### D I S C O N T I N U O U S DEMAND FUNCTIONS: ESTIMATION AND PRICING

Arnoud V. den Boer University of Amsterdam N. Bora Keskin Duke University

Rotterdam May 24, 2018 Dynamic pricing and learning:

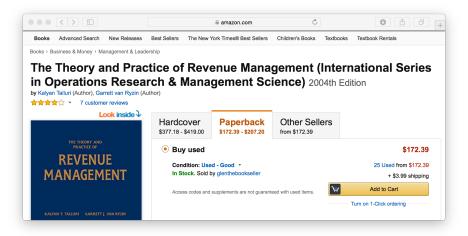
• Learning optimal selling price from accumulating sales data

Dynamic pricing and learning:

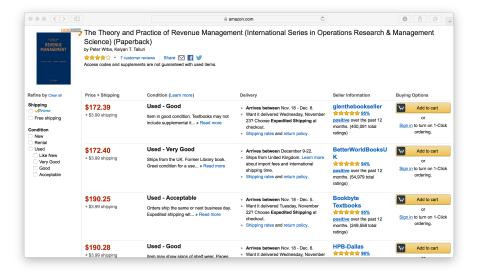
- Learning optimal selling price from accumulating sales data
- Cont. armed MAB, observing demand d(p) and reward  $r(p) = p \cdot d(p)$

Dynamic pricing and learning:

- Learning optimal selling price from accumulating sales data
- Cont. armed MAB, observing demand d(p) and reward  $r(p) = p \cdot d(p)$
- Standard assumption:  $d(\cdot)$  is continuous







Nous admettons que la fonction F(p) qui exprime la loi de la demande ou du débit est une fonction **continue**...

• <u>Price comparison websites:</u> Substantial empirical evidence that seller's rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)

- <u>Price comparison websites:</u> Substantial empirical evidence that seller's rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)
- Rankings in online marketplaces (e.g. Amazon's BuyBox)



#### Motivation



- <u>Price comparison websites:</u> Substantial empirical evidence that seller's rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)
- Rankings in online marketplaces (e.g. Amazon's BuyBox)

- <u>Price comparison websites:</u> Substantial empirical evidence that seller's rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)
- Rankings in online marketplaces (e.g. Amazon's BuyBox)
- Product search with price thresholds

# Motivation

| G digital camera - Go                                            | ogle Search $	imes$ +                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                  | https://www.google.com/sea                                                                                                                                                                                                         | arch?q=digital+camera&hl=en&tbm=shop&tbs== 💌 🏠 🛛 Q. Search 🔤 🚍                                                                                                                                                                                                                                        |  |  |  |  |
| Google digital car                                               | All Images     Maps     Shopping     More     Settings       FLTERS     IIII     SORT BY: PRICE - LOW TO HIGH *     MY SHORTLIST (0) *       Chapel Hill, NC     Sponsored (0)       arby     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| All Imag                                                         | ges Maps <b>Shopping</b> Mo                                                                                                                                                                                                        | ие Settings                                                                                                                                                                                                                                                                                           |  |  |  |  |
| CLEAR ALL FILTERS<br>Your location: Chapel Hill, NC              |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Show only         D5500           Available nearby         D5500 |                                                                                                                                                                                                                                    | \$3.99 from 25+ stores<br>★★★★★ 205 product reviews<br>The Nikon D5 DER camera offers 20.8MP of resolution so your photos are always orisp and clear. It also incorporates 4K                                                                                                                         |  |  |  |  |
| Price<br>Up to \$300<br>\$300 - \$700                            |                                                                                                                                                                                                                                    | March 2016 · Nikon · Nikon D Series · DSLR · 20.8 MP · Full Frame Sensor · CMOS · Weather Sealed · Built-in Flash ·<br>Detachable Flash<br>Other style options: Black (\$4,835)                                                                                                                       |  |  |  |  |
| \$700 - \$1,500<br>Over \$1,500<br>\$                            |                                                                                                                                                                                                                                    | Amkov 24MP 1080P 3.0 Hd Screen Digital Camera With Shooting 4X Zoom W/ Camcord<br>54.88 from eBay - melfff<br>Amkov 24MP (2009 30*HD Screen Digital Camera With Shooting 4X Zoom w/ Camcord Store category Sign Up Now I<br>You may also like<br>24 MP - CMOS - With Video - With Image Stabilization |  |  |  |  |

