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Materials science
]

Payload

» Optimizing payloads: reactive e water b 3
. . droplet
species, biomolecules, \@ )
fluorescent markers, ... 2
Qil dropl

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity




Learning problems
|

® Health sciences

» Sequential design of
experiments for drug discovery

» Drug delivery — Optimizing the
design of protective
membranes to control drug
release

» Medical decision making —
Optimal learning for medical
treatments.




Drug discovery

® Optimizing the configuration of molecules
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Design of effective policies can
accelerate the search process for
new drugs.

Performance under best possible
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Optimal learning 1n diabetes
N

® How do we find the best treatment
for diabetes?

» The standard treatment is a
medication called metformin,
which works for about 70 percent
of patients. HMimm . Fin

Apvisor: WARrReN B. PoweLL

OrTIMAL DOSING APPLIED TO
GrLyYceMIC CONTROL FOR TYPE 2 DIABETES

» What do we do when metformin
does not work for a patient?

» There are about 20 other
treatments, and it is a process of
trial and error. Doctors need to
get through this process as quickly
as possible.




Truckload brokerages

® Now we have a logistic curve for
each origin-destination pair (i,))

Shipper Carrier

05 +0; p+05a
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Pl(p.al )=

Probability of success
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® Number of offers for each (i,)) pair
is relatively small.

@ Need to generalize the learning
across “traffic lanes.”

® Slides that follow are from senior . Offeréd 'p-ri Cé o
thesis of Connor Werth 2017



Ad-click optimization
|

® Optimizing bids for internet ads

» In partnership with
Roomsage.com
%)
. . A
» Developed Princeton ad-click 2
Q |
game
» Teams compete to find best policy |7~ =" =
Policy profit ' ' . . '
PresidentBidness LA 1 10528 Bid ($/CIICk)
MaxBidder LAPS alpha 8439
PresidentBidness PS 1 5553 Profits
Weebs LA _EZPolicy 3458 o
MaxBidder PS alpha 2573 10000
Weebs LA MetropolisHastings 1740 . I I |
AKCB_LA_1 1471 PR Y. i
pbchen_PS_sdreal 790 e Y ¢ = 3
BaoWang_ P5 WeGo2 5899  am
MnM_LAPS_M 219 o
MmegwaWagnerinterval _estimation 61
AKCB_PS_1 0 o

ohiustina_LA 3 0 50000



Emergency storm response
L

HURRICANE CENTRAL & Hurricane Sandy
SANDY THREAT ||\|DEX

ALER » Once in 100 years?

Syraéuse Bo:‘:tfm

New York » Rare convergence of events

Pittsb h
[ EJurg

on Wahgeten » But, meteorologists did an
e S amazing job of forecasting
nginggm: westhes the Storm.

;;;;;;;;

@® The power grid

» Loss of power creates
cascading failures (lack of
fuel, inability to pump water)

» How to plan?
» How to react?



Emergency storm response




Emergency storm response
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Emergency storm response




The “bandit” vocabulary

Bandit problem

Description

Multiarmed bandits

Basic problem with discrete alternatives, online (cumulative

regret) learning, lookup table belief model with independent
beliefs

Restless bandits

Truth evolves exogenously over time

Adversarial bandits

Distributions from which rewards are being sampled can be
set by arbitrarily by an adversary

Continuum-armed bandits

Arms are continuous

X-armed bandits

Arms are a general topological space

Contextual bandits

Exogenous state is revealed which affects the distribution of
rewards

Dueling bandits

The agent gets a relative feedback of the arms as opposed to
absolute feedback

Arm-acquiring bandits

New machines arrive over time

Intermittent bandits

Arms are not always available

Response surface bandits

Belief model 1s a response surface (typically a linear model)




The “bandit” vocabulary

Bandit problem

Description

Linear bandits

Belief 1s a linear model

Dependent bandits

A €£§er of correlated beliefs

Finite horizon bandits

Finite-horizon form of the classical infinite horizon multi-
armed bandit problem

Parametric bandits

Beliefs about arms are described by a parametric belief model

Nonparametric bandits

Bandits with nonparametric belief models

Graph-structured bandits

Feedback from neighbors on graph instead of single arm

Extreme bandits

Optimize the maximum of recieved rewards

Quantile-based bandits

The arms are evaluated in terms of a specified quantile

Preference-based bandits

Find the correct ordering of arms

Best-arm bandits

Identify the optimal arm with the largest confidence given a
fixed budget







... and bandits




Multiarmed bandit problems

e ——
® What 1s a “bandit problem™?

