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Multi-disciplinary Bandits

• Different terminology across disciplines

Anecdotic strategy choice pull arms

OR policy allocation resource projects

CS/ML algorithm decision time step actions

Biometrics design randomisation patient treatments

Telecom scheduler allocation server jobs

Universal (?) design allocation subject interventions
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Clinical Trials

• The gold standard design: randomised controlled trial

. 50% vs 50% fixed equal randomisation

. avoids all types of biases

. in use since 1948 (advocated since Hill 1937)

• Its main goal is to learn about intervention effectiveness

with a view to prioritising future outside subjects

. maximises power of an intervention effect difference

. if approved, future subjects are, say, 95% confident

that the novel intervention is better than the control

• A half of trial subjects gets the inferior intervention
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Randomised Controlled Trial

• Statistical testing based on randomised equal

allocation is a widespread state-of-the-art approach in

the design of experiments, under different names:

. randomised controlled trial in biostatistics

. between-group design in social sciences

. A/B testing in Internet marketing
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Bayesian Decision-Theoretic Trial

“...there can be no objection to the use of data,

however meagre, as a guide to action required before

more can be collected ... Indeed, the fact that such

objection can never be eliminated entirely—no

matter how great the number of

observations—suggested the possible value of seeking

other modes of operation than that of taking a large

number of observations before analysis or any

attempt to direct our course... This would be

important in cases where either the rate of

accumulation of data is slow or the individuals

treated are valuable, or both.”
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Bayesian Decision-Theoretic Trial

• Proposed in Thompson 1933 (pre-dates Hill 1937)

• The goal is to provide higher benefit to both in-trial

subjects and after-trial subjects

. as opposed to the RCT’s learning goal of reliable

intervention effect estimation

• It is done by deciding the allocation, i.e., the

randomisation probabilities for every subject (or for a

group of subjects)

. response-adaptive: decisions based on the responses

accumulated so far, i.e. Bayesian
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Bayesian Decision-Theoretic Trial

• In theory, can be solved to optimality by decision theory

• In practice, optimal decisions are computed numerically

. it is often believed tractable only for small trials

• Milestones IMHO

. Thompson (Biometrika 1933)

. Glazebrook (Biometrika 1978)

. Gittins & Jones (Biometrika 1979)

. Armitage (ISR 1985)

. Cheng, Su & Berry (Biometrika 2003)

. Berry (Nature 2006), Cheng & Berry (Biometrika 2007)

. Villar, Bowden & Wason (Statistical Science 2015)
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Health Benefit Approach

• Important because healing patients is the ultimate goal

of new treatment development

• Bayesian decision-theoretic model

. optimally solving learning/healing trade-off

. both learning and healing takes place during the trial

• This kind of general problem became known as the

multi-armed bandit problem
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Multi-Armed Bandit Problem
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Multi-armed Bandit Problem

• Addressing the learning/earning trade-off

• Studied in scientific disciplines including probability,

statistics, biometrics, operational research, economics,

marketing, econometrics, machine learning, computer

simulation, computer science, and communications

• Many formulations: i.i.d., Markovian, Bayesian, etc.

• Many extensions, mainly in machine learning

• Appropriate model for trials: finite horizon

. after the end of the horizon we will not be able to

influence the allocation
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Bayesian Bernoulli Bandit Model

• Finite horizon: n sequentially arriving subjects

• Two-armed: intervention A or B for each subject

• Binary endpoints: success (1) or failure (0)

• Let Xi and Yi denote subject i’s response from

intervention A and B respectively (for i = 1, ..., n).

Then,

Xi ∼ Bernoulli(1, θA) and Yi ∼ Bernoulli(1, θB),

where θA and θB are the unknown success probabilities

of interventions A and B respectively
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Bayesian Approach

• Beliefs θ̂A and θ̂B to be updated over the trial

• Prior Distribution: θ̂A ∼ Beta(a, b), θ̂B ∼ Beta(c, d)

where we take a = b = c = d = 1 (uninformative)

• Posterior Distribution: After observing i (j) successes

(failures) on intervention A, and k (l) successes

(failures) on intervention B, the posterior distribution

is represented by another Beta distribution (by

conjugacy)

θ̂A ∼ Beta(a+ i, b+ j), θ̂B ∼ Beta(c+ k, d+ l)
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DP Design

