Fuzzy Formal Concept Analysis

Marcos Evandro Cintra – *mecintra@gmail.com* São Paulo University – Brazil University of Bristol – UK

Outline

FCA

- Definitions
- History
- Software available
- Basic concepts
- Scaling
- Fuzzy FCA
- Related work

Formal Concept Analysis (FCA)

A method for:

- Data analysis
- Knowledge representation
- Information management
- Non supervised machine learning method
- Clustering based

History

- Proposed by Rudolf Wille in the early 80s
- First 10 years restricted to a small group of researchers and Wille's students in Germany
- Because of the mathematical nature of most of the publications of that time, knowledge of FCA remained restricted to a group of "insiders"

History

- Through funded research projects, FCA was implemented in several larger-scale applications:
- An implementation of a knowledge exploration system for civil engineering in cooperation with the Ministry for Civil Engineering of North-Rhine Westfalia

Last 10 years

- > Applications in many disciplines, such as:
 - Linguistics
 - Software engineering
 - Psychology
 - Information retrieval
- Reasons: Influential papers in several fields

FCA - introductions, bibliographies and software

- English-language introductory material has been scarce
- Some material in German
- Almost no material in Portuguese 😣

FCA introductions, bibliographies and software

- Main conferences:
 - Int. Conf. on Conceptual Structures (ICCS), since 1995
 - Int. Conference on FCA (ICFCA), since2003
- Software available (probably another contributing factor for the recent growth of interest in FCA):
 - ConExp
 - ToscanaJ

Software availability - Issues

Due to the complexity of the underlying lattice data structures and of the visualizations, FCA software can usually NOT be developed in the kinds of short-term projects which are normally funded by national research agencies!

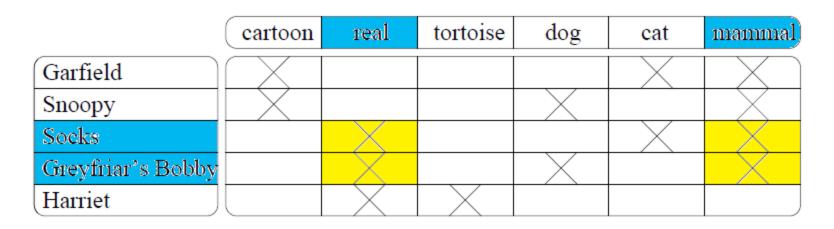
Software companies

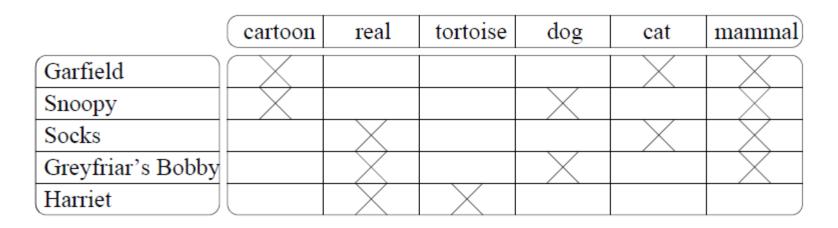
- German Navicon (<u>www.navicon.de</u>):
 - Founded 13 years ago by some of Wille's former students
 - Employ FCA software for information management tasks
 - The company is doing well but is nowadays more focused on database technologies than on FCA
- Australian company (<u>www.mailsleuth.com</u>) that is marketing an email analysis tool based on FCA

FCA – Basic Concepts

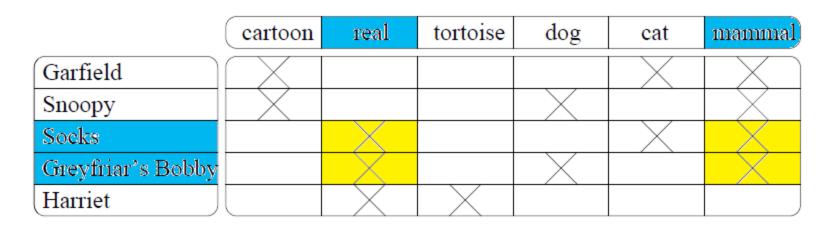
Toy Example

	cartoon	real	tortoise	dog	cat	mammal
Garfield	\square				\mathbf{X}	\square
Snoopy	\sim			\times		\square
Socks		\times			\sim	\sim
Greyfriar's Bobby		$\overline{\mathbf{X}}$		\mathbf{X}		\square
Harriet		\mathbf{X}	\sim			

