# Piyavskii's algorithm

for deterministic or stochastic Lipschitz bandit optimization

Clément Bouttier and Sébastien Gerchinovitz

Thuesday 24<sup>th</sup> Mai, Erasmus Universty Rotterdam



*Global optimization under uncertainty: stochastic algorithms and bandits convergence bounds with application to aircraft performance* 



Supervision

University: Pr. Sébastien Gadat, Asst. Sébastien Gerchinovitz, Asst. Florence Nicol Airbus, Aircraft Performance Department: Olivier Babando, Serge Laporte

### **Digital Transformation Office**

**Airline Sciences Group** 

1. Introduction

2. Piyavskii Algorithm

3. Stochastic Piyavskii Algorithm

# Introduction

#### Problem

Find 
$$x_n^* \in \mathcal{X} = [0, 1]^d$$
  
such that  $f(x_n^*) \ge \max_{x \in \mathcal{X}} f(x) - \varepsilon$ 

given a minimal set of sequential observations:

 $f(x_1), f(x_2), \ldots, f(x_n)$ 

#### Problem

Find 
$$x_n^* \in \mathcal{X} = [0, 1]^d$$
  
such that  $f(x_n^*) \ge \max_{x \in \mathcal{X}} f(x) - \varepsilon$ 

given a minimal set of sequential observations:

 $f(x_1), f(x_2), \ldots, f(x_n)$ 

Hereafter we also consider the Sub-Gaussian context

 $f(x_k) + \xi_k$  where  $\xi_k$  is sub-Gaussian instead of  $f(x_k)$ 

# "Local" Lipschitz, regularity assumption There exists $L_0 > 0$ such that

$$\forall x \in [0,1]^d, \ f(x) \ge f(x^*) - L_0 ||x^* - x||.$$

At every step perform:

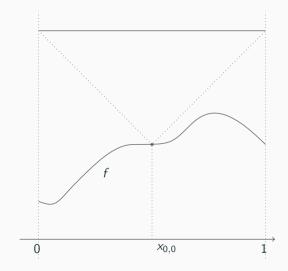
#### Upper bound generation

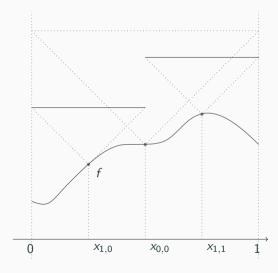
Build  $\hat{f}$  an upper-bound of f using both the regularity assumption on f and about the noise

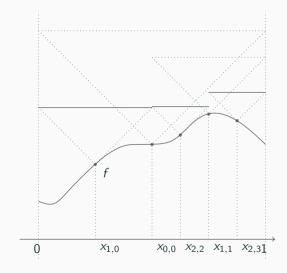
#### Maximization

Choose evaluation points according to an optimistic principle *i.e.*, choose the maximizer of  $\widehat{f}$ 

Hierarchical partitioning of  $\mathcal{X}$  and a set of reference points ex : binary tree :  $([0,1] = [0,1/2] \cup [1/2,1] \dots$  and  $x_{0,0} = 1/2, x_{1,0} = 1/4, x_{1,1} = 3/4 \dots)$ 0







$$x^* \in \arg \max_{x \in \mathcal{X}} f(x)$$

 $x_n^{\star}$  recommendation of the algorithm

#### **Definition (Simple regret = optimization error)**

$$r_n = f(x^\star) - f(x_n^\star)$$

Objectiv: upper bound on  $r_n$ 

#### Measuring the difficulty of the problem

Let  $\varepsilon > 0$ ,

$$\mathcal{X}_{arepsilon} = \left\{ x \in [0,1]^d, f(x) \geqslant f(x^\star) - arepsilon 
ight\}$$

$$\mathsf{Packing Number} \quad \mathcal{N}_L\left(A,\varepsilon\right) := \mathsf{sup}\left\{k \in \mathbb{N}^* : \exists x_1, \dots, x_k \in A, \min_{i \neq j} \lVert x_i - x_j \rVert > \varepsilon/L\right\}$$