# Motivation

| $\leftarrow \rightarrow C \land$                          | (i) www.nextag.com/shopping/products?search=digital-camera&psort=1                                                                                                                       | 💟 🏠 🔍 Search            |                                        |       | III\ E           | ) =        |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-------|------------------|------------|
|                                                           | • www.nextag.com(unopping/productaraceren-eigiter cemeraceparter                                                                                                                         |                         |                                        |       | III ( CL         |            |
| NexTag.                                                   | digital camera 🖂 🔍                                                                                                                                                                       |                         |                                        | Login | f Log<br>Sign Up | in<br>Help |
| All Categories > Electronics >                            | Cameras & Optics > Cameras > Digital Cameras > digital camera                                                                                                                            |                         |                                        |       |                  |            |
| Narrow Search Results                                     | Sorted by Price: Low to High 0                                                                                                                                                           |                         | ZIP code ?                             |       |                  |            |
| Dy Category<br>Electronics                                | Sony Alpha SLR Body Cap<br>Alpha SLR Body Cap                                                                                                                                            | Go To Adorama           | Free shipping<br>\$2.99<br>See Details |       |                  |            |
| Cameras & Optics                                          | Set Price Alert   Similar Products                                                                                                                                                       |                         |                                        |       |                  |            |
| <ul> <li>Cameras</li> <li>Digital Cameras</li> </ul>      | Casio G'zOne Brigade C741 - Metallic Expandable Phone Gri<br>Pop, tit, wrap, prop, collapse, grip, repeat!. Secure grip for texting, callingmore                                         | Go To CellularOutfitter | \$2.99<br>See Details                  |       |                  |            |
| <ul> <li>Digital Point &amp; Shoot<br/>Cameras</li> </ul> | Set Price Alert   Similar Products                                                                                                                                                       |                         |                                        |       |                  |            |
| O Digital SLRs                                            | GE Ethernet Cable Extender - White<br>Extend the length of your Ethernet cables with a GE Ethernet Bridge in White. Thmore<br>Free Shloging water yous goed Sig on (190,09) select items | TARGET                  | \$2.99<br>See Details                  |       |                  |            |
| Camera & Optic<br>Accessories                             | Set Price Alert   Similar Products                                                                                                                                                       | 122 Seller Reviews      |                                        |       |                  |            |
| Electronics Accessories                                   | Nikon DK-5 Eyepiece Shield<br>DK-5 Eyepiece Shield                                                                                                                                       | Go To Adorama           | Free shipping<br>\$3.5<br>See Details  |       |                  |            |
| Under \$600                                               | Set Price Alert   Similar Products                                                                                                                                                       |                         |                                        |       |                  |            |
| \$600 - \$1,300                                           | No<br>Image Lantern Guide for Canon Eos 7D<br>Magic Lantern Guide for Canon Eos 7D                                                                                                       | Go To Adorama           | Free shipping<br>\$3.6                 |       |                  |            |
| \$1,300 - \$2,500                                         | Available Set Price Alert   Similar Products                                                                                                                                             | 727 Seller Reviews      | See Details                            |       |                  |            |
| \$2,500 - \$4,500                                         | EA-SPC5D3 Screen Protector for Canon 5D Mark III Cameras                                                                                                                                 |                         |                                        |       |                  |            |
| Above \$4,500                                             | EA-SPC5D3 Screen Protector for Canon 5D Mark III Cameras                                                                                                                                 | Go To Adorama           | Free shipping<br>\$5.95                |       |                  |            |

• Many online applications challenge Cournot's continuity assumption

- Many online applications challenge Cournot's continuity assumption
- Not treated in dynamic pricing or MAB literature

• Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?

- Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?
- If yes, how to implement estimation and pricing in the presence of demand discontinuities?