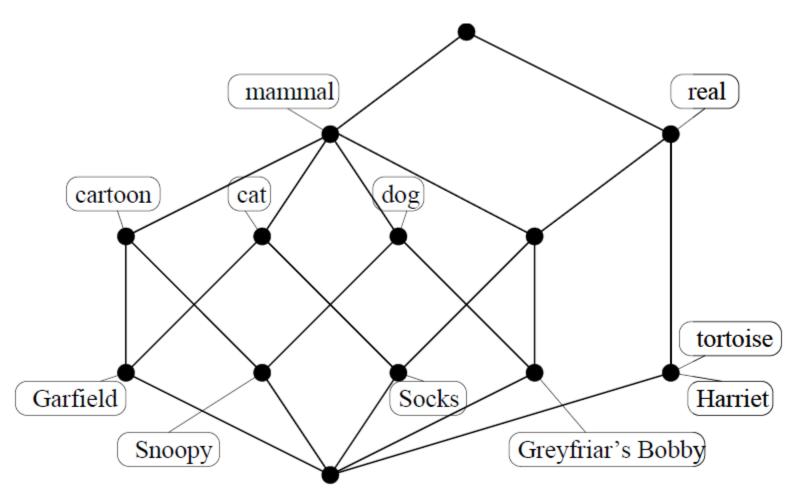


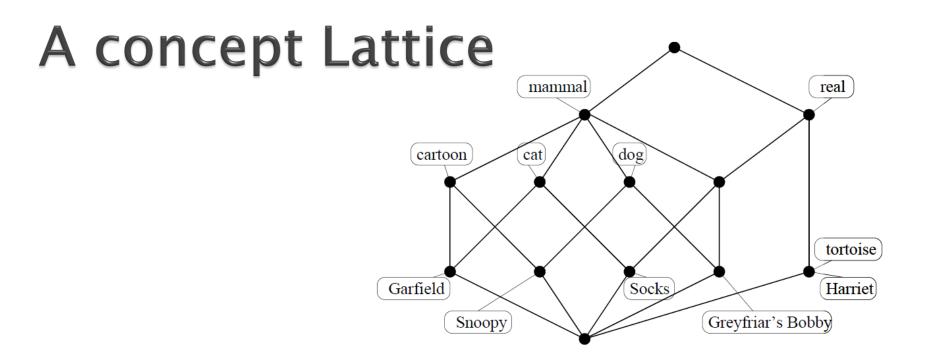


Definitions

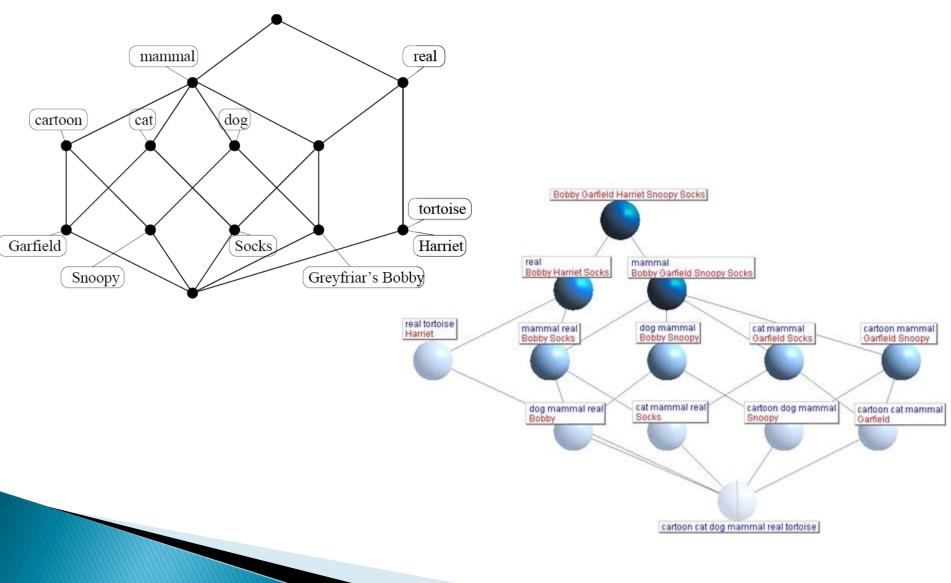

- Formal concept: a pair of objects and attributes that is closed
- Example:
 - Set of all objects that are real and mammal: {Socks, Bobby}

