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The multiarmed bandit story



Materials science

» Optimizing payloads: reactive 
species, biomolecules, 
fluorescent markers, …

» Controllers for robotic scientist 
for materials science 
experiments

» Optimizing nanoparticles to 
maximize photoconductivity



Learning problems

Health sciences
» Sequential design of 

experiments for drug discovery

» Drug delivery – Optimizing the 
design of protective 
membranes to control drug 
release

» Medical decision making –
Optimal learning for medical 
treatments.



Drug discovery

Optimizing the configuration of molecules

Design of effective policies can 
accelerate the search process for 
new drugs.



Optimal learning in diabetes
How do we find the best treatment 
for diabetes?

» The standard treatment is a 
medication called metformin, 
which works for about 70 percent 
of patients.

» What do we do when metformin 
does not work for a patient?

» There are about 20 other 
treatments, and it is a process of 
trial and error.  Doctors need to 
get through this process as quickly 
as possible.



Truckload brokerages
Now we have a logistic curve for 
each origin-destination pair (i,j)

Number of offers for each (i,j) pair 
is relatively small.
Need to generalize the learning 
across “traffic lanes.”
Slides that follow are from senior 
thesis of Connor Werth ’2017
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Optimizing bids for internet ads
» In partnership with 

Roomsage.com
» Developed Princeton ad-click 

game
» Teams compete to find best policy

Ad-click optimization
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Emergency storm response

Hurricane Sandy
» Once in 100 years?
» Rare convergence of events
» But, meteorologists did an 

amazing job of forecasting 
the storm.

The power grid
» Loss of power creates 

cascading failures (lack of 
fuel, inability to pump water)

» How to plan?
» How to react?
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The “bandit” vocabulary



The “bandit” vocabulary



Arms…



… and bandits



Multiarmed bandit problems

What is a “bandit problem”?
» The literature seems to characterize a “bandit problem” 

as any problem where a policy has to balance 
exploration vs. exploitation.

» But this means that a bandit “problem” is defined by 
how it is solved.  E.g., if you use a pure exploration 
policy, is it a bandit problem?

My definition:
» Any sequential decision problem which involves 

learning, and where we have direct or indirect control 
over the information that is collected.



Multiarmed bandit problems

Dimensions of a “bandit” problem:
» The “arms” (decisions) may be

• Binary (A/B testing, stopping problems)
• Discrete alternatives (drug, catalyst, …)
• Continuous choices (price)
• Vector-valued (basketball team, products, movies, …)
• Multiattribute (attributes of a movie, song, person)
• Static vs. dynamic choice sets
• Sequential vs. batch

» Information (what we observe)
• Success-failure/discrete outcome
• Exponential family (e.g. Gaussian, exponential, …)
• Heavy-tailed (e.g. Cauchy)
• Data-driven (distribution unknown)
• Stationary vs. nonstationary processes
• Lagged responses?
• Adversarial?



Multiarmed bandit problems

Dimensions of a “bandit” problem:
» Belief models

• Lookup tables (these are most common)
– Independent or correlated beliefs

• Parametric models
– Linear or nonlinear in the parameters

• Nonparametric models
– Locally linear
– Deep neural networks/SVM

• Bayesian vs. frequentist

» Objective function
• Expected performance (e.g. regret)
• Offline (final reward) vs. online (cumulative reward)

– Just interested in final design?
– Or optimizing while learning?

• Risk metrics



Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy
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Modeling

Any sequential decision problem consists of five 
core elements:

» State variables
» Decision variables
» Exogenous information
» Transition function
» Objective function



Modeling dynamic problems

The state variable:
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Modeling dynamic problems

The state variable:
» The initial state ଴ contains:

• All deterministic parameters
• Initial values of dynamic parameters
• Prior distribution of belief about unknown parameters

» The dynamic state  ௡ contains
• All information that changes over time.
• Physical state 

ܴ௡ାଵ ൌ ܴ௡ ൅ ௡ݔ ൅ ෠ܴ௡ାଵ
• Information state

௡ାଵ݌ ൌ ௡݌ ൅ ௡ାଵ̂݌
• Belief state (Bayesian updating):
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Modeling dynamic problems

Decisions:
Markov decision processes/Computer science
     Discrete action
Control theory
     Low-dimensional continuous vector
Operations research
     Usually a discrete or continuous but high-dimensional
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The decision variables

Styles of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1( ,..., ),    K kx x x x 

1( ,..., ),    K kx x x x 

1( ,..., ),     is a category (e.g. patient attributes)I ix a a a

Classic bandit model¬



Modeling dynamic problems

Exogenous information:
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New information that first became known at time 
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Modeling dynamic problems

The transition function
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Also known as the:
“System model”
“State transition model”
“Plant model”
“Plant equation”
“Transition law”

“Transfer function”
“Transformation function”
“Law of motion”
“Model”



The universal objective function
» Cumulative reward (classical bandit objective)

» Final reward (“best arm” bandit objective)

Given a system model (transition function)

and a stochastic process:
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Stochastic 
programming