• **Price-setting monopolist:** decision variable  $p_t \in [p, \overline{p}]$ 

- Price-setting monopolist: decision variable  $p_t \in [p, \overline{p}]$
- Consumer demand: Poisson random variable with mean  $d(p_t)$

$$d(p) = \begin{cases} e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \le p \le \kappa_1 \\ e^{\alpha_n + \beta_n p} & \text{if } \kappa_n$$

- Price-setting monopolist: decision variable  $p_t \in [\underline{p}, \overline{p}]$
- Consumer demand: Poisson random variable with mean  $d(p_t)$

$$d(p) = \begin{cases} e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \le p \le \kappa_1 \\ e^{\alpha_n + \beta_n p} & \text{if } \kappa_n$$

#### • Model uncertainty:

unknown demand parameters  $\theta_n = (\alpha_n, \beta_n)$  (n = 0, 1, ..., N)unknown discontinuity points  $\kappa_n$  (n = 1, ..., N) $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_N) \in \Theta$  $\boldsymbol{\kappa} = (\kappa_1, ..., \kappa_N) \in \mathcal{K}$ 

- Price-setting monopolist: decision variable  $p_t \in [\underline{p}, \overline{p}]$
- Consumer demand: Poisson random variable with mean  $d(p_t)$

$$d(p) = \begin{cases} e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \le p \le \kappa_1 \\ e^{\alpha_n + \beta_n p} & \text{if } \kappa_n$$

#### • Model uncertainty:

unknown demand parameters  $\theta_n = (\alpha_n, \beta_n)$  (n = 0, 1, ..., N)unknown discontinuity points  $\kappa_n$  (n = 1, ..., N) $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_N) \in \Theta$  $\boldsymbol{\kappa} = (\kappa_1, ..., \kappa_N) \in \mathcal{K}$ 

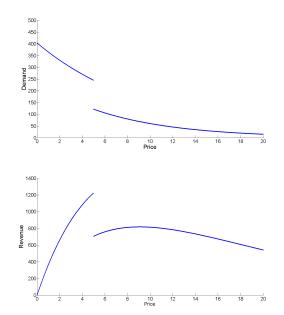
• Pricing policy:  $\pi = (p_1, p_2, ...)$  non-anticipating

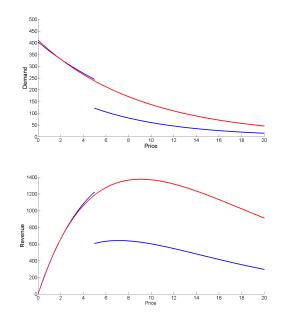
 $\bullet\,$  Revenue loss in T periods relative to a clairvoyant

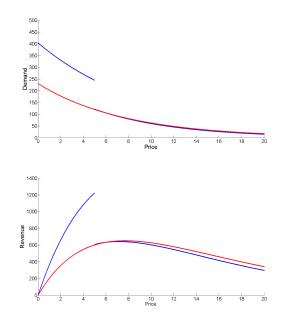
- $\bullet\,$  Revenue loss in T periods relative to a clairvoyant
  - Single-period revenue function  $R(p,\boldsymbol{\kappa},\boldsymbol{\theta})=p\,d(p,\boldsymbol{\kappa},\boldsymbol{\theta})$

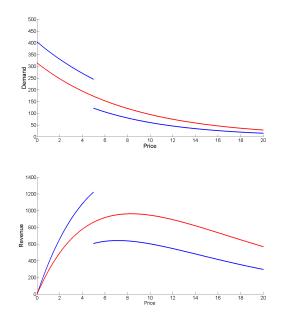
- $\bullet$  Revenue loss in T periods relative to a clairvoyant
  - Single-period revenue function  $R(p, \pmb{\kappa}, \pmb{\theta}) = p\, d(p, \pmb{\kappa}, \pmb{\theta})$
  - Regret or "revenue loss due to demand model uncertainty"

$$\Delta_{\pi}(T, \boldsymbol{\kappa}, \boldsymbol{\theta}) = \sum_{t=1}^{T} \mathbb{E}_{\pi} \left\{ \sup_{p \in [\underline{p}, \overline{p}]} \{ R(p, \boldsymbol{\kappa}, \boldsymbol{\theta}) \} - R(p_t, \boldsymbol{\kappa}, \boldsymbol{\theta}) \right\}$$