• We use dynamic programming (DP) to obtain an

optimal adaptive intervention allocation sequence

• Optimal in the sense of maximising the expected total

number of successes in the trial

• Specifically, we use backward induction algorithm

• Let Fm(i, j, k, l) be the expected total number of

successes under an optimal policy after m subjects

• If m = n, there is nothing to do: Fn(i, j, k, l) = 0

∀i, j, k, l
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Backward Induction

• If m = n− 1 (one subject left):

1. If intervention A, we compute the expectation

FA
n−1(i, j, k, l) =

i

i+ j
· 1 + j

i+ j
· 0

2. If intervention B, we compute the expectation

FB
n−1(i, j, k, l) =

k

k + l
· 1 + l

k + l
· 0

• We wish to choose the optimal allocation such that

Fn−1(i, j, k, l) = max{FA
n−1(i, j, k, l), FB

n−1(i, j, k, l)}
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DP Design

• Problem? This design is not suitable to implement in

practice because it is completely deterministic

• As a result, there is a risk of introducing bias into the

trial through the intentional selection of subjects

(selection bias)

• Therefore, we modify the DP design by forcing actions

to be randomised

. see also Cheng & Berry (Biometrika, 2007)

• Helps to maintain blinding and reduce the risk of bias
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Forcing Randomised Actions

• Action 1: intervention A is allocated with probability p

• Action 2: intervention B is allocated with probability p

• The expected total number of successes under Action 1

V1
m(i, j, k, l) = p · FA

m(i, j, k, l) + (1− p) · FB
m(i, j, k, l)

• The objective function becomes

Vm(i, j, k, l) = max
{
V1
m(i, j, k, l), V2

m(i, j, k, l)
}

• Lower selection bias, but lower controllability
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Randomised Variant

• Problems? After running simulations, we found:

. this design is very underpowered for high p

. in some of the runs (only a few out of 10,000), all

subjects were allocated to only one of the

interventions

• This means we cannot be confident about the results

• ...we cannot calculate important performance measures

• Therefore, we lower-limit the number of observations

on each intervention
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Constrained Variant

• We modify the optimal randomised DP policy by

adding a constraint to ensure that we obtain ≥ `
observations from each intervention

• To do this, we assign a large penalty to every terminal

state that has < ` observations on any intervention

• The undesirable states will now be avoided (as much

as possible) by the optimal policy

• We tried a range of values for `, i.e. 0.05n, 0.10n,

0.15n, 0.20n and 0.25n. (Note that 0.50n corresponds

to equal, fixed randomisation)
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Simulation Study

• We evaluate the performance of proposed designs by

. Bias of the intervention effect estimator

. ...and its mean squared error (MSE)

. Statistical power

. Expected proportion of successes (EPS)

. Subjects allocated to the superior arm (On sup)

• For each configuration, we replicate 10,000 trials
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Simulation Results: Randomised Variant

Example. n = 75, θA = 0.2, θB = 0.6

p Bias MSE Power EPS On sup

50% 0.001 0.004 0.938 40.0% 50.0%

60% 0.002 0.005 0.935 43.7% 59.1%

70% 0.002 0.007 0.910 47.3% 68.2%

80% 0.005 0.009 0.830 50.9% 77.3%

90% 0.015 0.015 0.636 54.4% 86.0%

100% 0.089 0.030 0.070 57.7% 94.2%

• The Power (almost) does not change if p increased

from 50% to 60% or 70%. Room for increasing EPS!
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Simulation Results: Constrained
Randomised Variant

Example. n = 75, ` = 0.15n, θA = 0.2, θB = 0.6

p Bias MSE Power EPS On sup

60% 0.002 0.005 0.935 43.7% 59.1%

70% 0.002 0.007 0.910 47.3% 68.2%

80% 0.005 0.009 0.834 50.9% 77.2%

90% 0.008 0.013 0.724 53.6% 84.0%

• The Power is quite high even if p increased to 80% or

90%. Also bias diminishes!
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Simulation Study

• We compare our proposed constrained randomised

variant of DP (CRDP) design to the following designs:

. Fixed randomisation (RCT)

. Randomised play-the-winner rule (RPW)

. Optimal dynamic programming policy (DP)

. Whittle index policy (WI)

. Randomised variant of the DP policy (RDP)

• We suggest to set p = 90%, ` = 0.15n in CRDP
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Simulation Results: Designs Comparison
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Simulation Results: Designs Comparison