$$\varepsilon_0 := L_0 \sup_{x,y \in [0,1]^d} \|x - y\|.$$

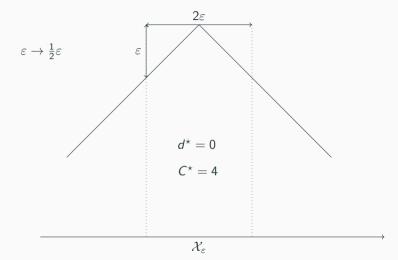
#### **Near-Optimality Dimension**

There exists  $d^{\star} \in [0, d]$  and  $C^{\star} \ge 0$  such that

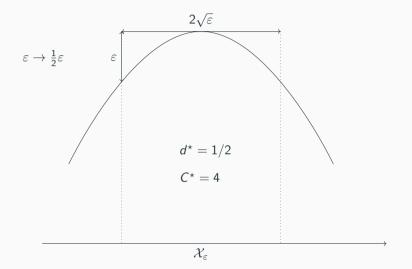
$$orall arepsilon \in (0,arepsilon_0], \quad \mathcal{N}_{L_0}\left(\mathcal{X}_arepsilon, rac{1}{2}arepsilon
ight) \leqslant C^\star \left(rac{arepsilon_0}{arepsilon}
ight)^{d^\star}$$

The smallest  $d^*$  is called "Near-Optimality Dimension"

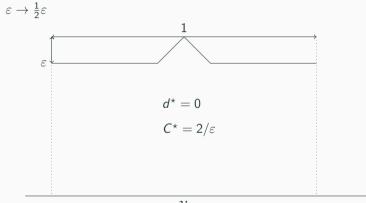
### Getting a feeling for Near-Optimality dimension



### Getting a feeling for Near-Optimality dimension



### Getting a feeling for Near-Optimality dimension



 $\mathcal{X}_{\varepsilon}$ 

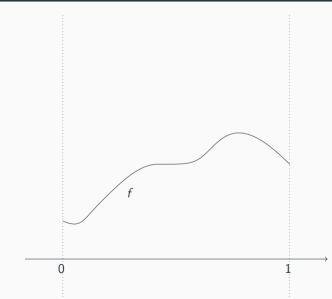
#### Assumption

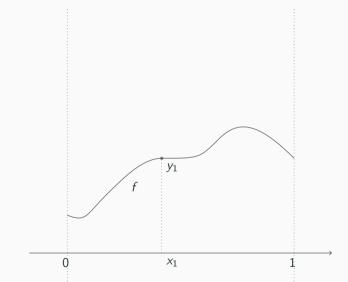
- L and  $\|.\|$  known
- k-adic partitioning adapted to L and  $\|.\|$

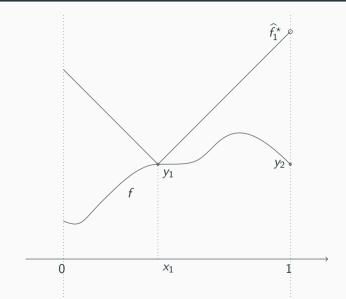
#### Theorem (Munos [2011])

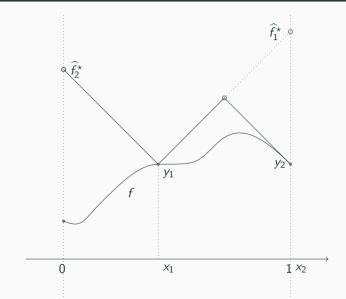
$$r_n(DOO) \leqslant \begin{cases} \mathcal{O}\left(e^{rac{-n\ln(k)}{C^\star}}
ight) & \text{if } d^\star = 0 \\ \mathcal{O}\left(C^{\star rac{1}{d^\star}}n^{-rac{1}{d^\star}}
ight) & \text{if } d^\star > 0 \end{cases}$$