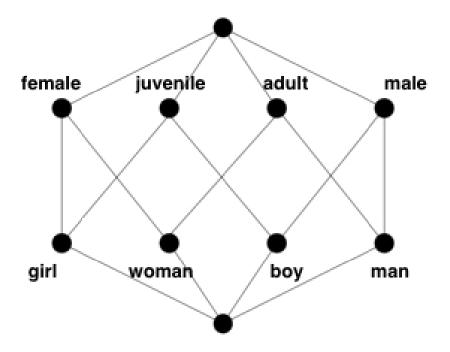
Important


- 1. Novice users often need to be reminded that although many formal concepts in an application may correspond to intuitive notions they might have, not all formal concepts need to do so.
- 2. The existence of a class is not necessary for a formal context
- 3. Attributes have only two options


Definitions

- Extension: set of objects of a formal concept
- Intension: set of attributes of a formal concept


Concept Lattice


- Formal concepts are represented by the nodes
- Attributes are noted slightly above nodes
- Objects are noted slightly under nodes
- Retrieving Extensions: trace all paths leading down from the node
 - Retrieving Intension: trace all paths leading up from the node

A concept Lattice

Another toy example

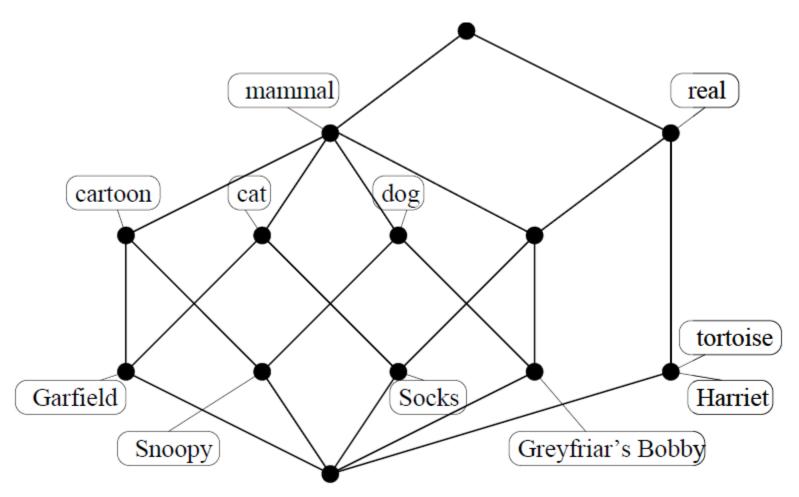
	female	juvenile	adult	male
girl	x	x		
woman	x		x	
boy		x		x
man			x	x

Dimensionality Issues

- Large sets of attributes and objects produce messy lattices
- A messy visualization only tells us that the lattice is complex
- Concept lattices should be human-readable or the information should be displayed in another format

Alternatives

- Make concept lattice visualizations expandable (such as files/folders)
- Dividing them into different components based on groupings of related attributes


Definition: Conceptual Scales

- Consider a survey with a structure of data representing rank orders ("strongly agree", "agree", "neutral", "disagree", "strongly disagree"):
 - The lattice can be drawn without considering the actual results from the survey

Implications

- All implications are correct for the given formal context;
- Some might be incorrect in real life:
 - Dog and Cat implies Mammal
 - Cartoon implies Mammal ?!
- Support for attribute exploration (Burmeister, 1999a):
 - Questions are made to check all implications
 - Counter examples are requested to update the formal context

A concept Lattice

Applications

- Visualization
- Decision trees
- Rule extraction for:
 - Classification
 - Association
- Generation of ontologies
- Attribute selection

SCALING

- It is the transformation of data into contexts
- It is also an information granulation task

K ₀	sex	age
ADAM	m	21
BETTY	f	50
CHRIS	/	66
DORA	f	88
EVA	f	17
FRED	m	/
GEORGE	m	90
HARRY	m	50

