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Abstract 
In this chapter I show that elementary math models reveal powerful insights that can help understand better design 
and management decisions in facility logistics operations. Subsequently I develop models for designing a truck-
operated unit-load warehouse (sizing it, calculating the load orientation, and determining the warehouse length-
width ratio). Next the optimal stacking depth is calculated and for automated unit-load warehouses the optimum rack 
size, number of cranes and optimum storage zone boundaries are determined. Finally the impact of the number of 
inducts on sorting system throughput is determined. 
 

1 Introduction 

Warehouses and distribution centres play an important role in the supply chains of companies as they 
decouple supply from demand. Moreover, warehouses have a role in forming an assortment and as the 
prime point in the supply chain to group material flows to create transport efficiencies. Companies have 
moved their push-pull boundaries as far downstream as possible, implying many warehouses are involved 
in value-adding activities. According to the report of HIDC and TNO (2009), warehousing activities 
(including value addition) directly contributes €15.7 billion annually to the Dutch GDP. Indirect services 
(like material handling systems, consultancy, leasing services) are not included in that number. 

In an attempt to minimize operational cost many companies operating warehouses have invested in 
largely automated warehouse operations. Storage of unit loads was already automated in the sixties with 
automated storage and retrieval systems (AS/RS), usually employing high-bay racks with rail-mounted 
cranes. Automation of the order picking process of individual selling units is known since about 15 years 
in sectors with limited variety in product shapes, such as pharmaceuticals. In the last decade it became 
possible to automatically store, replenish and order pick dry groceries from a fairly large and complicated 
assortment. The warehouses of Edeka and Lidl in Germany are the first in the grocery retail sector to 
receive, store, order pick, sequence products, load roll containers and prepare loads for shipments in 
largely robotized warehouses. Scarcity of labour, 24-hour operations, an urge to work in relatively smaller 
(and hence cheaper) facilities, sufficiently large shipping volumes per facility, and cheaper technologies 
have driven these developments. 

In order to design, plan, and operate such facilities, models are needed. Software algorithms taking care of 
order grouping and release, storage slot allocation, pick location allocation, timing of replenishments 
between reserve and forward storage locations, balancing work loads over pick stations, planning 
shipments, sequencing pick instructions, and routing order pickers are used to realize the desired 
performance. These algorithms are the fruits of academic research. Although models for certain 
configurations can easily become large and intractable, it is possible to derive simple models that yield 
much insight in system performance. As examples I will treat design models focusing on unit load 
warehouses. Unit loads are pallets, totes, roll cages, or any other product carrier handled as a single unit. 
Unit-load storage systems can be found in many warehouses. They are used to store inbound materials, 
which are later moved to forward areas or pick stations where the orders for single cases or units are 
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picked. Figure 1 sketches product flows in a typical warehouse, where the “reserve storage” area 
represents the unit-load warehouse.  
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Figure 1. Typical warehouse functions and flows (Tompkins et al. 2003) 

In the next sections the following warehouse-design questions are covered subsequently, using 
elementary models. 

Rack-based unit-load warehouse design: 
 How many unit loads should the warehouse cater for? 
 Should unit loads be stored deep or wide? 
 What is the optimum size (length/width ratio) of a unit-load warehouse? 
Block-stack based unit load warehouse design: 
 What is the optimum storage depth in a multi-deep block stack? 
AS/RS-based unit-load warehouse design: 
 What is the optimum size (length/height ratio) of a unit-load storage rack in an AS/RS? 
 How many storage/retrieval cranes are needed to achieve a certain throughput? 
 What are the optimum zone boundary shapes for turnover-class based storage? 
Sorting system design: 
 How many inducts should the sorter have? 
 

2 Rack-based unit load warehouse design 

The first question asks how many loads should be stored in the warehouse. Only then can the warehouse 
and the racks be sized. We treat these two topics in the following subsections. 