Example. n = 75, θA = 0.2, θB = 0.6

Design Bias Power EPS On sup

RCT 0.000 0.935 40.0% 50.0%

RPW 0.002 0.928 46.2% 65.4%

WI 0.092 0.066 57.8% 94.4%

DP 0.088 0.074 57.7% 94.1%

RDP 0.015 0.636 54.4% 86.0%

CRDP 0.008 0.724 53.6% 84.0%
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Simulation Results: Designs Comparison

• In our suggested CRDP design

. the % expected proportion of successes is much

higher than in the traditional fixed and RPW designs

. the % allocated to the superior arm is much higher

than in the traditional fixed and RPW designs

. the power is largely improved upon relative to the

other bandit designs

. the bias is negligible, opposed to large bias of other

bandit designs
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Simulation Results: Delayed Observations
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Conclusion about CRDP

• We address some of the key issues preventing bandit

models from being implemented in clinical trial practice

. lack of randomisation

. insufficient statistical power

. biased estimates of the intervention effect

• We need to talk to (bio)statisticians and clinicians

about bandit models

. give me randomisation probability and desired power

. I tell how to randomise treatments to heal patients

• See Williamson et al. (CSDA 2017)
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Optimal Designs

• The designs computed using DP (DP, RDP, CRDP)

are optimal, i.e. provide the maximum benefit given

their respective restrictions

• For the two-armed case (on a standard laptop):

. a basic R code can design trials of size up to 200

. an efficient Julia code up to 1, 000

. a during-the-trial computation allows even larger

trials

• Longer trials can be designed on a workstation/cloud

• More complex trials with much smaller sizes
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Optimal Designs: Memory
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Optimal Designs: Runtime
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Near-optimal Designs

• Near-optimal designs can be obtained using index rules

. idea: for every subject, allocate the intervention

which has the highest value of an adaptive priority

index

. these indices are obtained in a particular way (Gittins

index, Whittle index), and are asymptotically optimal

. suboptimality is negligible

. do not suffer from the curse of dimensionality

. suitable for more complex trials

• Unfortunately, not enough time to explain in detail

. requires understanding of Markov decision processes
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Near-optimal Designs

• See e.g.,

. Glazebrook (Biometrika 1978)

. Gittins & Jones (Biometrika 1979)

. Coad (Biometrika 1991)

. Wang (Biometrika 1991)

. Villar, Bowden & Wason (Statistical Science 2015): survey

. Villar, Wason & Bowden (Biometrics 2015): group-sequential

. Villar (PEIS 2017): Whittle index rule

. Villar & Rosenberger (Biometrics 2017): covariates

. Villar, Bowden & Wason (Pharmaceutical S. 2018): time trends

. Smith & Villar (Applied S. 2018): Gaussian responses

. Williamson & Villar (2018+): Gaussian responses &

group-sequential
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Thompson’s Posterior Sampling Designs

• Thompson 1933 proposed a heuristic:

. randomise according to the posterior probability of

being the best arm

• This can be done by exact calculation or by sampling

• Recently, several trials have been designed in this way

. Don Berry (MD Anderson) and Berry Consultants

. e.g. I SPY-2, GBM Agile

• Several recent papers by a group at Harvard

• “Easy” to use, but quite suboptimal
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Related Designs

• To overcome the computational difficulty of optimal

designs and to add randomisation, improve estimation,

etc., several designs have been proposed

. not in Bayesian framework

• Urn designs (e.g. Randomised Play-the-Winner)

. based on the property of the optimal design to

allocate the intervention again if a success was

observed on the last subject

. there are several variants (e.g. Drop-the-Loser)

. well studied theoretically (e.g. Rosenberger)

. randomisation probabilities not too far from 50%
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Related Designs

• Biased-coin designs

. well studied theoretically

. randomisation probabilities not too far from 50%

• UCB designs

. optimal asymptotically in infinite horizon
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Comparison of Designs

Table 1: n = 148, θA = 0.3, θB = 0.5.
Design Power On sup ENS

RCT 0.81 50% 59.2

TS 0.80 69% 64.9

UCB 0.80 72% 66.0

GI 0.36 86% 70.2

WI 0.28 88% 70.7

* - 100% 74.0

Source: Table 5 of Villar et al. (2015)
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Conclusion about Designs

