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e Bandits and me

* My efforts trying to inject bandit
thinking into clinical research

* Recent successes: Multi-armed
Bayesian Bandits Are Changing the
Paradigm of Clinical Trials
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A BERNOULLI TWO-ARMED BANDIT!

By DoNALD A. BERRY

University o f Minnesota

One of two independent Bernoulli processes (arms) with unknown ex-
pectations p and 2 is selected and observed at each of n stages. The selection
problem is sequential in that the process which is selected at a particular
stage is a function of the results of previous selections as well as of prior
information about p and 2. The variables p and 2 are assumed to be inde-
pendent under the (prior) probability distribution. The objective is to
maximize the expected number oftsuccesses from the # selections. Sufficient
conditions for the optimality of selecting one or the other of the arms are
given and illustrated for example distributions. The stay-on-a-winner rule
is proved.

1. Introduction and statement of the problem. Let &2 and & denote inde-
pendent Bernoulli processes with parameters—probabilities of success—p and
4 respectively. Call & the right arm and < the left arm. An observation on
either arm is called a pull. A right pull or a left pull is made at each of » stages
and the result of the pull at each stage is known before a right or left pull is
made at the next stage. The parameters p and 1 associated with &2 and & are



Application to Clinical Trials?
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Modified Two-Armed Bandit Strategies

DONALD A. BERRY*

for Certain Clinical Trials

A procedure which maximizes the expected number of successes in a
clinical trial involving two treatments can usually be found only by
backward induction. Not only is it difficult to find an optimal pro-
cedure but, once found, it is difficult to describe and cumbersome to
communicate. A procedure is suggested which depends on the in-
formation present concerning the treatments. This procedure is essy
to calculate and approximates an optimal procedure quite well. It
is applicable to trials for which the number of patients is unknown
as well as those of known duration.

KEY WORDS: Clinieal trials; Two-armed bandits; Sequential
Bayesian decisions; Feldman's strategy.

1. INTRODUCTION

Suppose that two treatments are available for use in a
clinical trial. Further suppose that the response to treat-
ment is either positive (a success) or negative (a failure)
and that the patients can be treated one at a time, with
each patient’s response available before the next patient

ic tn he treated Thae nuimher af natianta in the trial ie NV

© Journal of the Ame

as a function of (p,, p2). Another, the Bayesian approach,
asks that current information concerning (p:, p.) be
quantified in the form of a probability distribution. The
Bayesian approach will be used in most of this article.
A distinct advantage of this approach is that accumulat-
ing information can be handled in a unified way : Bayes’
theorem is used to modify the probability distribution on
(p1, p2). The effectiveness of a procedure can then be
averaged over (pi, pa2) and, possibly, a procedure can be
found that maximizes the expected number of successes.

If one of the p, is known, say p,, and p, has probability
measure », then the procedure selection problem is called

‘a ‘“‘one-armed bandit” (¢f. Bradt, Karlin, and Johnson

1956). An intuitively appealing characteristic of optimal
procedures for the one-armed bandit is that the initial

patients constitute an information-gathering stage, which

mav he emntv ar mav exhanst the trial durine whirh

Statistical Assoclation
olume 73, Number 362
Theory and Methods Section
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Advice from biostatisticians

“Berry, you don’t understand clinical trials.”

“You’re wet behind the ears. You should
learn about real clinical trials.”

“Prior distributions are biased.”
“Nonrandomization is a non-starter.”



| took the advice

| came to understand clinical trials

* | learned how to design stupid clinical
trials ... and | designed some! For U.S.
National Cancer Institute’s cooperative

groups.

10



If you can’t beat ‘em, join ‘em!

11



For example ...

I ORIGINAL CONTRIBUTION

Estrogen-Receptor Status and Outcomes
of Modern Chemotherapy for Patients
With Node-Positive Breast Cancer

Donald A. Berry, PhD

Constance Cirrincione, MS

I. Craig Henderson, MD

Mare L. Citron, MD

Daniel R. Budman, MD

Lori J. Goldstein, MD

Silvana Martino, DO

Edith A. Perez, MD

Hyman B. Muss, MD

Larry Norton, MD

Clifford Hudis, MD

Eric P. Winer, MD

1658 JAMA, April 12, 2006—Vol 295, No. 14 (Reprinted)

Context Breast cancer estrogen-receptor (ER) status is useful in predicting benefit
from endocrine therapy. It may also help predict which patients benefit from ad-
vances in adjuvant chemotherapy.

