Particle Swarm Optimisation



Traditional vs Fuzzy Portfolio Selection

Much of portfolio selection is about setting
a) aspiration levels for performance criteria and

b) constraints on risk measures

This is often done within a “hard” mathematical programming setting
(requires precise definition of objectives, preference to return and
attitude towards risk, often leads to “edge solutions”, cannot easily
reconcile multiple conflicting objectives)

In practice, portfolios are structured around imprecise views of asset
managers on the risk profile of trading positions

“Given current market conditions, we would appreciate an annual return of
not much more than 5% in excess of the benchmark”

“The probability of downfall should not significantly exceed 20%"

Fuzzy optimization theory offers a very convenient framework for
accommodating such “vague” information



Fuzzy goals and constraints

T
|
/ | much more than SU
|
|

|
I \ much less than 21
|
|

|

| .

| |
/ i approximately: equal to p,

| .

| |

| .




Empirical study

Benchmark: Dow Jones Industrial Average

Portfolio: 30 member stocks of the DJIA (as of 14/11/2008)

Data: Daily quotes of the DJIA and its constituents from 21/01/2004 to
13/01/2005 (500 observations)

250 were used for estimation and 250 for out-of-sample evaluation
Portfolio Constraints: w,_,,=0.05, w,..=0.8 (no short selling)

Algorithms’ parameters:
Population size: 100, number of generations: 200
GA: real-encoding scheme (solutions are real vectors), p.=0.8, p,,=0.01
PSO: w_,,. 1.0000e-003, w, .= 2, ¢;= 2, C,=2
SA: y=(1e-03)"(1/200)
500 independent runs

Two more heuristics for detecting good asset combinations:

MC-search (generate 2000 random asset combinations and compute optimal weight,
pick the best one)

Fundamental stock-picking heuristic (pick stocks based on an optimal combination of
Size and Stock Beta)




How to deal with the cardinality constraint?

We introduce proper transformations on the
solution space

Mixed nonlinear-integer formulation = unconstraint
programming with continuous variables

Simultaneously look for optimal combinations of
assets and weights Eee e.g. Maringer and
Oyewumi (2007), Thomaidis et al. (2009)).

Transformations generally lead to rugged
optimisation landscapes

Many local optima, “flat” regions, discontinuities

Intelligent optimisation heuristics are used to solve
this problem



Fuzzy enhanced indexation

Objective 1: Obtain some return in addition to the
benchmark while keeping the total risk of the
portfolio approximately equal to market’s risk

Objective 2: Restrict the probability of under-
performing the benchmark while keeping the TESD

small




Problem formulations

Objective 1:
max s(m.; 1%,30%) - p(s,; 99%s;,101%s;)

Objective 2:
max z(S;z;1%,5%) - z(P~;10%,40%)

M;z  :Mean Tracking error (Excess return)
S;g  :Tracking error standard deviation

Sp, S :Portfolio (benchmark) risk (standard deviation)

P~ : Probability of underperforming the benchmark



Obj2: Fuzzy goal attainment
T




Obj2: Degree of goal attainment vs
portfolio cardinality
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Obj2: Stochastic convergence properties of
intelligent heuristics




Obj2: Optimal capital allocation vs portfolio

cardinality
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Obj2: Performance of optimal portfolios

Method Degree of satisfaction ore | Prob Average | Standard Sharpe | Cumulative
(TE<OQ) | return deviation of | ratio return
Overall | Objl | Obj2 returns
Evolutionary | 39.75 71.66 | 48.07 | 420 | 30.82 13.60 11.11 94.33 14.63
strategies 1.28 65.44 | 1.59 461 | 46.98 8.58 11.09 49.96 8.99
Heuristic 2.37 46.41 | 3.90 6.17 | 44.99 11.07 9.92 79.82 11.76
0.01 55.11 | 0.43 5.33 | 49.37 2.54 9.96 -4.73 2.66
Monte Carlo | 11.00 1474 | 7064 | 422 | 3941 9.02 11.17 52.68 9.56
0.27 67.37 | 0.35 442 | 49.03 4.52 11.2 14.65 4.67
Equally 0.02 97.57 | 0.02 1.99 | 49.60 2.48 10.76 -4.82 2.51
weighted 0.95 98.01 | 0.97 1.90 |47.21 4.28 10.70 12.70 4.37




Discussion

Passively holding the index portfolio is an inefficient trading strategy

Enhanced indexation is feasible
One can benefit from careful asset selection and capital allocation

Optimisation increases portfolio performance in- & out-of-sample
Intelligent heuristics = superior means of solving CC portfolio
selection problems