• Both the Thompson’s posterior sampling and the

above related designs are myopic

. randomisation decisions are bases on the assumption

that the next subject is the last one

. relatively easy to use, but too suboptimal

• Optimal designs and index rules are not myopic

. randomisation decisions take into account the

remaining trial size and the after-trial population size

. this is the reason why they provide a significantly

higher benefit
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Work in Progress

• With F. Williamson and T. Jaki, we are studying the

CRDP design if there are delayed responses

• With J. Wason, we are looking at when it is optimal to

add in a novel intervention to a platform trial

• I am working on a Julia package to compute the

optimal designs
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Conclusion about Bandits

• Look at papers in other disciplines, look at old papers

. there are good ideas and useful techniques out there

(reusable!)

. hard (but not impossible) to read mainly due to

different terminology and mindsets

• It would be beneficial to follow a common terminology

across disciplines

. to have quicker and wider impact

. my suggestion: designs that prescribe subjects’

allocation to interventions
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Thank you for your attention
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Clinical Trials

• Two treatments: control (existing one) and

novel (not approved yet)

• Is the novel treatment better than the control?

. clinically relevant treatment effect difference

. if not, it will not be approved!

• One sets up a clinical trial of n patients

• A (clinical trial) design is an allocation policy that

specifies which treatment the ith subject will receive
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Randomised Controlled Trial

• Advantages of randomised controlled trial

. best possible for estimating the intervention effect

. “easy” to understand by trial statisticians, physicians

− basic statistical knowledge

. “quick” to design

− trial size formulae available

. “straightforward” to implement

− no computation needed during the trial

. “easy” to understand by in-trial subjects (?)

. “easy” to interpret the results by regulators

. “easy” to interpret the results by physicians (?)

. “easy” to interpret the results by subjects (?)
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Randomised Controlled Trial

• Disadvantages of randomised controlled trial

. cost: 20% error of not approving a better intervention

− development and approval processes: $ billions

. faith: once approved, no (simple) way to retract the

intervention

− worse intervention approved by 5% chance

− unforeseen long-term secondary effects

. feasibility: requires hundreds of subjects for a trial

. stationarity: approval process takes years

− inappropriate for new diseases and epidemics

. ethics: subjects join a trial expecting to get a

possibly better (unapproved yet) intervention
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Simulation Results: Randomised Variant

Example. n = 75, θA = 0.2, θB = 0.8

p Bias MSE Power EPS On sup

50% 0.001 0.004 1.000 50.0% 50.0%

60% 0.001 0.005 1.000 55.7% 59.6%

70% 0.001 0.007 0.999 61.5% 69.2%

80% 0.004 0.010 0.995 67.2% 78.8%

90% 0.009 0.019 0.937 73.0% 88.3%

100% 0.100 0.043 0.118 78.6% 97.6%

• The Power (almost) does not change if p increased

from 50% to 60% or 70%. Room for increasing EPS!
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Simulation Results: Constrained Variant

Example. n = 75, θA = 0.2, θB = 0.8

` Power EPS On sup

0.05n 0.442 78.0% 96.6%

0.10n 0.884 75.2% 91.9%

0.15n 0.964 72.1% 86.7%

0.20n 0.985 69.7% 82.7%

0.25n 0.997 66.5% 77.3%

0.50n 1.000 51.2% 52.0%

• As ` increases, the power of the design increases

hyperbolically, but the EPS and % allocated to the

superior arm decreases linearly
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Simulation Results: Constrained Variant
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Simulation Results: Constrained
Randomised Variant

Example. n = 75, ` = 0.15n, θA = 0.2, θB = 0.8

p Bias MSE Power EPS On sup

60% 0.001 0.005 1.000 55.7% 59.6%

70% 0.001 0.007 0.999 61.5% 69.2%

80% 0.003 0.010 0.996 67.2% 78.7%

90% 0.003 0.014 0.977 71.3% 85.5%

• The Power is quite high even if p increased to 80% or

90%. Also bias diminishes!
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Simulation Results: Designs Comparison

Example. n = 75, θA = 0.2, θB = 0.8

Design Bias Power EPS On sup

RCT 0.000 1.000 50.0% 50.0%

RPW 0.008 0.998 66.2% 76.9%

WI 0.098 0.108 78.6% 97.6%

DP 0.100 0.118 78.6% 97.5%

RDP 0.009 0.937 73.0% 88.3%

CRDP 0.003 0.977 71.3% 85.5%