# Piyavskii Algorithm











Algorithm 1 PY(known budget n) ([Piyavskii, 1972])

**Inputs:** Lipschitz Constant  $L_1$ , evaluation number n, initial solution  $x_1 \in [0, 1]^d$ for k from 1 to n do Observe  $y_k = f(x_k)$ Update  $\hat{f}_k(x) = \min_{\substack{0 \le i \le k}} \{y_i + L_1 || x_i - x ||\}$  for all  $x \in [0, 1]^d$ Determine  $x_{k+1} = \arg\max_{x \in [0, 1]^d} \hat{f}_k(x)$ end for return  $x_n^* := \arg\max_{x \in \{x\}, \dots, x_n\}} f(x)$ 

### Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

$$r_n \leqslant \begin{cases} C_1 \ 2^{-n} \ C_2 \ if \ d^* = 0 \\ C_3 \ n^{-1/d^*} \ if \ 0 < d^* \leqslant c \end{cases}$$

### Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

$$r_n \leqslant \begin{cases} \varepsilon_0 2^{1 - \frac{n-1}{C^* (1+4L_1/L_0)^d}} \text{ si } d^* = 0\\ \varepsilon_0 \left(1 - 2^{-d^*}\right)^{-\frac{1}{d^*}} C^* \frac{1}{d^*} \left(1 + \frac{4L_1}{L_0}\right)^{\frac{d}{d^*}} (n-1)^{-1/d^*} \text{ si } 0 < d^* \leqslant d \end{cases}$$

#### Main elements of the proof

(1) Let 
$$\Delta > 0$$
. If  $x_i \in \mathcal{X}^c_{\Delta}$ , then  $\forall j > i$ , then  $\|x_j - x_i\| > \frac{\Delta}{L_1}$ 

### Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

$$r_n \leqslant \begin{cases} \varepsilon_0 2^{1 - \frac{n-1}{C^* (1 + 4L_1/L_0)^d}} \text{ si } d^* = 0\\ \varepsilon_0 \left(1 - 2^{-d^*}\right)^{-\frac{1}{d^*}} C^* \frac{1}{d^*} \left(1 + \frac{4L_1}{L_0}\right)^{\frac{d}{d^*}} (n-1)^{-1/d^*} \text{ si } 0 < d^* \leqslant d \end{cases}$$

#### Main elements of the proof

- (1) Let  $\Delta > 0$ . If  $x_i \in \mathcal{X}^c_{\Delta}$ , then  $\forall j > i$ , then  $\|x_j x_i\| > \frac{\Delta}{L_1}$
- (2) Peeling technique :

$$\mathsf{card}(\{k \in \{1, \dots, n\} : x_k \in \mathcal{X}_{\varepsilon}^c\}) \leqslant \sum_{s=1}^{m_{\varepsilon}} \mathsf{card}\left(\{k \in \{1, \dots, n\} : x_k \in \mathcal{X}_{(\varepsilon_0 2^{-s}, \varepsilon_0 2^{-s+1}]}\}\right)$$

We can determine the minimal number of sampling  $\bar{n}_{PY}$  to perform to ensure  $x_n^* \in \mathcal{X}_{\varepsilon}$ . If  $0 < d^* \leq d$ ,  $\bar{n}_{PY}(\varepsilon, d^*, C^*) \simeq C^* \varepsilon^{-d^*}$ 

But  $C^*$  and  $d^*$  are unkwon...