2.1 Determining the number of unit loads to be stored 
The number of loads the storage system should be able to cater for depends on the following factors: 

 The number of products, N, stored (average and maximum simultaneously). Every product, even 
when stored in a small quantity needs a separate storage slot, capable of storing the unit load. In 
determining N not only current products should be included, but also the assortment that should be 
catered for in the medium-term future. 
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 The number of slots needed per product. 
 The size and weight of the products: how many product units fit on the unit load? 
 The amount of slack the storage space should have. Every warehouse needs slack space to warrant a 

smooth operation. According to a rule of thumb explained by Tompkins et al. (2003, p.403), the slack 
space β should be around 20%. The slack space depends on the technology used. In more automated 
warehouses less slack space is needed. 

 The used storage strategy. In case a dedicated storage strategy is followed every product, or even 
stronger, every unit load of a product, has a fixed storage location, which usually is based on turnover 
speed of the load. In case of a shared storage policy unit loads can share storage slots, albeit not at the 
same point in time. In practice combinations are often used, for example a fixed slot for the first load 
and shared slots for the remaining loads of all products. 

The number of loads to be stored per product depends on its replenishment policy. Assuming a 
continuous review <s ,Q> ordering policy, with s the reorder level and Q the economic order quantity, the 
reorder level s will have to cover the mean demand over lead time plus a safety factor, depending on the 
desired service level of the product, times the standard deviation of the demand over lead time. In 

formula, d dLs L Z 


   , where μd is the product’s mean demand per day, L is the (stochastic) supply 

lead time in days, Zα is the safety factor for a service level (fill rate) 1-α of the product. The term dLZ  

is called the safety stock, ss. In case lead time is constant and demand is iid, then the standard deviation of 

demand over lead time, dL , equals d L , with σd the standard deviation of daily demand. The safety 

factor can be determined if the product’s demand distribution is known. The economic order quantity Q 

equals 2DK , where D is the annual demand and K is the ratio of ordering over annual unit inventory 
holding cost. In an <s, Q> system, it is straightforward to see the average stock of a product equals 

2

Q
ss  and the maximum stock equals Q ss . The total number of storage slots C needed will therefore 

fall between 
1
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

    
  and 

1

(1 )
N
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i

Q ss 


    ,          (1) 

where all quantities are expressed in unit loads and β is the system’s slack factor. The notation x    

indicates x should be rounded upwards (to full unit loads). Although this analysis partly answers the first 
question, some intricate further questions remain. The gap between the lower and upper bound may be 
substantial: think of a warehouse for 1,000 products where all products are replenished in lots of 2 pallets, 
and the average space needed is 1 pallet per product. Should the warehouse accommodate for 1,200 or 
2,400 pallets? As in most practical environments some degree of storage slot sharing is possible, the 
number of slots needed is usually closer to the lower than to the upper bound. 

2.2 Determining the unit load storage orientation 
The footprint of most unit loads is not square, but rectangular, meaning they have a long and short side. 
Euro pallets and block pallets have a size of 12080 and 120100cm, respectively. Euro-sized totes have 
a footprint of 6040cm. As most loads can be retrieved from any direction, an important design decision 
is whether loads have to be stored wide or deep. In conventional unit load warehouses the building, with 
fixed installations, may take up to 70% of the total operational costs (rent/interests, write-offs, 
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maintenance, energy; De Koster 1996). The most important criterion for load orientation therefore is 
space consumption. Figure 2 sketches the space occupied by two loads stored on opposite sides of a travel 
aisle, stored wide or deep. In the calculation we assume the loads are Euro pallets, and the truck we use is 
a pallet stacker (a small type of reach truck, capable of lifting about 4m high) which needs a turning circle 
of 2.1m. 
 

 

 

 

 

Figure 2. Two unit loads stored at opposite sides of the travel aisle, stored wide (left) or deep (right) 

In case the loads are stored wide, the aisle width+two pallet depths+safety space equals b= 2.1+ 
2 (0.8+0.2) =4.1m. Therefore, the space occupied by two pallets plus aisle, Ow becomes b l= 
4.1 (1.2+0.2) = 5.7m2. In case loads are stored deep, the net aisle width becomes 2.5m, since the pallet 
has now become 0.4m longer, leading to a space of Od =5.3 (0.8+0.2)= 5.3m2, implying a space saving 
of 7%. This explains why loads in unit load facilities should always be stored deep; if not, this calls for a 
serious inquiry. 