Objective To compare differences in benefits from adjuvant chemotherapy achieved
by patients with ER-negative vs ER-positive tumors.

Design, Setting, and Patients Trial data from the Cancer and Leukemia Group B
and US Breast Cancer Intergroup analyzed; patient outcomes by ER status compared
using hazards over time and multivariate models. Randomized trials comparing (1): 3
regimens of cyclophosphamide, doxorubicin, and fluorouracil (January 1985 to April 1991);
(2) 3 doses of doxorubicin concurrent with cyclophosphamide, with or without subse-
quent paclitaxel (May 1994 to April 1997); (3) sequential doxorubicin, paclitaxel, and
cyclophosphamide with concurrent doxorubicin and cyclophosphamide followed by pa-
clitaxel, and also 3-week vs 2-week cycles (September 1997 to March 1999). A total of
6644 node-positive breast cancer patients received adjuvant treatment.

Main Outcome Measures Disease-free and overall survival.

©2006 American Medical Association. All rights reserved.’



The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effect of Screening and Adjuvant Therapy
on Mortality from Breast Cancer

Donald A. Berry, Ph.D., Kathleen A. Cronin, Ph.D., Sylvia K. Plevritis, Ph.D.,
Dennis G. Fryback, Ph.D., Lauren Clarke, M.S., Marvin Zelen, Ph.D.,
Jeanne S. Mandelblatt, Ph.D., Andrei Y. Yakovlev, Ph.D., J. Dik F. Habbema, Ph.D.,
and Eric ). Feuer, Ph.D., for the Cancer Intervention and Surveillance
Modeling Network (CISNET) Collaborators*®

ABSTRACT

BACKGROUND
We used modeling techniques to assess the relative and absolute contributions of
screening mammography and adjuvant treatment to the reduction in breast-cancer
mortality in the United States from 1975 to 2000.
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MaTHEMATICS IN BioLoGY

NEWS

The New Math of Clinical Trials

Other fields have ad d statistical hods that int:

experience, but the stakes ratchet up when it comes to medcnlveseardl

HousTon, Texas—If statistics were a reli-
giom, Donald Berry would be among its
Head of biostatis-

hcsitheM D. Anderson Cancer Center

out o-mail missives at 3:00 in the moming.
The running joke in the department is that
Berry, his curly pray hair perpetually tousled

never sleeps. Admittedly, sleep doesn’t come
easily to a man on a mission.

Berry. 63, adheres to a branch of statistics
named after an 18th century minister,
‘Thomas Bayes, whose followers advocate in-
corporating prior knowledge into experi-
ments and sometimes altering them as they
Tun to take into account accumulating results.
Although Bayesian designs are now widely
used in everything from astrophysics to ecol-
ogy (Science, 19 November 1999, p. 1460),
they've been slower to catch on in medical
research, particularly clinical trials. That's
where Berry comes in.

A Bayesian since the 1960s, Bmy for
years was unable to implement his
unorthodox approach. Then, in
1999, he was offered a golden op-
portunity: Come to M. D. Ander-
son, one of the largest cancer cen-
ters in the United States, with a rep-
umfotbellgme"wm"of

research, and
how it designs and runs many of the
800 clinical trials being conducted
at any given time.

Berry’s perch at Anderson has
fueled his resolve to spread the
Bayesian word. He crisscrosses the
country speaking with cancer advo-
cates, drug companies, and the
Food and Drug Administration
(FDA): the latter is beginning to
consider Bayesian trials in new drug
applications and is planning a May
meeting on the subject.

His critics, however, hope his
ideas won't take hold. Berry's skep-
ticism that mammograms help
younger women left him accused of
risking lives; his approach to clini-
cal trials has prompted worries

about bad drugs slipping through

Hutchinson Cancer Research Center in
Seattle, Washington. But critics ~and sup-
porters alike have a grudging admiration for
Berry's persistence. “He isn’t swayed by the
status quo, by people in power in his field™
says Fran Visco, head of the National Breast
Cancer Coalition in Washington, D.C. *You
have to respect him for that,” she adds,
“whether you agree with him or not.”