### Piyavskii's Algorithm with automatic stopping

#### **Algorithm 2** PY(with given final precision $\varepsilon$ )

```
Inputs: precision \varepsilon > 0, Lipschitz constant L_1, initial guess x_1 \in [0, 1]^d

Execute PY(0)

k = 0

while \widehat{f}_k^* - f_k^* > \varepsilon do

Make an additional PY iteration

k = k + 1

end while

return x_k^* := x_{i^*}
```

#### Number of evaluations

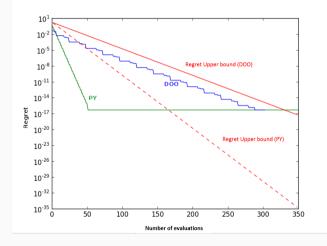
Corollary ([B. and Gerchinovitz, 2017])  $n_{\varepsilon PY}(\varepsilon, d^{\star}, C^{\star}) \leqslant \begin{cases} \frac{3}{2}\bar{n}_{PY}(\varepsilon/2, d^{\star}, C^{\star}) \text{ si } d^{\star} = 0\\ 2\bar{n}_{PY}(\varepsilon/2, d^{\star}, C^{\star}) \text{ si } d^{\star} > 0 \end{cases}$ 

### Hansen et al. [1992]

| Problem<br>number | $\varepsilon = 10^{-7} \gamma$ , i.e., $n_{\text{pass}} = 10^7$ |                                        |                                |                      |                                |                                |                                |                                |                                 |
|-------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|
|                   | n <sub>B</sub>                                                  | $\frac{n_{\text{pass}}}{n_{\text{B}}}$ | $\frac{n_{\rm EV}}{n_{\rm B}}$ | $\frac{n_{GA}}{n_B}$ | $\frac{n_{\rm SZ}}{n_{\rm B}}$ | $\frac{n_{\rm PY}}{n_{\rm B}}$ | $\frac{n_{\rm TM}}{n_{\rm B}}$ | $\frac{n_{\rm SC}}{n_{\rm B}}$ | $\frac{n_{\rm new}}{n_{\rm B}}$ |
|                   |                                                                 |                                        |                                |                      |                                |                                |                                |                                |                                 |
| 2                 | 2 7 2 4                                                         | 3671                                   | 811                            | 3.977                | 2.986                          | 1.445                          | 1.341                          | 1.337                          | 1.017                           |
| 3                 | 3 148                                                           | 3177                                   | 79                             | 3.968                | 2.993                          | 1.448                          | 1.345                          | 1.330                          | 1.030                           |
| 4                 | 8 533                                                           | 1172                                   | 568                            | 3.982                | 2.988                          | 1.495                          | 1.365                          | 1.331                          | 1.007                           |
| 5                 | 2 460                                                           | 4065                                   | 402                            | 3.976                | 2.986                          | 1.488                          | 1.364                          | 1.347                          | 1.015                           |
| 6                 | 1887                                                            | 5299                                   | 1864                           | 3.976                | 2.974                          | 1.482                          | 1.360                          | 1.337                          | 1.020                           |
| 7                 | 3 223                                                           | 3103                                   | 889                            | 3.977                | 2.989                          | 1.488                          | 1.345                          | 1.318                          | 1.016                           |
| 8                 | 2 979                                                           | 3357                                   | 115                            | 3.973                | 2.988                          | 1.462                          | 1.365                          | 1.332                          | 1.026                           |
| 9                 | 2 6 5 0                                                         | 3774                                   | 725                            | 3.980                | 2.990                          | 1.376                          | 1.346                          | 1.322                          | 1.011                           |
| 10                | 3 650                                                           | 2740                                   | 945                            | 3.981                | 2.989                          | 1.480                          | 1.353                          | 1.345                          | 1.007                           |
| 11                | 7 092                                                           | 1410                                   | 89                             | 3.982                | 2.988                          | 1.489                          | 1.364                          | 1.339                          | 1.009                           |
| 12                | 6 789                                                           | 1473                                   | 458                            | 3.982                | 2.989                          | 1.421                          | 1.354                          | 1.328                          | 1.010                           |
| 13                | 10 817                                                          | 924                                    | 327                            | 3.983                | 2.989                          | 1.377                          | 1.346                          | 1.322                          | 1.00                            |
| 14                | 2 2 5 5                                                         | 4435                                   | 250                            | 3.977                | 2.987                          | 1.483                          | 1.350                          | 1.345                          | 1.022                           |
| 15                | 14 549                                                          | 687                                    | 121                            | 3.981                | 2.988                          | 1.365                          | 1.346                          | 1.321                          | 1.006                           |
| 16                | 9 201                                                           | 1087                                   | 832                            | 3.981                | 2.988                          | 1.467                          | 1.356                          | 1.345                          | 1.006                           |
| 17                | 12 013                                                          | 832                                    | 105                            | 3.980                | 2.988                          | 1.364                          | 1.346                          | 1.322                          | 1.007                           |
| 18                | 5 736                                                           | 1743                                   | 582                            | 3.981                | 2.989                          | 1.490                          | 1.361                          | 1.339                          | 1.006                           |
| 19                | 2 678                                                           | 3734                                   | 1416                           | 3.980                | 2.990                          | 1.416                          | 1.361                          | 1.328                          | 1.010                           |
| 20                | 5 084                                                           | 1967                                   | 733                            | 3.929                | 2.972                          | 1.459                          | 1.345                          | 1.344                          | 1.031                           |
| mean value        | 5544                                                            | 2579                                   | 660                            | 3.975                | 2.987                          | 1.446                          | 1.353                          | 1.332                          | 1.014                           |
| deviation         | 3709                                                            | 1369                                   | 554                            | 0.013                | 0.005                          | 0.046                          | 0.008                          | 0.010                          | 0.008                           |

