
Piyavskii’s algorithm

for deterministic or stochastic Lipschitz bandit optimization

Clément Bouttier and Sébastien Gerchinovitz

Thuesday 24th Mai, Erasmus Universty Rotterdam

Few words about my PhD thesis

Global optimization under uncertainty: stochastic algorithms and bandits convergence

bounds with application to aircraft performance

Supervision

University: Pr. Sébastien Gadat, Asst. Sébastien Gerchinovitz, Asst. Florence Nicol

Airbus, Aircraft Performance Department: Olivier Babando, Serge Laporte

1

Digital Transformation Office

Airline Sciences Group

1

Agenda

1. Introduction

2. Piyavskii Algorithm

3. Stochastic Piyavskii Algorithm

2

Introduction

A famous problem

Problem

Find x?n ∈ X = [0, 1]d

such that f (x?n) > max
x∈X

f (x)− ε

given a minimal set of sequential observations:

f (x1), f (x2), . . . , f (xn)

Hereafter we also consider the Sub-Gaussian context

f (xk) + ξk where ξk is sub-Gaussian instead of f (xk)

3

A famous problem

Problem

Find x?n ∈ X = [0, 1]d

such that f (x?n) > max
x∈X

f (x)− ε

given a minimal set of sequential observations:

f (x1), f (x2), . . . , f (xn)

Hereafter we also consider the Sub-Gaussian context

f (xk) + ξk where ξk is sub-Gaussian instead of f (xk)

3

X = [0, 1]d , a regularity assumption is needed

”Local” Lipschitz, regularity assumption
There exists L0 > 0 such that

∀x ∈ [0, 1]d , f (x) > f (x?)− L0‖x? − x‖ .

4

”Optimistic” Lipschitz Bandit optimization process

At every step perform:

Upper bound generation
Build f̂ an upper-bound of f using both the regularity assumption on f and about the noise

Maximization
Choose evaluation points according to an optimistic principle i.e., choose the maximizer of f̂

5

Deterministic Optimistic Optimization (DOO) by Munos [2011]

f

Hierarchical partitioning of X and a set of reference points

ex : binary tree : ([0, 1] = [0, 1/2] ∪ [1/2, 1] . . . and x0,0 = 1/2, x1,0 = 1/4, x1,1 = 3/4 . . .)

10

6

Deterministic Optimistic Optimization (DOO) by Munos [2011]

f

x0,0 10

6

Deterministic Optimistic Optimization (DOO) by Munos [2011]

f

x0,0x1,0 x1,1 10

6

Deterministic Optimistic Optimization (DOO) by Munos [2011]

f

x0,0x1,0 x1,1x2,2 x2,310

6

Convergence ?

x? ∈ arg max x∈X f (x)

x?n recommendation of the algorithm

Definition (Simple regret = optimization error)

rn = f (x?)− f (x?n)

Objectiv: upper bound on rn

7

Measuring the difficulty of the problem

Let ε > 0,

Xε =
{
x ∈ [0, 1]d , f (x) > f (x?)− ε

}
Packing Number NL (A, ε) := sup

{
k ∈ N∗ : ∃x1, . . . , xk ∈ A,min

i 6=j
‖xi − xj‖ > ε/L

}

ε0 := L0 sup
x,y∈[0,1]d

‖x − y‖ .

Near-Optimality Dimension

There exists d? ∈ [0, d] and C? > 0 such that

∀ε ∈ (0, ε0], NL0

(
Xε,

1

2
ε

)
6 C?

(ε0

ε

)d?

The smallest d? is called ”Near-Optimality Dimension”

8

Getting a feeling for Near-Optimality dimension

ε→ 1
2ε

d? = 0

C? = 4

Xε

ε

2ε

9

Getting a feeling for Near-Optimality dimension

ε→ 1
2ε

d? = 1/2

C? = 4

Xε

ε

2
√
ε

10

Getting a feeling for Near-Optimality dimension

ε→ 1
2ε

d? = 0

C? = 2/ε

Xε

ε

1

11

Regret bound for DOO

Assumption

• L and ‖.‖ known
• k-adic partitioning adapted to L and ‖.‖

Theorem (Munos [2011])

rn(DOO) 6

O
(
e

−n ln(k)
C?

)
if d? = 0

O
(
C?

1
d? n−

1
d?

