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•  Bandits	and	me	
• My	efforts	trying	to	inject	bandit	
thinking	into	clinical	research	

•  Recent	successes:	Mul$-armed	
Bayesian	Bandits	Are	Changing	the	
Paradigm	of	Clinical	Trials	
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Applica$on	to	Clinical	Trials?	
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Disserta$ons	in	Decision	Making,	esp.	Bandits	
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		2. 	Dorothee	P.	Aeppli	(1980)—The	Concept	of	Informa$on	and	Ferguson's	Distribu$on	
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		5. 	Ronald	R.	Christensen	(1983)—Searching	for	the	Lowest	Price	when	the	Unknown	Distribu$on	of	Prices	is	Modeled	with	a	Dirichlet	Process	
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10.   Steven	N.	MacEachern	(1988)—Sequen$al	Bayesian	Bioassay	Design	
11.   John	S.	Andersen	(1988)—Alloca$ng	Experiments	in	Stages	
11.   Kumarasiri	Samaranayake	(1988)—Bernoulli	k-Armed	Bandits	with	Dependent	Arms	
12.  Manas	K.	Cha`opadhyay	(1991)—Dirichlet	Bandit	Problems	
13.   Shipei	Weng	(1991)—Sequen$al	Alloca$on	to	Maximize	the	Probability	of	Achieving	a	Number	of	Successes	
14.   Yi	Cheng	(1992)—Group	Sequen$al	Strategies	in	Two-Armed	Bandit	Problems	
15.   Kris	Gillingham	(1993)—Bayesian	Hierarchical	Models	for	Metaanalysis	of	Dichotomous	Response	Studies	
16.   Zhengning	Lin	(1993)—Sta$s$cal	Methods	for	Combining	Historical	Controls	with	Clinical	Trial	Data	
17.   Ram	Gopalan	(1994)—Bayesian	Mul$ple	Comparisons	
18.   Chengchang	Li	(1994)—Metaanalysis	of	Survival	Data	
19.   Jiang	Qian	(1994)—A	Bayesian	Weibull	Survival	Model	
20.   Fusheng	Su	(1996)—Limit	Theorems	on	Devia$on	Probabili$es	with	Applica$ons	to	Two-Armed	Clinical	Trials	
21.   Lurdes	Inoue	(1999)—Bayesian	Design	and	Analysis	of	Clinical	Experiments		
22.   Heidi	Ashih	(2000)—Bayesian	Models	of	Tumor	Growth	in	Breast	Cancer	
23.   Shu	Han	(2005)—Modeling	Auxiliary	Informa$on	in	Clinical	Trials	
24.   Lin	Yang	(2011)—Efficient	Phase	I	Cancer	Trials	
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Advice	from	biosta$s$cians	

•  “Berry,	you	don’t	understand	clinical	trials.”	
•  “You’re	wet	behind	the	ears.	You	should	
learn	about	real	clinical	trials.”	

•  “Prior	distribu$ons	are	biased.”	
•  “Nonrandomiza$on	is	a	non-starter.”	
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I	took	the	advice	
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•  I	came	to	understand	clinical	trials	
•  I	learned	how	to	design	stupid	clinical	
trials	…	and	I	designed	some!	For	U.S.	
Na$onal	Cancer	Ins$tute’s	coopera$ve	
groups.	



If	you	can’t	beat	‘em,	join	‘em!	
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For	example	…	
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Clinical Medicine! 
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Example: Troxacitabine in AML*  
(Endpoint: Complete remission by day 50) 
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Standard design 

* Giles J Clin Oncol 2003 18	
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randomization 
to learn, while  

effectively 
treating  

patients in trial  
* Giles J Clin Oncol 2003 19	

Example: Troxacitabine in AML* (Endpoint: 
Complete remission day 50) 



Adaptive Randomization 
•  Assign better performing therapies 

with higher probability 
(modification of Thompson 1933) 

•  TI dropped after 24th patient 
•  Trial stopped after 34 patients 
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Summary of  
AML trial results 

Complete	remission	rate:	
	IA 	10/18	=	56%	
	TA 			3/11	=	27%	
	TI 				0/5		=			0%	
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Cure magazine (2006)  
 “I see no rationale to further delay 
moving to these designs,” says  
Dr. Giles, who is currently involved in 
eight Bayesian-based leukemia studies. 
“They are more ethical, more patient-
friendly, more conserving of resources, 
more statistically desirable.”  
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Current use of  
Bayesian adaptive designs 

•  MDACC (> 500 trials) 
•  Device companies (> 50 PMAs)* 
•  Drug companies (all major companies)**  
•  Berry Consultants (> 500 trials) 
*http://www.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf 
**http://www.fda.gov/downloads/DrugsGuidanceCompliance 
RegulatoryInformation/Guidances/UCM201790.pdf 
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Platform Trial 
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We illustrate the concept using the 
Investigation of Serial Studies to Predict 
Your Therapeutic Response with Imaging 
and Molecular Analysis 2 (I-SPY 2) … 



Plauorm	Trials	Running	or	Under	Development	
•  Many	cancers	
•  Alzheimer’s	
•  Ebola	
•  An$bacterials	
•  Community	acquired	pneumonia	
•  Pandemic	flu	

Especially	in	Europe!	