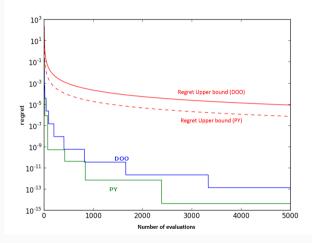
#### Figure 1: Comparison of numerical performances for 1D Lipschitz optimization

### Numerical performance of PY vs. DOO



**Figure 2:**  $d^* = 0$ 

#### Numerical performance of PY vs. DOO



**Figure 2:**  $d^* = 1/2$ 

# Stochastic Piyavskii Algorithm

#### Assumption

- L and  $\|.\|$  known
- Partitioning adapted to L and  $\|.\|$
- $\xi$  sub-Gaussian

Theorem ([Valko et al., 2013], [Munos, 2014])

$$r_n(StoOO) \leqslant \left\{ \mathcal{O}\left( C^{\star rac{1}{d^{\star}}} n^{-rac{1}{d^{\star}+2}} 
ight) \ \text{if } d^{\star} \geqslant 0$$

#### **Algorithm 3** SPY(known budget *n*)

**Inputs:** Lipschitz constant  $L_1$ , evaluation number n, mini-batch's size  $n_B \leq n$ , risk level  $\delta \in (0,1]$ , initial guess  $x_1 \in [0,1]^d$ Set  $N = \lfloor n/n_B \rfloor$  and  $\delta_H = \sqrt{\frac{2\sigma^2 \ln(2n\delta^{-1})}{n_2}}$ for k from 1 to N do Sample  $n_B$  times in  $x_k$ , and collect  $(Y_i^k)_{1 \le i \le n_0}$ , where  $Y_i^k = f(x_k) + \xi_i^k$ Set  $y_k = \frac{1}{n_0} \sum_{i=1}^{n_B} Y_i^k$ Update  $\widehat{f}_k(x) = \min_{j \in \{1,\dots,k\}} \{y_j + L_1 \|x_j - x\| + \delta_H\}$ Determine  $x_{k+1} = \arg \max \widehat{f}_k(x)$  $x \in [0,1]^d$ end for Determine  $i_N^{\star} = \arg \max y_i$  $1 \le i \le N$ return  $x_N^\star := x_{i_N^\star}$ 