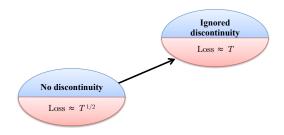

- $\bullet$  Revenue loss in T periods relative to a clairvoyant
  - Single-period revenue function  $R(p, \pmb{\kappa}, \pmb{\theta}) = p\, d(p, \pmb{\kappa}, \pmb{\theta})$
  - Regret or "revenue loss due to demand model uncertainty"


$$\Delta_{\pi}(T, \boldsymbol{\kappa}, \boldsymbol{\theta}) = \sum_{t=1}^{T} \mathbb{E}_{\pi} \left\{ \sup_{p \in [\underline{p}, \overline{p}]} \{ R(p, \boldsymbol{\kappa}, \boldsymbol{\theta}) \} - R(p_t, \boldsymbol{\kappa}, \boldsymbol{\theta}) \right\}$$


• **Objective:** choose  $\pi$  to minimize


$$\mathcal{R}_{\pi}(T) = \sup \left\{ \Delta_{\pi}(T, \boldsymbol{\kappa}, \boldsymbol{\theta}) : \boldsymbol{\kappa} \in \mathcal{K}, \, \boldsymbol{\theta} \in \Theta \right\}$$

- Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?
- If yes, how to implement estimation and pricing in the presence of demand discontinuities?














- Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?
- If yes, how to implement estimation and pricing in the presence of demand discontinuities?

#### Estimating a discontinuous demand function

#### • Two-step maximum likelihood estimation:

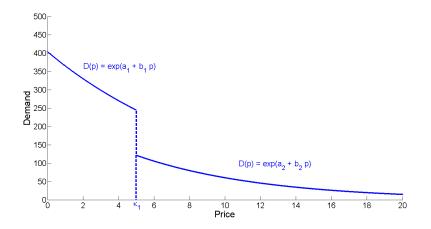
• Log-likelihood function

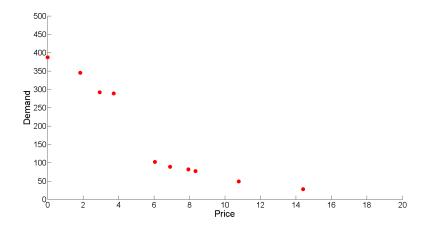
$$\mathcal{L}_t : (\varkappa, \vartheta) \mapsto \sum_{s=1}^t \sum_{n=0}^N \left( d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)} \right) \mathbb{I}\{\kappa_n < p_s \le \kappa_{n+1}\}$$
$$\hat{\theta}_t(\varkappa) = \arg \max_{\vartheta} \{ \mathcal{L}_t(\varkappa, \vartheta) \}$$

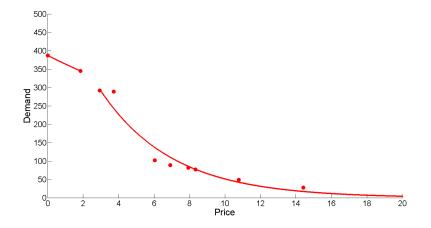
#### • Two-step maximum likelihood estimation:

• Log-likelihood function

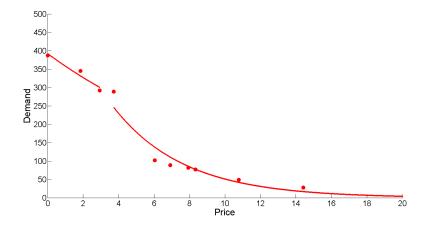
$$\begin{split} \mathcal{L}_t : (\varkappa, \vartheta) &\mapsto \sum_{s=1}^t \sum_{n=0}^N \left( d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)} \right) \mathbb{I}\{\kappa_n < p_s \le \kappa_{n+1}\} \\ \hat{\theta}_t(\varkappa) &= \arg \max_{\vartheta} \{ \mathcal{L}_t(\varkappa, \vartheta) \} \end{split}$$


• <u>Step 1 (discontinuity estimation)</u>  $\hat{\kappa}_t = \arg \max_{\varkappa} \left\{ \mathcal{L}_t(\varkappa, \hat{\theta}_t(\varkappa)) \right\}$ 