2.3 Determining the length and width of the warehouse 
Figure 3 shows two different layouts of the warehouse, the left one has a single input/output (I/O) point 
whereas the right one has split input and output points. We aim to determine the length L and the width B  
of the warehouse, under the assumption the storage capacity C is given (from Equation (1)). We assume 
the storage strategy employed in the warehouse is random (i.e. each location is equally likely to contain 
the requested unit load), storage and retrieval requests arrive on line and the warehouse truck used to store 
and retrieve unit loads carries out single cycles only. In case of a storage job, such a single cycle consists 
of fetching the load at position X, storing it at some storage location Y and returning empty to location X. 
The cycle is similar in case of a retrieval. We furthermore assume for now the number of storage levels n 
is given, hence we divide C by n to obtain the capacity per level. In optimizing L and B, we have to 
realize warehouse trucks do not drive and lift simultaneously for safety reasons, i.e. they always -should- 
drive with the forks in the lowest position. Upon arrival at the storage location, the truck makes a 90º 
curve and starts lifting until it reaches the desired slot and stores or retrieves the load. After this it lowers 
its forks and travels to the output point. Therefore, the only element of the storage/retrieval cycle 
influenced by B and L is the travel time. In both layouts, the mean travel time to carry out a single cycle 

equals (approximately) 
2

L
B  . This is to be minimized under the condition L B C  . Substituting the 

constraint into the objective, and applying first order conditions yields L=2B. In other words the 
warehouse should be twice as wide as deep. If the number of unit loads to be stored P is given, it is now 

straightforward to calculate the real warehouse dimensions, since 2
L B

P n
l b

 . Note that 
B

b
represents 
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the number of aisles in the warehouse and 
L

l
represents the number of storage sections per aisle side. 

Combining this with L=2B yields: 
1

,
2

Plb Plb
B L

n n
  .             (2) 

 

 

 

 

 

 

 

 

Figure 3. Top view of two different layouts of the unit load warehouse 

In determining the real L and B values from (2) we have to round the values found such that 
B

b
and 

L

l
are 

integers. In practice this is not a great restriction as the cycle travel time is greatly insensitive to the exact 
warehouse shape ratio, as shown in Figure 4. This may explain why so many warehouses in practice have 
suboptimal shape factors. I suspect though there may be other explanations. 
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The remaining question is how to determine the number of storage levels n. The number of levels is 
primarily determined by the building costs and the number of trucks and people needed. In general 
driving a truck is much speedier than lowering or lifting, implying cycle times go up for higher buildings. 
Therefore, for a given throughput we might need more trucks and people in a high building. However, 
high buildings are much cheaper than low buildings of the same cube. In view of the dominant part of 
building-related costs within the operational costs higher buildings are usually to be preferred. However, 
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in order to find the exact trade-off curve and determine the optimal value of n, the precise real costs 
should be calculated as function of n. An impression on how to do this can be found in De Koster (1996). 
 

3 Block-stack based unit load warehouse design 

Many warehouses store bulk unit loads in block stacks, drive-in or drive-through racks. Such block stacks 
are particularly attractive if few products need to be stored in large quantities per product. Think of beer 
and soft-drink manufacturers or retail warehouses storing such products. Block stacks are usually 
arranged around transport aisles and have a fixed depth (the lane length). A major question in such stacks 
is to determine the proper storage lane length. If lanes are too deep, the average space usage will be very 
poor (this effect is called ‘honeycombing’, see Tompkins et al. 2003). However, if lanes are short, we 
may need multiple lanes per product which increases warehouse size. The main objective is again to 
minimize the space usage to store all unit loads needed. Figure 5 sketches a block stack with 3-deep lanes 
accessible from two sides (like using drive-through racks). Our prime objective is to determine the 
number of unit loads, x, to be stacked behind each other in a lane. We assume product i is received in the 
warehouse in batches of qi unit loads. 