We assume iid sub-Gaussian noise, ie:

$$\max\left(\mathbb{P}\left(\xi_i > x\right), \mathbb{P}\left(\xi_i < -x\right)\right) \leqslant e^{-x^2/(2\sigma^2)}.$$

and thus:

$$\forall x_k \in [0,1]^d, \forall s \ge 0, \forall n_B \in \mathbb{N}^* \quad \mathbb{P}\left( \left| \frac{1}{n_B} \sum_{i}^{n_B} Y_i^k - f(x_k) \right| \ge x \right) \leqslant 2e^{-n_B s^2/(2\sigma^2)}$$

#### Known budget

Theorem ([B. and Gerchinovitz, 2017]) If  $n_B \simeq \frac{\ln(2n/\delta)}{\varepsilon^2}$  and

$$\frac{n}{\varepsilon_0^2 + 128\sigma^2 \ln (2n\delta^{-1})} > \begin{cases} \mathcal{O}\left(\varepsilon^{-2}\right) & \text{if } d^* = 0\\ \mathcal{O}\left(\varepsilon^{-d^*-2}\right) & \text{if } 0 < d^* \leqslant d \end{cases}$$

then

$$\mathbb{P}\left(f(x_{N}^{\star}) \geq f(x^{\star}) - \varepsilon\right) \geq 1 - \delta$$

#### Conclusion

- Mind the gap between traditional optimization community and the bandit community by providing modern assessment of (well known) algorithms
- Introduce simple element of proof adapted to higher dimensions and stochastic extensions

#### Perspectives

- Update  $\widehat{f_k}(x) = \min_{0 \leqslant i \leqslant k} \{y_i + L_1 \| x_i x \|\}$  for all  $x \in [0,1]^d$
- Numerical assessment on real problems

Thank you for your attention.

# Annexes

# References

- Pierre Hansen, Brigitte Jaumard, and Shi-Hui Lu. Global optimization of univariate lipschitz functions: li. new algorithms and computational comparison. <u>Mathematical programming</u>, 55 (1):273–292, 1992.
- Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness. In NIPS, pages 783–791, 2011.
- Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to optimization and planning. 2014.
- S.A. Piyavskii. An algorithm for finding the absolute extremum of a function. <u>Comput. Math.</u> Math. Phys., 12(4):57–67, 1972.
- Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic optimization. In ICML (2), pages 19–27, 2013.

#### Algorithm 4 DOO: (Munos (2011))

Init:  $\mathcal{T}_1 = [0, 1]^d$  and its representant  $x_{0,0}$ for t from 1 to n do Choose a Leaf (h, j) from the tree  $\mathcal{T}_t$  maximising  $b_{h,j} := f(x_{h,j}) + \delta(h)$ Developp that node: add to  $\mathcal{T}_t$  the k children of (h, j)end for return  $x(n) = \arg \max_{(h,i) \in \mathcal{T}_n} f(x_{h,i})$ 

Recent Optimistic algorithms: DOO, SOO, StoOO, StoSOO, HOO, POO, ...

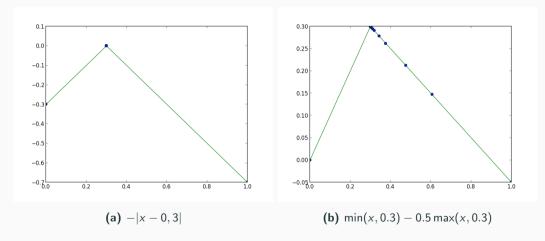
## Hansen et al. [1992]