Markov 
decision 
processes

Reinforcement 
learning

Optimal 
control

Model 
predictive 

control

Robust 
optimization

Approximate 
dynamic 

programming

Online 
computation

Simulation 
optimization

Stochastic 
search

Decision

analysis

Stochastic 
control

Simulation 
optimization

Dynamic
Programming

and
control

Optimal 
learning

Bandit
problems
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Modeling dynamic problems

Some major problem classes
» Pure physical state  ௡ ௡

• Inventory problems
• Stochastic shortest path problems

» Physical plus information ௡ ௡ ௡

• Inventory with exogenous prices, weather, …

» Pure belief states  ௡ ௡

• These are classical bandit problems
• Different types of belief models

» Belief plus information ௡ ௡ ௡

• Patient arriving to doctor’s office who then prescribes a drug.
• “Contextual bandit problems”

» Everything: ௡ ௡ ௡ ௡

• Revenue management
• Clinical trials



Modeling dynamic problems

Mixed state problems (physical and belief state)

» Clinical trials
• Learning the performance of a new drug (belief state)
• Tracking the number of patients signed up (physical state)

» Revenue management for hotels
• Learning market response to price (belief state)
• Tracking how many rooms have been reserved (physical state)

» An energy storage problem…



An energy storage problem

Consider a basic energy storage problem:

» We have to manage the flows of energy (blue lines) 
while managing different sources of uncertainty.



An energy storage problem

Transition function without learning
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An energy storage problem

Transition function with passive learning
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Learning in stochastic optimization

Updating the demand parameter
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least 
squares equations:
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An energy storage problem

Transition function with active learning
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Designing policies

We have to start by describing what we mean by a 
policy.
» Definition:

A policy is a mapping from a state to an action.  
… any mapping.

How do we search over an arbitrary space of 
policies?



Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for 
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact 
of a decision now on the future. 
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Designing policies

Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables 
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty 

(buffer stocks, schedule slack)
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Designing policies

Lookahead policies 
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies

Lookahead policies 
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies

Lookahead policies 
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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2b) Direct lookahead policies
*
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Designing policies

2b) Direct lookahead policies
» We replace the exact lookahead…

… with an approximation called the lookahead model:

» A lookahead policy works by approximating the 
lookahead model.
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Designing policies
Types of lookahead approximations 
» One-step lookahead – Widely used in pure learning 

policies:
• Bayes greedy/naïve Bayes
• Thompson sampling
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive 

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action 
spaces

» Multistage scenario trees (stochastic linear 
programming) – typically not tractable.



1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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Policies for pure learning problems

1) Policy function approximation (PFA)
» Revenue maximization problem

• Demand function

• Revenue

• PFA policy – pure exploitation

• PFA policy with active exploration (“excitation policy”)

• Need to tune ߪఢ
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Policies for pure learning problems

1) Policy function approximation (PFA)
» Linear decision rules (“affine policies”)

» Neural networks

0 1 1 2 2( | ) ( ) ( ) ... ( )PFA n n n n
F FX S S S Sq q q f q f q f= + + + +



Policies for pure learning problems

2) Cost function approximations (CFA)
» Upper confidence bounding

» Interval estimation

» Boltzmann exploration (“soft max”)
• Choose x with probability:
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Policies for pure learning problems

A learning problem with correlated beliefs

1 2 3 4 4 5
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Policies for pure learning problems

Picking ூா means we are evaluating each choice 
at the mean. 

1 2 3 4 4 5
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Policies for pure learning problems

Picking ூா means we are evaluating each choice 
at the 95th percentile. 

1 2 3 4 4 5



Policies for pure learning problems

PFAs and CFAs have to be tuned

» Final reward (“offline learning”)

» Cumulative reward (“online learning”)

» Both require searching over tunable parameters.
• Offline tuning is classical stochastic search
• Online tuning is a relatively open research area
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Cost function approximations

Tuning the interval estimation policy 

( | ) arg max    IE n IE n IE n
x x xX S



Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a physical state problem

  1 1( ) max ( , ) ( ) |n n n n n n
xV S C S x E V S S  

Current node (e.g. node 2)



Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a physical state problem

  1 1( ) max ( , ) ( ) |n n n n n n
xV S C S x E V S S  

Decision to go to a node (e.g. 5)

Downstream node (e.g. 5)



Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a learning problem

1 2 3 4 5

  1 1( ) max ( , ) ( ) |n n n n n n
xV S C S x E V S S  

Current state of knowledge

Decision to make a measurement

New state of knowledge
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Policies for pure learning problems

3) Policies based on value function approximations
» Illustration: finding the best drug in the set 

ଵ ଶ ெ

» After a test we observe success or failure:

» Let ௫ Probability that drug x is successful.  We 
assume that 

where ௡ ௡ ௡ is our belief state, with updating 
equations:

1 1 Success
    If 

0 Failure
n n

xW x x+
ìïï= =íïïî

| ( , )n n n
x x xS Betar a b

1 1 1 1,     (1 )n n n n n n
x x x x x xW Wa a b b+ + + += + = + -



Policies for pure learning problems

3) Policies based on value function approximations
» Bellman’s equation:

» This can be solved for a stopping problem to determine 
when to stop testing a single drug.