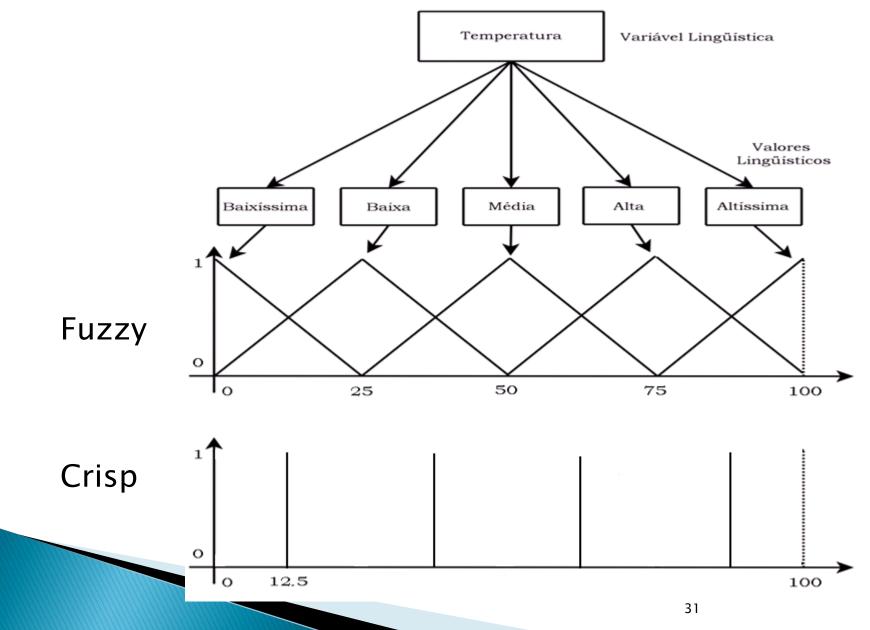
SCALING

	se	ex		age			
K	m	f	<18	<40	≤65	>65	≥80
ADAM	×			×	×		
BETTY		\times			\otimes		
CHRIS						×	
DORA		×				×	×
EVA		\times	\times	\otimes	×		
FRED	\times						
GEORGE	\times					×	×
HARRY	×				×		

Scaling

	age	height	symptom
Alice	23	165	1
Boris	30	180	0
Cyril	31	167	1
David	43	159	0
Ellen	24	155	1
Fred	64	170	0
George	30	190	0

Scaling


Age: young[0,30], medium[31,50], old[51,∞]
Height: short[0,160], medium[161,180],tall[181,∞]

	\mathbf{a}_y	\mathbf{a}_m	$\mathbf{a}_{\mathcal{O}}$	h_{s}	\mathbf{h}_m	\mathbf{h}_t	symptom
Alice	1	0	0	0	1	0	1
Boris	1	0	0	0	1	0	0
Cyril	0	1	0	0	1	0	1
David	0	1	0	1	0	0	0
Ellen	1	0	0	1	0	0	1
Fred	0	0	1	0	1	0	0
George	1	0	0	0	0	1	0

Fuzzy – Advantages

- Avoids the creation of unnatural separations when defining variables in terms of fuzzy sets (instead of the traditional alternatives available)
- Most people think in a fuzzy way, rather than crisply

Fuzzy definition of variables

Fuzzy Scalling

Age: young[0,30], medium[31,50], old[51,∞]
Height: short[0,160], medium[161,180],tall[181,∞]

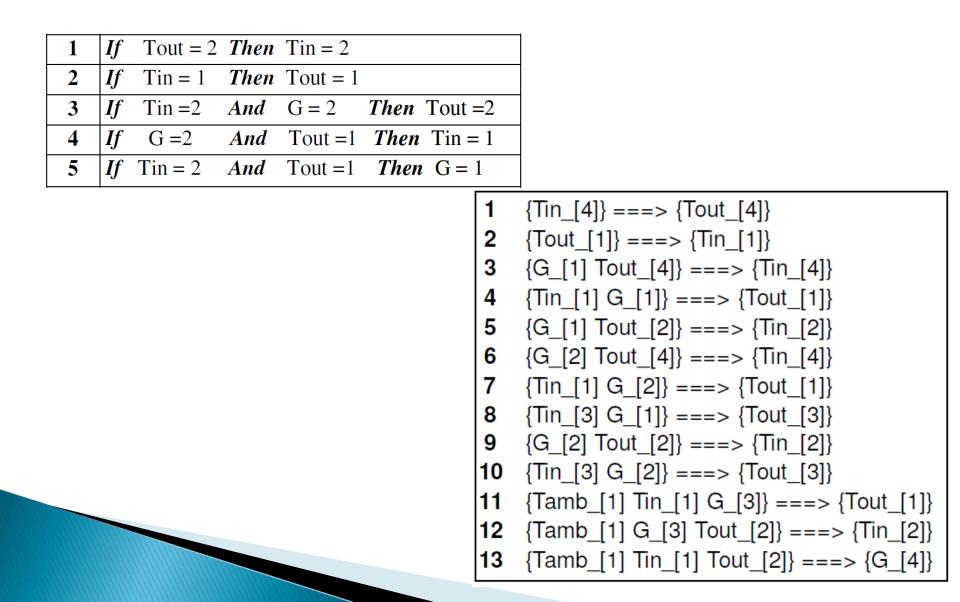
	age	height	symptom		\mathbf{a}_y	a_m	$\mathbf{a}_{\mathcal{O}}$	$\mathbf{h}_{\mathtt{s}}$	h_m	\mathbf{h}_t	symptom
Alice	23	165	1	Alice	1	0	0	0	1	0	1
Boris	30	180	0	Boris	1	0	0	0	1	0	0
Cyril	31	167	1	Cyril	0	1	0	0	1	0	1
David	43	159	0	David	0	1	0	1	0	0	0
Ellen	24	155	1	Ellen	1	0	0	1	0	0	1
Fred	64	170	0	Fred	0	0	1	0	1	0	0
George	30	190	0	George	1	0	0	0	0	1	0
1		~	<u> </u>								
		\searrow			\mathbf{a}_{y}	\mathbf{a}_m	$\mathbf{a}_{\mathcal{O}}$	$\mathbf{h}_{\mathtt{s}}$	\mathbf{h}_m	\mathbf{h}_t	symptom
	\times	\times		Alice	1	0.5	0	0.5	1	0	1
				Boris	1	0.5	0	0	0.5	0.5	0
° 20	30 4	0 50	60	Cyril	0.5	1	0	0.5	1	0	1
20	50 4	• ••		David	0	1	0.5	1	0.5	0	0
			i	Ellen	1	0.5	0	1	0.5	0	1
				Fred	0	0	1	0.5	1	0	0
				George	1	0.5	0	0	0	1	0
。	$\langle \ \setminus$	\checkmark									
120 150	160	170 180	200								