Test problems

| Problem<br>number | Lipschitz function $f(x)$                                                                                      | Intervai<br>[a, b] | Lipschitz<br>constant L | Optimum<br>value f* | Optimum<br>point(s)x* | Source<br>from  |
|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|---------------------|-----------------------|-----------------|
| 1                 | $-\frac{1}{6}x^{6}+\frac{52}{25}x^{5}-\frac{39}{80}x^{4}-\frac{71}{10}x^{3}+\frac{79}{20}x^{2}+x-\frac{1}{10}$ | [-1.5, 11]         | 13 870                  | 29 763.233          | 10                    | [14, 24, 29]    |
| 2                 | $-\sin x - \sin \frac{10}{3}x$                                                                                 | [2.7, 7.5]         | 4.29                    | 1.899599            | 5.145735<br>6.7745761 | [28]            |
| 3                 | $\sum_{k=1}^{5} k \sin[(k+1)x+k]$                                                                              | [-10, 10]          | 67                      | 12.03125            | -0.49139<br>5.791785  | [3, 14, 26, 27] |
| 4                 | $(16x^2 - 24x + 5) e^{-x}$                                                                                     | [1.9, 3.9]         | 3                       | 3.85045             | 2.868                 | [6, 9, 14]      |
| 5                 | $(-3x+1.4) \sin 18x$                                                                                           | [0, 1.2]           | 36                      | 1.48907             | 0.96609               | [3, 4, 14, 26]  |
| 6                 | $(x + \sin x) e^{-x^2}$                                                                                        | [-10, 10]          | 2.5                     | 0.824239            | 0.67956               | [5]             |
| 7                 | $-\sin x - \sin \frac{10}{3}x$                                                                                 |                    |                         |                     |                       |                 |
|                   | $-\ln x + 0.84x - 3$                                                                                           | [2.7, 7.5]         | 6                       | 1.6013              | 5.19978<br>7.0835     | [28]            |
| 1                 | $\sum_{k=1}^{5} k \cos[(k+1)x+k]$                                                                              | [-10, 10]          | 67                      | 14.508              | -0.8003<br>5.48286    | [18, 19, 30]    |
| )                 | $-\sin x - \sin \frac{2}{3}x$                                                                                  | [3.1, 20.4]        | 1.7                     | 1.90596             | 17.039                | [28]            |
| )                 | $x \sin x$                                                                                                     | [0, 10]            | 11                      | 7.91673             | 7.9787<br>2.094       | [11]            |
|                   | $-2\cos x - \cos 2x$                                                                                           | [~1.57, 6.28]      | 3                       | 1.5                 | 4.189<br>3.142        | [20]            |
|                   | $-\sin^3 x - \cos^3 x$                                                                                         | [0, 6.28]          | 2.2                     | 1                   | 4.712                 | [11]            |
|                   | $x^{2/3} - (x^2 - 1)^{1/3}$                                                                                    | [0.001, 0.99]      | 8.5                     | 1.5874              | 0.7071                | [11]            |
| 1                 | $e^{-x} \sin 2\pi x$                                                                                           | [0, 4]             | 6.5                     | 0.788685            | 0.224885              | [11]            |
| ;                 | $(-x^2+5x-6)/(x^2+1)$                                                                                          | [-5, 5]            | 6.5                     | 0.03553             | 2.4142                | [11]            |
| 6                 | $-2(x-3)^2 - e^{-x^2/2}$                                                                                       | [-3,3]             | 85                      | -7.515924           | 1.5907                | [21]            |
| r                 | $-x^6 + 15x^4 - 27x^2 - 250$                                                                                   | [-4, 4]            | 2520                    | -7                  | 3                     | [18, 19]        |
|                   | $\begin{cases} -(x-2)^2 & \text{if } x \leq 3\\ -2\ln(x-2) - 1 & \text{otherwise} \end{cases}$                 | [0, 6]             | 4                       | 0                   | 2                     | [28]            |
| ,                 | $x - \sin 3x + 1$                                                                                              | [0, 6.5]           | 4                       | 7.81567             | 5.87287               | [18, 19]        |
| )                 | $(x - \sin x) e^{-x^2}$                                                                                        | {~10, 10}          | 1.3                     | 0.0634905           | 1.195137              | [5]             |

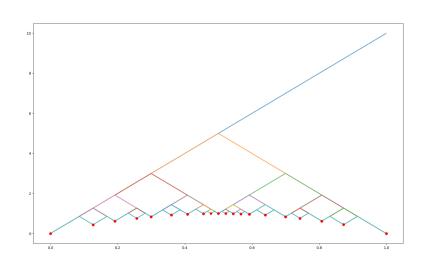
#### Figure 3: Test functions Hansen et al. [1992]