Maverick beginnings
Berry stumbled into statistics after an er-
ratic college career. He skipped classes
regularly and took a 3-year break, in 1960,
to volunteer for the army. By his senior
year, he and his wife had four sons (two
more children, both girls, would follow),
and Berry had little idea what to do with
his life. A professor suggested statistics;
Berry took the advice and enrolled in
graduate school at Yale University. After
completing his dissertation in 1971, he
moved to the University of Minnesota.
From the start, Berry was drawn to the

the system. drug studies
nsk"uymglluemmms]pmve

Bucking tradition. Donald n-rry's support for Bayesian
too often,” says biostatistician dcsvls is changing the face of dlinical trials, especially
Stephanie Green of the Fred athis home base of M. D.Anderson Cancer Center.

school of thought, then widely
wewudumocﬂnymlhmﬂuﬁeld.m
calls for i
“priors™—knowledge pained from previous
work—into a new experiment. “The
Bayesian notion is one of synthesis ... [and]
learning as you go.” says Berry. Hefmmd
these qualities immensely appealing. in part
because they reflect real-life behavior, in-
cludmg the way doctors practice medicine.
But learning as you go collides with the
decades-old clinical trials paradigm. To
guard against bias—from doctors, drug com-

panies, and even pati h phase of a
traditional clinical trial is run from start to
finish without & interested

pmjeaomsidescim!issm'lorﬂ)em

ever. Bayesian trials often unveil data while a
study is ongoing. What’s more, researchers
can use these early results to reallocate pa-
tients to different treatment groups depending
on how the first batch of patients, or even a
smglapuml.fxes.Benylhoﬁvonaher

tonal deslgn. Factorial designs include a
treatment arm for every drug combination
possible, leading to unwieldy experiments
whose results can be tough to interpret.
Some doctors agree with Berry that the
standard approach to clinical trials is prob-
lematic. Elhu Estey, who oversees the treat-
ment of acute Jeukemias at Anderson, points
out that the typical paradigm assigns pa-
tients to different study arms with equal
probability, even in the face of mounting ev-
idence that one arm offers a better shot at
survival. “The patients themselves, if they
knew the way the trials are conducted,
wouldn’t be too thrilled” he
Abighrelkfowﬂerrycumin 1990,
when he was invited to join Cancer and
Leukemia Group B (CALGB). It one of
thecmmy\.z lOeoopelmvegmlp:mln»
on larg X
cancer clinical trials. Berry would be the
lead statistician for CALGB's breast cancer

whohldhe-dlhll&yemmwem hosey

6 FEBRUARY 2004 VOL303 SCENCE www.sCiencemag org
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CLINICAL ARTICLE Clinical Trial6: 205-216

TRIALS

Bayesian clinical trials at the University of Texas
M. D. Anderson Cancer Center

Swati Biswas®, Diane D Liub, | Jack Lee? and Donald A Berryb

Background The Bayesian approach is being used increasingly in medical research.
In particular, it has become a standard in designing clinical trials at the University of
Texas M. D. Anderson Cancer Center.

CLINICAL

TRIALS EDITORIAL Clinical Trials 2009; 6: 203-204

Bayesian clinical trials: no more excuses
it is possible for a biostatistics group in an academic
cancer center to apply Bayesian methods on a broad
scale and have them accepted by participating
investigators, patients, sponsors, and regulatory] . Bayesians. The

e randomization and

Biswas ef al. | -
their abstract {bodies.




CLINICAL ARTICLE Clinical Trial6: 205-216

TRIALS

Bayesian clinical trials at the University of Texas
M. D. Anderson Cancer Center

Swati Biswas®, Diane D Liub, | Jack Lee? and Donald A Berryb

Background The Bayesian approach is being used increasingly in medical research.
In particular, it has become a standard in designing clinical trials at the University of
Texas M. D. Anderson Cancer Center.

CLINICAL
TRIALS

EDITORIAL Clinical Trials 2009; 6: 203-204

Bayesian clinical trials: no more excuses
While there are
certainly some at other centers, the bulk of applied

Bayesian clinical trial design in this country is
largely confined to a single zip code. Why is this the

for Bayesians. The
randomization and

Biswas
their ab_Case?

approac being increasingly used 1n medical the th case 1s a Pha study. These case
research.” W follows is a recounting of MD studjes give us a feelfof what it takes to implement
Anderson’s extens role in that phenomenon. theSe methodsirtto clinical research practice.