 

Figure 5. Top view of a 3-deep block stack lane, with access on two sides, through travel aisles of width a. The load 

has size d l  (including safety space). 

For a given lane of depth x (in number of unit loads) the average total space occupied by all products plus 

half of the two aisles equals  
1 2

N
i

i

q
dx a l

x

     
 , which approximately equals  

1

1
( )
2 2

N
i

i

q
dx a l

x

   . 

Applying first order conditions yields 
1

N

i
i

a
x q

dN 

  . If products can be stacked on top of each other 

(say ni levels for product i), we have to divide qi by ni in this formula. If access is possible from one side 
only (like in the case of drive-in racks) we have to divide a by 2. 
 

4 AS/RS-based unit-load warehouse design 

In an AS/RS (like a miniload, or high-bay pallet warehouse) each storage aisle has its own aisle-bound 
crane. We first calculate the cycle time (time to store or retrieve a load) of the crane assuming a random 
storage strategy and use this to determine the optimum size (length/height ratio) of a unit-load storage 

d

a/2

a/2

l
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rack in an AS/RS. From this we can determine the number of cranes (and aisles) and the we can find the 
optimum zone boundary shapes. 

4.1 Calculating the optimum rack shape 
In order to calculate the optimum rack shape we have to realize a crane drives and lifts simultaneously. 
The crane speeds are vx and vy, in horizontal and vertical direction, respectively. The driving time to the 

farthest location is now x
x

L
t

v
 ; the lifting time to the highest location y

y

H
t

v
  (see Figure 6). We aim to 

find E[W], where W is the driving time to a random location (X,Y), and back to the depot. 

 
Figure 6. Side view of the rack, with the depot in the lower left corner. Right part: normalized rack. 

In order to simplify the calculations, following Tompkins et al. (2003), we define max{ , }x yT t t , 

min{ , }yx
tt

b
T T

 . We assume the rack is longer (in time) than it is high (i.e. tx≥ty and we normalize the 

rack by dividing the time dimensions by T. In the normalized rack (see Figure 6), the horizontal storage 
location X and vertical storage location Y are now stochastic variables uniformly distributed on [0,1] and 

[0,b], respectively. Let max{ , }Z X Y , then [ ] 2 [ ]E W E Z T  . Since the crane drives and lifts 

simultaneously, ( ) [ ] [max{ , } ] [ ] [ ]ZF z P Z z P X Y z P X z P Y z        , with 

, if 0 1
[ ]

1, if 1

z z
P X z

z

 
   

, 
, if 0

[ ]
1, if

z
z b

P Y z b
z b

    
 

. In other words 

2 / , if 0

( ) , if 1

1, if 1
Z

z b z b

F z z b z

z

  
  
 

. 

By taking the derivate of Fz we find the probability density function fz and from this we can obtain the 

expected value of Z by calculating 
0

[ ] ( )ZE Z zf z dz


  . From E[Z] we find 
2

[ ] (1 )
3

b
E W T  .       (3) 

As an example, assume the rack is 50 sec long and 50 sec tall, then b=1 and T=50. The driving time to a 
random location and back to the depot is therefore 66.7 sec (and not 50 sec!). We can now use formula (3) 

to optimize the rack shape as follows: 
2( / )

min! [ ] (1 ).
3

y x
x

t t
E Z t  , s.t. x yt t C  . Substituting the 

constraint into the objective and applying first order conditions yields ( )x yt t C  . In other words, 

H 

L 

(x, y) 
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b=1; the optimum rack is square in time. However, since cranes usually drive much faster than they lift 
(in a ratio of about 4 to 1), optimum racks should be rectangular with this same ratio (of 4 to 1). It is fairly 
easy to see from the outside of a high-bay warehouse whether it (approximately) has this optimal shape. 
The building should be about 4 times longer than the height. 
 