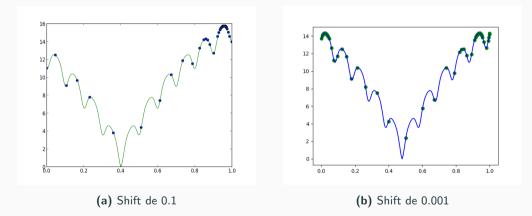
### A simple example



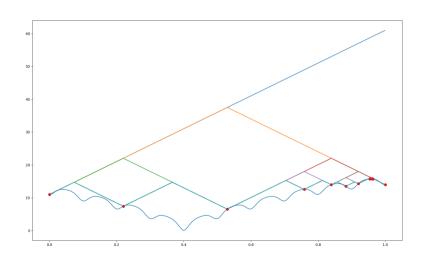
**Figure 4:**  $(L_1 = L_0 = 1)$ 

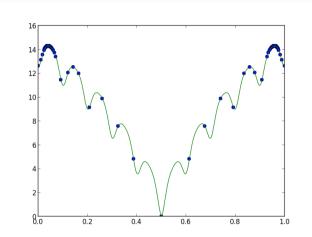
## Piiyavsky Algorithm vs. simple quadratic reward



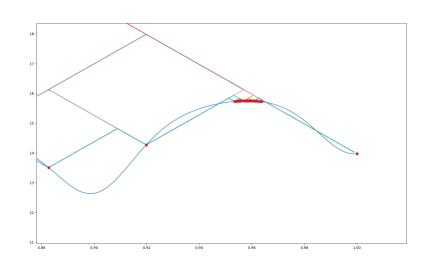


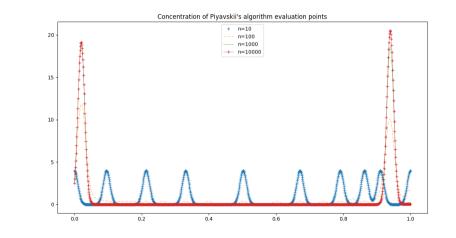






**Figure 6:** Ackley test function, using an upper-bound on the Lipschitz constant  $L_1 = 150 > L_0$ 





**Figure 7:** Kernel estimate of the density of PY evaluation points (Ackley test function with 0.001 a Shift )

### $d^{\star} > 0$ vs DOO

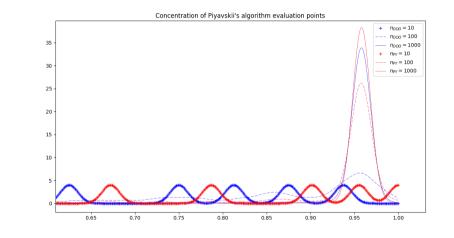
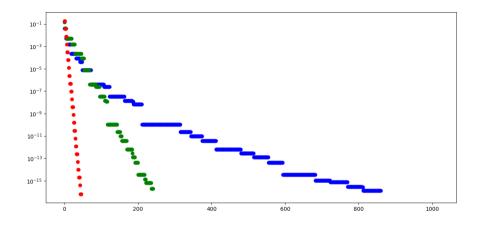


Figure 8: Kernel estimate of the density of PY and DOO evaluation points (Ackley test function with no Shift )



**Figure 9:**  $d^* = 0$  PY, DOO, DIRECT

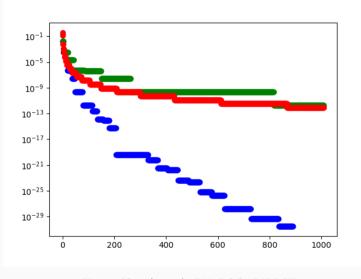


Figure 10:  $d^{\star} = 1/2$  PY, DOO, DIRECT