Outperform MC or simple expert rules of thumb

Introduce randomness into the search process => avoiding premature
convergence and moving towards global optima

Stochastic elements may lead to a large diversity of reported solutions
(especially in complex landscapes)

Different approach: Many independent runs are necessary before a near-
optimum solution is reached with high confidence

We provide an analysis of the stochastic convergence properties of
three popular intelligent heuristics: simulated annealing, genetic
algorithms and particle swarm optimisation



Further research

Alternative portfolio formulations
Different definitions of reward and risk

Optimal parameter setting that would boost

algorithmic performance

Comparison with other optimisation techniques
including simple rules of thumb

Extending our analysis to other markets

Benchmark indexes with more member stocks (S&P
500, Russell 3000, etc)



Further research

Time-series analysis
Neural network - GARCH models
Conditional density prediction

Multifactor stock pricing models
Forecasts for the mean and correlation structure of
stock returns

Statistical arbitrage
Detecting mispricings between stocks

Cointegration techniques to detect mean-reverting
synthetic portfolios

Time-series models to predict corrections of
mispricings



NN-GARCH models

Dynamic models that jointly parametrise the mean and the
variance of the conditional distribution

°

»

yr = m(xe;0) + € (1a)
et|w ~ D(0, hi(aw;0)) (1b)

a 15 a vector of parameters
m(x¢;d) is the conditional mean or expectational model of y; given x;¢

he(x¢;8) 1s the conditional variance model — also a function of the information
avallable to the researcher up to time ¢

(.} is the distributional model (normal or student)

Model (1) is in fact a model for the conditional density of «; given «;

Yelre ~ D(m(g;0). he(rg;d))



Simulated annealing
T e —

Algorithm 1 Pseudo-code for simulated annealing
0

in the feasible region, set
values for the maximum search range R, the temperature parameter T
and the population size D.

2: set the current solution x¢ := x” and compute its fitness f(x°).

3: while stopping criteria are not met do

1: initialisation: generate an initial solution x

4: Randomly generate x;, j = 1,..., D feasible solutions in the neighbour-
hood N(x° R) of the current solution x° and compute their fitness
flx),i=1..D.

5: Find the subset J C {1,2,..., D} of solutions satisfying either of the two
conditions:

(1) Afj = ( j) — f(x°) <Oor
(2) pj = exp( .& fi/T) > u;, where u; is a uniformly generated
random number
6: set x” ;= x;, where xj is randomly drawn from 7.
. setT :=AT

8: end while




Particle Swarm Optimisation
T

Algorithm 3 Pseudo-code for particle swarm optimisation.

1: initialisation: randomly generate an initial swarm of particles (feasible
solutions) x;, j = 1.2,.... D and velocity vectors v;, j = 1,2,....D. Set
values for the parameters v, ¢;, ¢o of the dynamic equation (3) and
the population size D). Let x_,f: be the best solution in the particle's j
history, x, be the globally optimum solution and f (x?) and f(x,) be
the corresponding values of the objective function.

2: while stopping criteria are not met do

3: sot current population of particles X{ =%, j =12 .., D and caleulate

the fitness f(x5) of each particle.

4 for j=1to D do
5: If f(x5) > f(x3), set x5 .= x¢.
6: If f(x5) = f(x,). set xg = X;.
T: end for
8: for j=1to D do
9 repeat
10: Generate random vectors 1y, re. whose elements are uniformly
distributed in [0, 1].
11: Update the velocity v; and the position x; of particle j, nsing the
dynamic equations:
Vit=vv;fery o (x) = x5) + earz o (x4 — X5) (3a)
f{j‘ =Xt vy I:Eb)
12: until a new feasible solution x; is found.
13: set X; 1= X;.
14: end for

15: end while




Genetic algorithms
T e —

Algorithm 2 Pseudo-code for a genetic algorithm

1: initialisation: randomly generate an initial population of feasible solutions
xj':-',j =1,2,....,D. Select an encoding scheme. Assign values to eg, the

number of elite children and p. the crossover rate and p,, the mutation

rate.
2: repeat
3: set current population of individuals xji=x;, ] =12,.., D and calcu-

late the fitness f(x}) of each solution.
Create three types of children for reproducing the next population:
(1) Choose the n, best-ranking solutions of the current population (elite
children) to be transferred to the next generation
6:  (2) Randomly pick a fraction p, of the population on which the crossover
operator is applied to create new offsprings.
T (3) Complete the generation by applying the mutation operator to the
remaining set of individuals. Each gene is mutated with probability
Prn.-
8: Compile the new generation of solutions x;, j =1.2,..., D.
9: until number of generations limit is reached or no improvement in the ob-
jective function for a sequence of consecutive generations is observed.