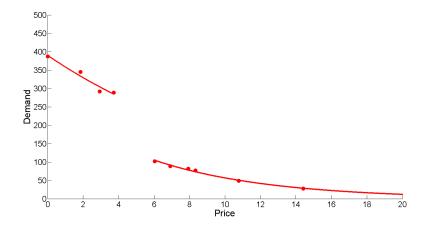

#### • Two-step maximum likelihood estimation:


• Log-likelihood function

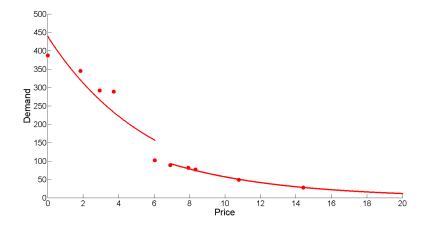
$$\begin{split} \mathcal{L}_t : (\varkappa, \vartheta) &\mapsto \sum_{s=1}^t \sum_{n=0}^N \left( d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)} \right) \mathbb{I}\{\kappa_n < p_s \le \kappa_{n+1}\} \\ \hat{\theta}_t(\varkappa) &= \arg \max_{\vartheta} \{ \mathcal{L}_t(\varkappa, \vartheta) \} \end{split}$$


- <u>Step 1 (discontinuity estimation)</u>  $\hat{\kappa}_t = \arg \max_{\varkappa} \left\{ \mathcal{L}_t(\varkappa, \hat{\theta}_t(\varkappa)) \right\}$
- Step 2 (demand parameter estimation)  $\hat{\boldsymbol{\theta}}_t = \hat{\boldsymbol{\theta}}_t(\hat{\boldsymbol{\kappa}}_t)$

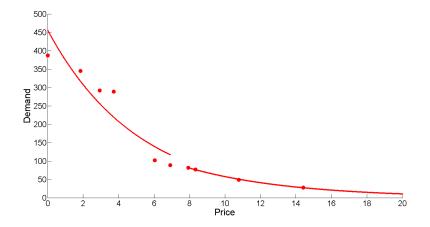




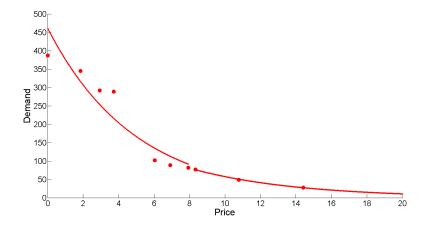




 $p_{(2)} \le \hat{\kappa}_1 < p_{(3)}$ 

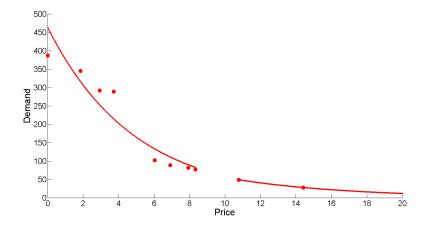



 $p_{(3)} \le \hat{\kappa}_1 < p_{(4)}$ 

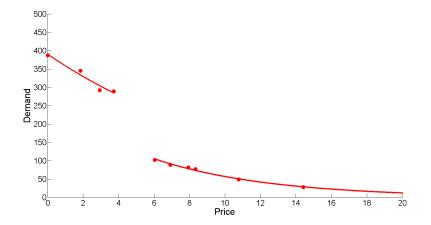



 $p_{(4)} \le \hat{\kappa}_1 < p_{(5)}$ 




 $p_{(5)} \le \hat{\kappa}_1 < p_{(6)}$ 




 $p_{(6)} \le \hat{\kappa}_1 < p_{(7)}$ 



 $p_{(7)} \le \hat{\kappa}_1 < p_{(8)}$ 



 $p_{(8)} \le \hat{\kappa}_1 < p_{(9)}$ 



Highest likelihood if  $p_{(4)} \leq \hat{\kappa}_1 < p_{(5)}$ .

Time horizon  $\{1, \ldots, T\}$ .

Time horizon  $\{1, \ldots, T\}$ .

(1) [Explore] Use M equidistant prices  $\underline{p} = p_1 < \cdots < p_M = \overline{p}$ .

Time horizon  $\{1, \ldots, T\}$ .

(1) [Explore] Use M equidistant prices  $\underline{p} = p_1 < \cdots < p_M = \overline{p}$ . (2) [Estimate] Compute  $\hat{\kappa}$  and  $\hat{\theta}$ .

Time horizon  $\{1, \ldots, T\}$ .