4.2 Calculating the number of cranes 
Cranes are very expensive. Therefore we use formula (3) to calculate the minimum number of cranes 
needed, for a given storage capacity (using formula (1)) and throughput, expressed in number of unit 
loads to be stored and retrieved per time unit. As an example assume we need 4000sec2 of storage space 

and a throughput of 200 pallets per hour. The problem can be formulated as: min!N , such that 

2

3600
2 4000, and 200

( / )
(1 ) 2

3

x y
y x

x

N
N t t

t t
t 


   

 
. δ is the -constant- load pick-up or drop-off time, 

about 18 sec in pallet warehouses. This problem can easily be solved iteratively by starting with 1 crane, 
calculating the resulting (square) rack size and then calculating the throughput using formula (3). If the 
throughput constraint is met we are done, otherwise the number of cranes (and aisles) is increased by 1, 
etcetera. For the example given, the optimum number of cranes and aisles is 4, leading (for δ=18) to a 
throughput of 218.8 pallets/hour. 
 

4.3 The optimum storage-zone shape 
Many warehouses do not apply random, but class-based storage. The idea is to divide the products in 
turnover-based classes, with the fast-moving products (A-products) stored close to the depot and slower-
moving products farther away. Within a storage class, products are stored randomly. The question is what 
the optimum storage zone looks like. It is fairly easy to see the optimum shape of a storage zone is a 
square L-shape in the time dimension, as sketched in Figure 6 (right part). Since the crane drives and lifts 
simultaneously, all points on the boundary of such an L-shape have exactly the same travel time. 
Therefore they must belong to the same travel time class. In conclusion, the optimum zone shapes are 
rectangular in meters, in a ratio of about 4 to 1. Although this might seem fairly obvious I had a recent 
visit with students to a high-tech fully automated carpet storage warehouse. The carpet rolls were stored 
vertically, retrieved by an overhead crane moving in x- and y-direction simultaneously. The zone 
boundaries were not square in time, but circular around the depot. 
 

5 The impact of the number of sorter inducts on throughput 

Many warehouses pick orders in batch and sort them per customer order using sorting machines. Figure 1 
gives an impression of the position of this process in the total product flow. Sorting machines have 
strongly improved over the last decades; they have become faster and cheaper, more ergonomic, less 
noisy, and more generally useable. Figure 7 shows pictures of a loop sorter, where products can circulate 
if the destination chute is full. 
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Figure 7. Loop sorter sorting to two sides with one (left) and two inducts (right). Source: Vanderlande. 

The sorter has line capacity C (products per time unit) at any intersection. However, the number of 
products actively sorted by the sorter can be larger than C, depending on the number of inducts the sorter 
has. Assume the sorter has N inducts, equally spaced around the sorter, with the sorting chutes equally 
divided along the sorter. The maximum inbound flow at a sorter induct X, is now limited by the products 
on the sorter fed by other inducts, but not yet sorted. For two inducts with flows X and Y we find: 

1

2
X Y C   and 

1

2
Y X C  , implying X=Y. Therefore 

2

3
X C . The total throughput capacity of 

the sorter is therefore 2 4 / 3X C , or 33% more than the line capacity, achieved with one induct. In 

general, with N inducts we find 
1

1 N

i

X i C
N 

 , or 
2

1
X C

N



. Hence the throughput is 

2

1

N
NX C

N



. Note that for large N, we can nearly double the sorter’s line capacity! This also works in 

practice. During a company tour at a discount retailer, it was mentioned the sorter was a bottleneck for 
further store expansion. The sorter had three inducts clustered together, effectively acting as one induct. 
After making a remark on this, I noticed the next year the sorter had not been upgraded, but a new induct 
had been bought, placed diagonally opposite the first induct group. This had substantially increased 
sorting capacity. 
 

6 Conclusions 

The above examples show elementary math models can be used to provide insight into warehouse design 
questions. Many extensions of the above-mentioned models exist, albeit often with more complicated 
analyses. 
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