Example: Troxacitabine in AML*
(Endpoint: Complete remission by day 50)

Standard design

R Idarubicin
A :r Ara-C n =25
N
D Trox

=25
,a \ Idarubicin :
é Trox n =25
E Ara-C

* Giles J Clin Oncol 2003 18



Example: Troxacitabine in AML* (Endpoint:
Complete remission day 50)

Our design

i Idarubicin Adaptive

Ara-C N
N randomization
D Trox to learn, while
o Idarubicin -
M arubici effectively
I Trox treating
Z : L
E Ara-C patients in trial

* Giles J Clin Oncol 2003 10



Adaptive Randomization

* Assign better performing therapies
with higher probability
(modification of Thompson 1933)

* Tl dropped after 24th patient
* Trial stopped after 34 patients

20



Summary of
AML trial results

Complete remission rate:
IA 10/18 =56%
TA 3/11=27%
TI 0/5 = 0%



Cure magazine (2006)

“| see no rationale to further delay
moving to these designs,” says

Dr. Giles, who is currently involved in
eight Bayesian-based leukemia studies.
“They are more ethical, more patient-
friendly, more conserving of resources,
more statistically desirable.”

22



FORTUNE INSIDER  CLINICAL TRIALS

How to take clinical research to
the next level

[COMMENTARY] by Donald Berry ~ OCTOBER 26, 2015, 3:58 PM EDT

v f

1]

in]
i
! |
.-

Randomized clinical trials have changed little in 70 years, and it’s time to
revamp the approach by merging clinical research with clinical practice.

23



Current use of
Bayesian adaptive designs

MDACC (> 500 trials)
Device companies (> 50 PMAs)*

Drug companies (all major companies)**
Berry Consultants (> 500 trials)

*http://lwww.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf

**http://lwww.fda.gov/downloads/DrugsGuidanceCompliance
Regulatorylnformation/Guidances/UCM201790.pdf

24
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The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE ‘

We illustrate the concept using the I%h.[,,,
Investigation of Serial Studies to Predict

1
Your Therapeutic Response with Imaging ‘||
and Molecular Analysis 2 (I-SPY 2) ... |

, 1
1 Janet Woodcock, M.D., and Lisa M. LaVange, Ph.D. 1y
1\ o o 1
From the Center for Drug Evaluatio anf IGH-QUALITY EVIDENCE IS WHAT WE USE TO GUIDE MEDICAL PRA T\CE.
Research, Food and Drug Administra- ~_ The standard approach to generating this evidence — a series of ckinjcal

tion, Silver Spring, MD. Address re[!rin\ ial hi At . . . inole di
requests to Dr. LaVange at the Offick Oi <. Jhotrials, each investigating one Oor two interventions In a singie 1sea‘se|—

Biostatistics, Office of Translational §ciy has become ever more expensive and challenging to execute. As a result, impqrtimt
ences, Center for Drug Evaluation :‘:‘d\ clinical questions go unanswered. The conduct of “precision medicine” trials to eyaju-
Research, Food and Drug Administra- ceted th . hall . . . . ith .

tion, 10903 New Hampshire Blvd., Sitler | 3t€ targeted therapies creates challenges in recruiting patients with rare genejic
Spring, MD 20993, or at lisa.lavange@ | subtypes of a disease. There is also increasing interest in performing mechanism-
fda.hhs.gov. | \based trials in which eligibility is based on criteria other than traditional disdage

N Engl ) Med 2017;377:62-70. | -definitions. The common denominator is a need to answer more questions morej ef-



Platform Trials Running or Under Development

* Many cancers

* Alzheimer’s

. Ebola Especially in Europe!
* Antibacterials

 Community acquired pneumonia
 Pandemic flu



14

Multicompany trials adapt to disciplines b;),/g;c] cancer

When the I-SPY 2 trial launched in 20140, oncologisfs heralded
it as the future of cancer research. Five pharm i
companies put aside their differences to participate in the
landmark phase 2 breast cancer trial, which/adaptively and
efficiently randomized patients to one of seven experimental
therapies. Now, even as I-SPY 2 propels its first two drugs
into phase 3 trials, researchers in other areas of medicine are
catching on to the benefits of this collaborative approach. On
11 December, Europe's Innovative Medicines Initiative (IMI)
announced a €53 million call for proposals for a similarly
designed trial in Alzheimer's disease. Already, at least 12 drug
companies are keen to participate.