When the I-SPY 2 trial launched in 2010, oncologists heralded 
it as the future of cancer research. Five pharmaceutical 
companies put aside their differences to participate in the 
landmark phase 2 breast cancer trial, which adaptively and 
efficiently randomized patients to one of seven experimental 
therapies. Now, even as I-SPY 2 propels its first two drugs 
into phase 3 trials, researchers in other areas of medicine are 
catching on to the benefits of this collaborative approach. On 
11 December, Europe's Innovative Medicines Initiative (IMI) 
announced a €53 million call for proposals for a similarly 
designed trial in Alzheimer's disease. Already, at least 12 drug 
companies are keen to participate. 

11 14 





Prototype Bayesian  
“Platform” Trial: I-SPY 2 

http://www.ispy2.org 

http://clinicaltrials.gov/ct2/show/ 
NCT01042379?term=I-SPY2&rank=1 



Goal: smaller,  
focused phase 3 
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Neratinib’s “graduation signature” 



•  Graduate drugs/signatures from trial: 
–  Based on effectiveness 
–  Based on prevalence 

•  Biomarker signatures (2^8 combinations 
of subtypes): B1, B2, …, B256 

•  But restrict to (10) marketable signatures: 

Ten biomarker signatures 
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Randomization to neratinib 
partway through its tour 

MP–	 MP+	
HR+	 HR–	 HR+	 HR–	

HER2+	 +	 ++	 +	 ++	

HER2–	 0	 0	 +	 +	

Neratinib’s eventual signature 

•  Would be a nightmare in a 2-armed trial  
•  Easy in a platform trial: no amendment, only DSMB knew 



I-SPY2 Adaptive Process 
u  Neoadjuvant breast cancer; PIs Esserman/Berry 
u  Primary endpoint: pCR (Longitudinal model of MRI volume) 
u  10 biomarker signatures 
u  Adaptive randomization; never-ending screening process 
u  Operating characteristics by simulation 
u  First sponsor: FNIH (NCI, FDA, industry) 
u  Coordinated with FDA (CDER, CBER, & CDRH)— 
    Regulatory pathway via pCR 

u  Current status: 18 sites, >1400 pts randomized, first 14  
    exp drugs: neratinib, veliparib, AMG386, AMG479,  
    MK2206, pertuzumab, pertuzumab+T-DM1, ganetespib,  
    pembrolizumab, PLX3397, talazoparib, patritumab, plus … 

With	different	biomarker		
signatures	and	sample	sizes	

72	115 	
93 	 52	

44	
69	

Graduated	to	phase	3	



Adaptive Platform Effects 
•  Match drugs with biomarker signatures 
•  Savings from common control 
•  Better therapies move thru faster 
•  Drug/biomarker pairs graduate to small, 

focused, more successful Phase 3 
based on Bayesian predictive 
probabilities 



Another example of benefits of 
having many arms: 

Dropping control arm,  
and the “time machine” 



JASA	1999	pp	661-685	
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Control	arm	

Time	

The	Time	Machine	in	Plauorm	Trials	
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The	Time	Machine	in	Plauorm	Trials	



How	does	this	effect	
compare	with	control?	

Control	arm	

Time	

Suppose	have	to	drop	control	arm	

In
cr
ea
si
ng
	e
ffi
ca
cy
	à

	

Or	this?	
Or	this?	



Control	arm	

Time	

Enhancing	controls	via	concurrently	
randomized	comparisons	
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How	does	this	effect	
compare	with	control?	



Control	arm	

Time	

Every	arm	supports	every	other	arm	
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17	concurrent	comparisons	of	pairs	of	arms,		
of	which	6	are	versus	control	
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Es$mated	efficacy	rela$ve	to	control		
and	adjusted	for	each	arm’s	$me	period	



Phase	3	plauorm	trials:	
GBM	AGILE	&	Precision	Promise	
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Goals 
•  Phase 2/3 for experimental drugs 
•  Many arms (& companies), incl combinations 
•  Stratify by biomarkers 
•  Identify biomarker signature of each arm 
•  Adaptively randomize within subtype vs control 
•  Move better therapies through faster 
•  Endpoint: Overall survival 
•  Inform OS using longitudinal model based on MRI and 

performance status plus … 
•  Sample size random; max in phase 2: ≤150 pts. 



Innovations in Precision Promise 
1. Seamless shift, learn (Stage 1) to confirm (Stage 2) 
2. All patients, regardless of stage, count in final analysis 
3. Many arms, that enter and leave the trial 
4. Two controls, with hierarchical borrowing 
5. Compare arms with all controls via “time machine” 
6. Continuous learning and updating information 
7. Adaptive randomization (in learn stage) 
8. Identify arms’ indications, if any, including biomarkers 
9. Interpretation of Type I error 

10. Trial driven by predictive probability 
11. Endpoint is OS, but re-randomize for 2nd-line therapy 



Update prob  
Stage 1 arm > ctl 
for each subtype 

Randomize to 
exp arm or ctl 

Update patient 
outcome data 

Calculate prob 
Stage 1 arm > ctl  
in each signature Determine 

randomization prob  
within each subtype 

Continue 
in Stage 1 

Stop 
futility 

Add Stage 1 
arms accrual 

permitting 

Update longitudinal  
model:  

CA19-9 & imaging 

New patient 
accrues;  

assess subtype 

Enter 
Stage 2 

Stop if 
Stage 2 n<25 

Graduate 

Stop 
max n 

Decision 
rule for Stage 1 

arms 



Simulations required 
•  To find operating characteristics: 

–  Control Type I error rate 
–  Find power -- complicated 
–  Sample size distribution 
–  Arm’s duration in trial 
–  Amount of drug required 

•  Prospective design essential 
•  Longitudinal modeling (not yet included) 
•  Many scenarios/examples 
•  Accrual rate matters 
•  Other arms and their efficacies matter 