)
if d? > 0

12

Piyavskii Algorithm

Why using a piece-wise constant partitioning?

f

10

13

Why using a piece-wise constant partitioning?

f

x1

y1

10

13

Why using a piece-wise constant partitioning?

f

x1

y1

f̂ ?1

y2

10

13

Why using a piece-wise constant partitioning?

f

x1

y1

f̂ ?2

x2

f̂ ?1

y2

10

13

Why using a piece-wise constant partitioning?

f

x1

y1

x4

f̂ ?3

y4

x3

f̂ ?2

y3

x2

f̂ ?1

y2

x5

f̂ ?4

10

13

Piyavskii’s Algorithm [Piyavskii, 1972]

Algorithm 1 PY(known budget n) ([Piyavskii, 1972])

Inputs: Lipschitz Constant L1, evaluation number n, initial solution x1 ∈ [0, 1]d

for k from 1 to n do

Observe yk = f (xk)

Update f̂k(x) = min
06i6k

{
yi + L1‖xi − x‖

}
for all x ∈ [0, 1]d

Determine xk+1 = arg max
x∈[0,1]d

f̂k(x)

end for

return x?n := arg max
x∈{x1,...,xn}

f (x)

14

Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

rn 6

{
C1 2−n C2 if d? = 0

C3 n−1/d?

if 0 < d? 6 d

Main elements of the proof

(1) Let ∆ > 0. If xi ∈ X c
∆, then ∀j > i , then ‖xj − xi‖ > ∆

L1

(2) Peeling technique :

card({k ∈ {1, . . . , n} : xk ∈ X c
ε }) 6

mε∑
s=1

card
({

k ∈ {1, . . . , n} : xk ∈ X(ε02−s ,ε02−s+1]

})

15

Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

rn 6

ε02
1− n−1

C?(1+4L1/L0)d si d? = 0

ε0

(
1− 2−d

?)− 1
d? C?

1
d?

(
1 + 4L1

L0

) d
d?

(n − 1)−1/d?

si 0 < d? 6 d

Main elements of the proof

(1) Let ∆ > 0. If xi ∈ X c
∆, then ∀j > i , then ‖xj − xi‖ > ∆

L1

(2) Peeling technique :

card({k ∈ {1, . . . , n} : xk ∈ X c
ε }) 6

mε∑
s=1

card
({

k ∈ {1, . . . , n} : xk ∈ X(ε02−s ,ε02−s+1]

})

15

Regret bound [B. et Gerchinovitz, 2017]

Theorem ([B. et Gerchinovitz, 2017])

rn 6

ε02
1− n−1

C?(1+4L1/L0)d si d? = 0

ε0

(
1− 2−d

?)− 1
d? C?

1
d?

(
1 + 4L1

L0

) d
d?

(n − 1)−1/d?

si 0 < d? 6 d

Main elements of the proof

(1) Let ∆ > 0. If xi ∈ X c
∆, then ∀j > i , then ‖xj − xi‖ > ∆

L1

(2) Peeling technique :

card({k ∈ {1, . . . , n} : xk ∈ X c
ε }) 6

mε∑
s=1

card
({

k ∈ {1, . . . , n} : xk ∈ X(ε02−s ,ε02−s+1]

})
15

What about retrieving an ε optimal solution?

We can determine the minimal number of sampling n̄PY to perform to ensure x?n ∈ Xε.

If 0 < d? 6 d ,

n̄PY (ε, d?,C?) ' C?ε−d
?

But C? and d? are unkwon...

16

Piyavskii’s Algorithm with automatic stopping

Algorithm 2 PY(with given final precision ε)

Inputs: precision ε > 0, Lipschitz constant L1, initial guess x1 ∈ [0, 1]d

Execute PY(0)

k = 0

while f̂ ?k − f ?k > ε do

Make an additional PY iteration

k = k + 1

end while

return x?k := xi?k

Number of evaluations

Corollary ([B. and Gerchinovitz, 2017])

nεPY (ε, d?,C?) 6

{
3
2 n̄PY (ε/2, d?,C?) si d? = 0

2n̄PY (ε/2, d?,C?) si d? > 0 17

Hansen et al. [1992]

Figure 1: Comparison of numerical performances for 1D Lipschitz optimization 18

Numerical performance of PY vs. DOO

Figure 2: d? = 0

19

Numerical performance of PY vs. DOO

Figure 2: d? = 1/2

19

Stochastic Piyavskii Algorithm

Regret bound for a Stochastic extension of DOO: StoOO

Assumption

• L and ‖.‖ known
• Partitioning adapted to L and ‖.‖
• ξ sub-Gaussian

Theorem ([Valko et al., 2013], [Munos, 2014])

rn(StoOO) 6
{
O
(
C?