-



EPAD $¥ Who are EPAD?

Alzheimer’s Dementia Consortium

RESFARD VANACFMENT PARTN RS
Mzhelmer
Europe

European Prevention of
Azheimer's Dementiz Consortium

~— Fraunhofer

@ umvmsrré ATIE S
_ DE GENEVE

MRC e
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Prototype Bayesian
“Platform” Trial: I-SPY 2

http://www.ispy2.org

http://clinicaltrials.gov/ct2/show/

NCT010423797term=I-SPY2&rank=1




THE WALL STREET JOURNAL.

THE SATURDAY ESSAY | OCTOBER 2, 2010

A New Rx for Medicine Goal: Sma"er,

Fed up with slow drug trials, cancer patients and doctors are testing a fast track to personalized
treatments.

focused phase 3

PERSONALIZED MEDICINE | How redesigning a clinical trial can speed drug development

°l(nbe=10patien& PHASE Il PHASE III
Traditional Rand {or | i trial: In a randomized trial, If a drug graduates to phase |ll, it
about 60 patients are put in two groups: One receives t} i typically takes 3,000 patients

clinical trial drug and the other serves as a control group. In a non-randomized trial, and about three years to
Tl eneemitelall about 40 patients receive the experimental drug. determine if it is safe and

. 3 Y. effective enough for approval.
patients with a disease
being studied and is
typically intended to
eliminate differences in

- oo HISTORIC SUCCESS RATE
patient characteristics 0
that could bias measures 30 To 40 IO
of drug effectiveness.

New trial design ;
Uses genetic profiles to 4 g L ™ y y : - d ey, earchers expect that drugs
highlight "bi ker” = . € ¥ v | o= — 1 F " duating from |-Spy 2 to phase [l
dI?f ‘gt blomarker .~ . uc \ ~ ; ‘ an be tested with 300 patients

L Iere"ces among :DE;ouP‘) = . N 3 " More successf gted according to genetic profiles
patients and to match ST - Less drugs moveon espond to the drug in phase
drugs to patients with successful tophase ll. )
biomarkers that predict drugsare

abenefit. eliminated.

PHASE Il
Patients are placed in groups Early results increase chances that It will take up to 120 patients
based on genetic profiles and are patients entering the trial later for each drug to determine PROBABILTY OF SUCCESS
Note: Inalllnical trials, phase | randomly assigned to either will be assigned to a drug which ones graduate to 5 0
::Z:::ﬁ:ﬂ:gi;"lg‘el"‘:“ subjects standard therapy or one of showing benefit against tumors phase Ill studies. 5 85 Io
. fivedifferent drugs plus with their genetic profile.

Graphic by Maryanne Murray/WS.J standard care. Source: Donald Berry, M.D. Anderson Cancer Center 3 1
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Adaptive Randomization of Neratinib in Early Breast Cancer

JW. Park, M.C. Liu, D. Yee, C. Yau, LJ. van 't Veer, W.F. Symmans, M. Paoloni, J. Perlmutter, N.M. Hylton, M. Hogarth,
A. DeMichele, M.B. Buxton, A.J. Chien, A.M. Wallace, J.C. Boughey, T.C. Haddad, S.Y. Chui, K.A. Kemmer, H.G. Kaplan,
C. Isaacs, R. Nanda, D. Tripathy, K.S. Albain, K.K. Edmiston, A.D. Elias, D.W. Northfelt, L. Pusztai, S.L. Moulder,
J.E. Lang, R.K. Viscusi, D.M. Euhus, B.B. Haley, Q.J. Khan, W.C. Wood, M. Melisko, R. Schwab, T. Helsten,

J. Lyandres, S.E. Davis, G.L. Hirst, A. Sanil, L.J. Esserman, and D.A. Berry, for the I-SPY 2 Investigators™*

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Adaptive Randomization of Veliparib—

Carboplatin Treatment in Breast Cancer

H.S. Rugo, O.l. Olopade, A. DeMichele, C. Yau, L.J. van ‘t Veer, M.B. Buxtor
M. Hogarth, N.M. Hylton, M. Paoloni, J. PerImutter, W.F. Symmans, D. Yee
A.). Chien, A.M. Wallace, H.G. Kaplan, J.C. Boughey, T.C. Haddad, K.S. Albai
M.C. Liu, C. Isaacs, Q.J. Khan, J.E. Lang, R.K. Viscusi, L. Pusztai, S.L. Moulde
S.Y. Chui, K.A. Kemmer, A.D. Elias, K.K. Edmiston, D.M. Euhus, B.B. Haley