- (1) [Explore] Use M equidistant prices  $\underline{p} = p_1 < \cdots < p_M = \overline{p}$ .
- (2) [Estimate] Compute  $\hat{\kappa}$  and  $\hat{\theta}$ .
- (3) [Exploit] Based on  $\hat{\kappa}$  and  $\hat{\theta}$ , use the estimated optimal price in the remaining T M periods,

Time horizon  $\{1, \ldots, T\}$ .

- (1) [Explore] Use M equidistant prices  $\underline{p} = p_1 < \cdots < p_M = \overline{p}$ .
- (2) [Estimate] Compute  $\hat{\kappa}$  and  $\hat{\theta}$ .
- (3) [Exploit] Based on  $\hat{\kappa}$  and  $\hat{\theta}$ , use the estimated optimal price in the remaining T M periods, but a factor  $\log(M)/M$  away from the estimated discontinuities.

### Theorem (discontinuity estimation error)

There exist constants  $M_1, z_1, \gamma_1 > 0$  such that, if  $M \ge M_1$ , then

$$\mathbb{P}_{\pi}\left\{\left|\hat{\kappa}_{n}-\kappa_{n}\right| > \frac{z_{1}\log M}{M} \text{ for some } n=1,\ldots,N\right\} \leq \frac{\gamma_{1}}{M}.$$

### Theorem (discontinuity estimation error)

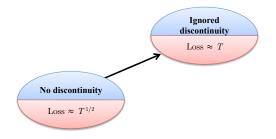
There exist constants  $M_1, z_1, \gamma_1 > 0$  such that, if  $M \ge M_1$ , then

$$\mathbb{P}_{\pi}\left\{\left|\hat{\kappa}_{n}-\kappa_{n}\right| > \frac{z_{1}\log M}{M} \text{ for some } n=1,\ldots,N\right\} \leq \frac{\gamma_{1}}{M}.$$

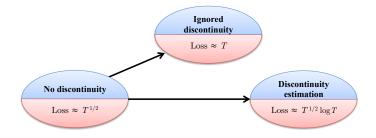
#### Theorem (parameter estimation error)

There exist constants  $M_2, z_2, \gamma_2 > 0$  such that, if  $M \ge M_2$ , then

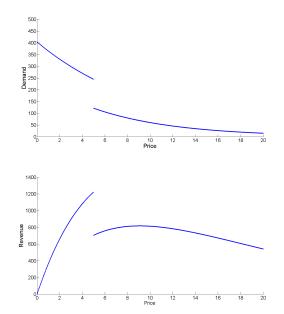
$$\mathbb{P}_{\pi}\left\{\|\hat{\theta}_n - \theta_n\|^2 > \frac{z_2 \log M}{M} \text{ for some } n = 0, 1, \dots, N\right\} \leq \frac{\gamma_2}{M}.$$


### Theorem (upper bound on regret)

There exists a constant C > 0 such that, if  $M = \lceil \sqrt{T} \rceil$ , then


 $\mathcal{R}_{\pi}(T) \leq C\sqrt{T}\log T$ 

for all  $T \ge 4(N+1)^2$ .


# Summary of results



## Summary of results



## Some intuition



Include change-point detection module in policy Retains  $O(\sqrt{T}\log T)$  regret

Include change-point detection module in policy Retains  $O(\sqrt{T} \log T)$  regret

• What if there are inventory constraints?

Include change-point detection module in policy Retains  $O(\sqrt{T} \log T)$  regret

• What if there are inventory constraints?

Asymptotic regime, inventory  $\xi \cdot T, T \to \infty$ .

Include change-point detection module in policy Retains  $O(\sqrt{T} \log T)$  regret

• What if there are inventory constraints?

Asymptotic regime, inventory  $\xi \cdot T$ ,  $T \to \infty$ . Include stochastic-approximation module in policy

Include change-point detection module in policy Retains  $O(\sqrt{T} \log T)$  regret

• What if there are inventory constraints?

Asymptotic regime, inventory  $\xi \cdot T$ ,  $T \to \infty$ . Include stochastic-approximation module in policy Retains  $O(\sqrt{T} \log T)$  regret

• Neglecting discontinuities can cost a lot (linear regret)

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:
  - Rank-induced discontinuities in other problems?

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:
  - Rank-induced discontinuities in other problems?
  - Nonparametric approach to discontinuous MABs.

# THE END