1
d? n−

1
d?+2

)
if d? > 0

20

Stochastic Extension of Piyavskii’s Algorithm (SPY)

Algorithm 3 SPY(known budget n)

Inputs: Lipschitz constant L1, evaluation number n, mini-batch’s size nB 6 n, risk level

δ ∈ (0, 1], initial guess x1 ∈ [0, 1]d

Set N = bn/nBc and δH =
√

2σ2 ln(2nδ−1)
nB

for k from 1 to N do

Sample nB times in xk , and collect
(
Y k
i

)
16i6nB

, where Y k
i = f (xk) + ξki

Set yk = 1
nB

∑nB
i=1 Y

k
i

Update f̂k(x) = min
j∈{1,...,k}

{yj + L1‖xj − x‖+ δH}

Determine xk+1 = arg max
x∈[0,1]d

f̂k(x)

end for

Determine i?N = arg max
16i6N

yi

return x?N := xi?N

21

Controlling the noise

We assume iid sub-Gaussian noise, ie:

max (P (ξi > x) ,P (ξi < −x)) 6 e−x
2/(2σ2).

and thus:

∀xk ∈ [0, 1]d ,∀s > 0,∀nB ∈ N∗ P

(∣∣∣∣∣ 1

nB

nB∑
i

Y k
i − f (xk)

∣∣∣∣∣ > x

)
6 2e−nB s

2/(2σ2)

22

Regret bound for SPY

Known budget

Theorem ([B. and Gerchinovitz, 2017])
If nB ' ln(2n/δ)

ε2 and

n

ε2
0 + 128σ2 ln (2nδ−1)

>

{
O
(
ε−2
)

if d? = 0

O
(
ε−d

?−2
)

if 0 < d? 6 d

then

P (f (x?N) > f (x?)− ε) > 1− δ

23

Conclusion

Conclusion

• Mind the gap between traditional optimization community and the bandit community by

providing modern assessment of (well known) algorithms

• Introduce simple element of proof adapted to higher dimensions and stochastic extensions

Perspectives

• Update f̂k(x) = min
06i6k

{
yi + L1‖xi − x‖

}
for all x ∈ [0, 1]d

• Numerical assessment on real problems

24

Thank you for your attention.

24

Annexes

References

Pierre Hansen, Brigitte Jaumard, and Shi-Hui Lu. Global optimization of univariate lipschitz

functions: Ii. new algorithms and computational comparison. Mathematical programming, 55

(1):273–292, 1992.

Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its

smoothness. In NIPS, pages 783–791, 2011.

Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to

optimization and planning. 2014.

S.A. Piyavskii. An algorithm for finding the absolute extremum of a function. Comput. Math.

Math. Phys., 12(4):57–67, 1972.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic

optimization. In ICML (2), pages 19–27, 2013.

DOO

Algorithm 4 DOO: (Munos (2011))

Init: T1 = [0, 1]d and its representant x0,0

for t from 1 to n do

Choose a Leaf (h, j) from the tree Tt maximising bh,j := f (xh,j) + δ(h)

Developp that node: add to Tt the k children of (h, j)

end for

return x(n) = arg max (h,i)∈Tn f (xh,i)

Recent Optimistic algorithms:

DOO, SOO, StoOO, StoSOO, HOO, POO, . . .

Hansen et al. [1992]

Figure 3: Test functions Hansen et al. [1992]

A simple example

(a) −|x − 0, 3| (b) min(x , 0.3)− 0.5 max(x , 0.3)

Figure 4: (L1 = L0 = 1)

Piiyavsky Algorithm vs. simple quadratic reward

d? > 0

(a) Shift de 0.1 (b) Shift de 0.001

Figure 5: Ackley test function, using an upper-bound on the Lipschitz constant L1 = 150 > L0

d? > 0

d? > 0

Figure 6: Ackley test function, using an upper-bound on the Lipschitz constant L1 = 150 > L0

d? > 0

d? > 0

Figure 7: Kernel estimate of the density of PY evaluation points (Ackley test function with 0.001 a

Shift)

d? > 0 vs DOO

Figure 8: Kernel estimate of the density of PY and DOO evaluation points (Ackley test function with

no Shift)

Figure 9: d? = 0 PY, DOO, DIRECT

Figure 10: d? = 1/2 PY, DOO, DIRECT

	Introduction
	Piyavskii Algorithm
	Stochastic Piyavskii Algorithm
	Annexes
	Appendix
	References