R. Nanda, D.W. Northfelt, D. Tripathy, W.C. Wood, C. Ewing, R. Schwab, J. Lyandi
S.E. Davis, G.L. Hirst, A. Sanil, D.A. Berry, and LJ. Esserman, for the I-SPY 2 Investigat«

ABSTRACT

EDITORIAL

I-SPY 2 — Toward More Rapid Progress
in Breast Cancer Treatment

Lisa A. Carey, M.D., and Eric P. Winer, M.D.

Clinical trials of svetemic theranv for onerahle wirh human enidermal orowth factor ree

PERSPECTIVE

STATISTICS IN MEDICINE

I-SPY 2 — A Glimpse of the Future of Phase 2 Drug

Development?
David Harrington, Ph.D., and Giovanni Parmigiani, Ph.D.

he articles by Rugo et al.

(pages 23-34) and Park et al.
(pages 11-22) in this issue of the
Journal report results from the I-
SPY (Investigation of Serial Stud-
ies to Predict Your Therapeutic
Response with Imaging and Mo-
lecular Analysis) 2 platform, a
promising adaptive strategy for
matching targeted therapies for
breast cancer with the patients

I-SPY 2 — THE FUTURE OF PHASE 2 DRUG DE

ing in larger, phase 3 trials. The
value of I-SPY 2, however, may
well go beyond the clinical re-
sults described in the current ar-
ticles. Adaptive multigroup trials
such as I-SPY 2 have the potential
to answer several questions si-
multaneously and more efficient-
ly than traditionally designed tri-
als. Which of several promising
therapies appear best suited for

good responses and,
portant, may be usef
ing patients to avoid
when meaningful be
likely. The challenge
in identifying success
therapies in cancer 2
tial. Targeted therapi
to hit their target, tt
have the predicted «
they do, and they m:



Neratinib’s “graduation signature”

A HER2+HR-

A Predictive probability
in phase 3 testing, 79%

Neratinib,

Control, 56%

33%

Density of Probability
Distribution

T T
0 20 40 60 80 100

Estimated Response Rate
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Ten biomarker signatures

« Graduate drugs/signatures from trial:
— Based on effectiveness
— Based on prevalence

 Biomarker signatures (2”8 combinations

of subtypes): B,, B,, ..

") B256

MP-

MP+

HER2+

HER2-

HR+

HR-

HR+

HR-




Randomization to neratinib
partway through its tour

Neratinib’s eventual signature

/7 N\

MP- L/ MP+

HR+ | HR- /" HR+ . HR-

HER2+ | + |(C++ )| + @
HER- (CO0 | 0D + ¥

 Would be a nightmare in a 2-armed trial
« Easy in a platform trial: no amendment, only DSMB knew




I-SPY2 Adaptive Process

¢ Neoadjuvant breast cancer; Pls Esserman/Berry
¢ Primary endpoint: pCR (Longitudinal model of MRI volume)
¢ 10 biomarker signatures

¢ Adapti} ith different biomarker [INg screening process
signatures and sample sizes fation

¢ Opera




Adaptive Platform Effects

Match drugs with biomarker signatures
Savings from common control
Better therapies move thru faster

Drug/biomarker pairs graduate to small,
focused, more successful Phase 3
based on Bayesian predictive
probabilities



Another example of benefits of
having many arms:
Dropping control arm,
and the “time machine”



JASA 1999 pp 661-685
Bridging Different Eras in Sports

Scott M. BERRY, C. Shane REESE, and Patrick D. LARKEY

\

; This article addresses the problem of comparing abilities of players from different cras in professional sports. We study National
Hockey League players, professional golfers, and Major League Baseball players from the perspectives of home run hitting and
hitting for average. Within each sport, the careers of the players overlap to some extent. This network of overlaps, or bridges, is
used to compare players whose careers took place in different eras. The goal is not to judge players relative to their contemporaries,
but rather to compare all players directly. Hence the model that we use is a statistical time machine. We use additive models to
estimate the innate ability of players, the effects of aging on performance, and the relative difficulty of each year within a sport.
We measure each of these effects separated from the others. We use hierarchical models to model the distribution of players
and specify separate distributions for each decade, thus allowing the “talent pool” within each sport to change. We study the
changing talent pool in each sport and address Gould’s conjecture about the way in which populations change. Nonparametric
aging functions allow us to estimate the league-wide average aging function. Hierarchical random curves allow for individuals to
age differently from the average of athletes in that sport. We characterize players by their career profile rather than a one-number
summary of their career.