Neural Networks and FCA

- Select a representative dataset
- Define neural network
- Build synthetic dataset
- Present synthetic dataset to neural network
- Build a formal context
- Obtain formal concepts
- Extract implication rules using nextClosure algorithm

Solar Energy

	Tamb(°C)	Tin(°C)	G(W/m2)	Tout(°C)
maximum	27,18	60,81	1084,95	64,73
minimum	22,48	20,29	731,71	26,42


Tamb(°C)	Tin(°C)	G(W/m2)	Tout(°C)(Net)
22.48	20.29	731.71	26.38
22.82	28.97	933.56	35.33
23.15	20.29	958.79	28.42
24.16	40.55	933.56	46.79
24.159	40.55	958.79	46.96
25.17	31.87	857.87	37.70
26.17	40.55	984.02	47.26
27.18	46.34	731.71	51.29
27.18	46.34	756.94	51.47
27.18	60.81	1084.95	64.31

Discretization of variables (2 sets)

	Ranges
Tamb(°C)	[22.48, 24.83 > [24.83, 27.18]
Tin(°C)	[20.29, 40.55 > [40.55, 60.81]
G(W/m2)	[731.71, 908.33 > [908.33, 1084.95]
Tout(°C)	[26.42, 45.575 > [45.575, 64.73]

Tamb(°C)	Tin(°C)	G(W/m2)	Tout(°C)(Net)	index	Tamb(°C)	Tin(°C)	G(W/m2)	Tout(°C)
22.48	20.29	731.71	26.38	1	1	1	1	1
22.82	28.97	933.56	35.33	2	1	1	2	1
23.15	20.29	958.79	28.42	3	1	1	2	1
24.16	40.55	933.56	46.79	4	1	2	2	2
24.159	40.55	958.79	46.96	5	1	2	2	2
25.17	31.87	857.87	37.70	6	2	1	1	1
26.17	40.55	984.02	47.26	7	2	2	2	2
27.18	46.34	731.71	51.29	8	2	2	1	2
27.18	46.34	756.94	51.47	9	2	2	1	2
27.18	60.81	1084.95	64.31	10	2	2	2	2

Rule Extraction: NextClosure

References

- Websites with information on FCA:
 - http://www.upriss.org.uk/fca/fca.html
 - http://fca.radvansky.net/news.php

References

- Belohlávek, R., Sklenar, V., and Zacpal, J. (2005). Crisply generated fuzzy Concepts. In ICFCA, pages 269–284.
- Ganter, B. (1984). Two basic algorithms in concept analysis. Technical report, Technische Hochschule Darmstadt. 28 p.
- Ganter, B. (2002). Formal concept analysis: Algorithmic aspects. Technical report, Technische Universitat Dresden.
- Wolff, K. E. (2002). Concepts in fuzzy scaling theory: order and granularity. Fuzzy Sets and Systems, 132(1):63–75. Zheng, S., Zhou, Y., and Martin, T. (2009). A new method for fuzzy formal concept analysis. In ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, pages 405–408.