» Problematic if ௡ and ௡ are vectors.  Gittins developed 
a novel decomposition that allows us to solve this 
problem for one drug (“arm”) at a time.  

1 1 1 1( , ) max ( , 1 ) |n n n n n n n n n n
x xV W V W W Sa b g a b+ + + +é ù= + + + -ê úë û



Policies for pure learning problems

3) Policies based on value function approximations
» For normally distributed rewards, Gittins (1974) showed 

that we can solve dynamic programs for each alternative.
» Produces a policy that looks like

where                  is the “Gittins index” obtained by 

solving a dynamic program for whether to continue or 
stop testing a single drug. 

» Considered a computational breakthrough, but computing 
Gittins indices is still a challenge, and only applies to 
special cases.  
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Policies for pure learning problems

4) Policies based on direct lookaheads (DLA)
» The knowledge gradient for offline (final reward):

Proposed experiment

 , 1max ( , ( )) max ( , )KG n n n
x y yE F y B x F y B  

Averaging over the 
possible outcomes of the 

experiment (and our 
different beliefs about 

parameters)

Finding the new design with our 
new belief (but without knowing 
the outcome of the experiment)

Current belief state

Choosing the best design 
given what we know now.

Updated parameter estimates 
after running experiment 

with density x.



The knowledge gradient

4) Policies based on direct lookaheads (DLA)
» The knowledge gradient computes the expected 

improvement from a single experiment

1 2 3 4 5








Change in 
estimate of value 
of option 5 due to 

measurement.  

Change which produces a 
change in the decision.



The knowledge gradient

Estimated value of alternative

Standard deviation

Knowledge gradient



The knowledge gradient



The knowledge gradient



The knowledge gradient

Some properties of the knowledge gradient for 
offline (final reward) problems.

௫
௄ீ,௡

» Asymptotically optimal (finds best x in the limit)
» Optimal (by construction) if budget =1.
» Optimal for all n if number of alternatives = 2 (e.g. A/B 

testing).
» Only stationary policy that is both myopically and 

asymptotically optimal.

For online problems
» Asymptotically optimal (finds best x in the limit) as 





The knowledge gradient

Different belief models
» Lookup tables

• Independent beliefs 
• Correlated beliefs 

» Linear parametric models
• Linear models 
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks 

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks 



The knowledge gradient
The marginal value of information
» Repeatedly sampling the same alternative

Number of times we sample the same alternative
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The knowledge gradient
The marginal value of information
» The value of information may be concave if an experiment is noisy

Number of times we sample the same alternative
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The knowledge gradient
The marginal value of information
» The value of information may be concave if an experiment is noisy

Number of times we sample the same alternative
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, ,( )     KG OL n n KG n
x x xN n

The knowledge gradient

From offline to online learning
» The knowledge gradient computes the value of 

information for a terminal reward objective:

» Imagine that we have a budget of N experiments, and 
that we are summing rewards over this horizon.  The 
value of information from a single experiment is now

 , 1max ( , ( )) max ( , )KG n n n
x y yE F y B x F y B  

Expected reward Offline KG

Remaining horizon



The knowledge gradient

Knowledge gradient for offline and online learning

» This bridges what have historically been fundamentally 
different fields.

Offline learning
, ,( )     KG OL n n KG n

x x xN n,KG n
x

Online learning



Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy



Designing policies

Finding the best policy
» We have to first articulate our classes of policies

» So minimizing over            means:

» We then have to pick an objective such as

or
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Multiarmed bandit problems

Policy search class
» Policies tend to be 

relatively simple and 
easy to compute

» Well suited to rapid (e.g. 
internet speed) learning 
applications needing fast 
computation.

» Tuning is important, and 
typically requires a 
realistic simulator.

Lookahead class
» Policies can be 

relatively complex to 
compute.

» Well suited to 
problems with 
expensive 
experiments.

» Typically avoids 
tuning, but may 
require a prior.



Multiarmed bandit problems

Notes:
» Any of the four classes of policies may be appropriate 

depending on the characteristics of the problem.
» Active learning arises in many applications, but is often 

overlooked.
» The “bandit” culture of coming up with problem 

variations should be inherited by other communities.
» Bandit researchers often focus on good but not optimal 

policies (e.g. UCB policies) with good characteristics 
(e.g. robust across a wide range of distributions). 



MOLTE
Modular, optimal learning 
testing environment
» Matlab-based environment with 

modular library of problems and 
algorithms, each in its own .m 
file.

» User specifies in a spreadsheet 
which algorithms are run on which 
problems

http://www.castlelab.princeton.edu/software/



MOLTE

Comparison on library problems



Princeton ad-click game

In collaboration with Roomsage.com



Princeton ad-click game

Bid ($/click)               

C
lic

ks
   

   
   

   
   

Learning the bid-response curve

» Varies by hour of week
» Response depends on location, age, gender, device



Princeton ad-click game
The ad-click game:
» Learn the best policy for bidding for ads
» Bids compete in a simulated auction 

following the rules used by Google



Thank you!

For more information, please visit:

http://www.castlelab.Princeton.edu

See “Courses” or the “jungle” webpages.