KEY WORDS: Aging function; Bridge model; Hierarchical model; Population dynamics; Random curve.

1. INTRODUCTION An additional difficulty in modeling the effects of age on

This article compares the performances of athletes from Performance is that age does not have the same effect on
different eras in three sports: baseball, hockey, and golf. A all players. To handle such‘heterogeflelty, we use random
goal is to construct a statistical time machine in which we ¢ffects for each player’s aging function, }f’thh allews for
estimate how an athlete from one era would perform in an- M0deling players that deviate from the “standard” aging
other era. For examples, we estimate how many home runs Pattern. A desirable effect of using random curves is that
Babe Ruth would hit in modern baseball, how many points each player is characterized by a career profile, rather than
Wayne Gretzky would have scored in the tight-checking ©PY 2 One-number summary. Plj\yer A may be better than
National Hockey League (NHL) of the 1950s, and how well Player B when they are both 23 years old, and player A
Ben Hogan would do with the titanium drivers and extra- M4y be worse than player B when they are both 33 years

LRt
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Figure 11. A profile of some of the best players in the home run study. The estimated
number of home runs, conditional on 500 at bats, for each age of the player, if that year were
1996.
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Figure 8. A profile of some of the best players in the hockey study. The estimated mean
number of points for each age of the player, if that season were 1996.
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Increasing efficacy 2>

The Time Machine in Platform Trials

Arm3

VW__ Arm5
M
A

rmeo

M
Control arm

Time



Increasing efficacy 2>

The Time Machine in Platform Trials

e
4/___/'-
/

m

Time



Increasing efficacy 2>

Suppose have to drop control arm

M Or this?
J/__-_M_

; Control arm

Time



Increasing efficacy 2>

Enhancing controls via concurrently
randomized comparisons

Control arm

Time



Increasing efficacy 2>

Every arm supports every other arm

Control arm

Time
17 concurrent comparisons of pairs of arms,
of which 6 are versus control



Increasing efficacy 2>

Estimated efficacy relative to control
and adjusted for each arm’s time period

W
Control arm

Time



Phase 3 platform trials:
GBM AGILE & Precision Promise



Goals

Phase 2/3 for experimental drugs

Many arms (& companies), incl combinations
Stratify by biomarkers

Identify biomarker signature of each arm
Adaptively randomize within subtype vs control
Move better therapies through faster

Endpoint: Overall survival

Inform OS using longitudinal model based on MRI and
performance status plus ...

Sample size random; max in phase 2: <150 pts.
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Innovations in Precision Promise

. Seamless shift, learn (Stage 1) to confirm (Stage 2)
. All patients, regardless of stage, count in final analysis

Many arms, that enter and leave the trial
Two controls, with hierarchical borrowing

. Compare arms with all controls via “time machine”

. Continuous learning and updating information

. Adaptive randomization (in learn stage)

. Identify arms’ indications, if any, including biomarkers
. Interpretation of Type | error

. Trial driven by predictive probability

Endpoint is OS, but re-randomize for 2"9-line therapy



New patient
accrues;

assess subtype

Randomize to
exp arm or ctl

Update patient
outcome data

Determine
randomization prob
within each subtype

.

Update prob
Stage 1 arm > ctl
for each subtype

Add Stage

permitting

arms accrual

PANCREATIC
CANCER
ACTION
NETWORK

Update longitudinal
model:
CA19-9 & imaging

PRECISION
PROMISE

Changing Medicine. Changing History. Changing Lives.

Continue
in Stage 1

1

Calculate prob
Stage 1 arm > ctl
in each signature

Decision
rule for Stage 1
arms




Simulations required

To find operating characteristics:
— Control Type | error rate

— Find power -- complicated

— Sample size distribution

— Arm’s duration in trial

— Amount of drug required

Prospective design essential
Longitudinal modeling (not yet included)
Many scenarios/examples

Accrual rate matters

Other arms and their efficacies matter