» The literature seems to characterize a “bandit problem”
as any problem where a policy has to balance
exploration vs. exploitation.

» But this means that a bandit “problem” 1s defined by
how 1t 1s solved. E.g., if you use a pure exploration
policy, 1s 1t a bandit problem?

® My definition:

» Any sequential decision problem which involves
learning, and where we have direct or indirect control
over the information that 1s collected.



Multiarmed bandit problems

e ——
® Dimensions of a “bandit” problem:

» The “arms” (decisions) may be
* Binary (A/B testing, stopping problems)
« Discrete alternatives (drug, catalyst, ...)
« Continuous choices (price)
* Vector-valued (basketball team, products, movies, ...)
« Multiattribute (attributes of a movie, song, person)
 Static vs. dynamic choice sets
* Sequential vs. batch

» Information (what we observe)
» Success-failure/discrete outcome
» Exponential family (e.g. Gaussian, exponential, ...)
« Heavy-tailed (e.g. Cauchy)
 Data-driven (distribution unknown)
 Stationary vs. nonstationary processes
« Lagged responses?
* Adversarial?



Multiarmed bandit problems

e ——
® Dimensions of a “bandit” problem:

» Belief models
« Lookup tables (these are most common)
— Independent or correlated beliefs
« Parametric models
— Linear or nonlinear in the parameters
* Nonparametric models
— Locally linear
— Deep neural networks/SVM
« Bayesian vs. frequentist

» Objective function
» Expected performance (e.g. regret)
 Offline (final reward) vs. online (cumulative reward)
— Just interested 1n final design?
— Or optimizing while learning?
 Risk metrics



Outline

@ Elements of a sequential decision model

® Mixed state problems
@ Designing policies
© Searching for the best policy




Outline

@ Elements of a sequential decision model

® Mixed state problems
® Designing policies
e Searching for the best policy




Modeling

® Any sequential decision problem consists of five
core elements:

» State variables

» Decision variables

» Exogenous information
» Transition function

» Objective function



Modeling dynamic problems

B ]
® The state variable:

Controls community
X, ="Information state"
Operations research/ MDP/Computer science
S, =(R,,1,, B, ) = System state, where:
R, = Resource state (physical state)
Location/status of truck/train/plane
Energy 1n storage
|, = Information state
Prices
Weather
B, = Belief state ("state of knowledge")
Belief about traffic delays

Belief about the status of equipment




Modeling dynamic problems

B ]
® The state variable:

» The initial state S° contains:
 All deterministic parameters
* Initial values of dynamic parameters
 Prior distribution of belief about unknown parameters

» The dynamic state S™,n > 0, contains
 All information that changes over time.
* Physical state
R™1 = RN 4 471 4 Rpntl
 Information state
pn+1 — pn + 23
 Belief state (Bayesian updating):

ﬁn—H _ 6nﬁ;1 —|—/8WW n+1
X /Bn _|_ﬁW
Gt = 01+ 5

n+1




Modeling

dynamic problems

® Decisions:

Markov decision processes/Computer science
a, = Discrete action

Control theory
U, = Low-dimensional continuous vector

Operations research

X, = Usually a discrete or continuous but high-dimensional

vector of decisions.

At this point, we do not specify how to make a decision.
Instead, we define the function X ”*(S) (or A*(S) or U”*(9)),

where 7 specifies the type of policy. "7z" carries information

about the type of function f, and any tunable parameters 8 c ®"



The decision variables
]

@ Styles of decisions

» Binary
Xe X = {0,1}
» Finite
Xe X = {1, 2,....M } «— Classic bandit model
» Continuous scalar
Xe X = [a,b]
» Continuous vector
X=(X,... Xc), X €R
» Discrete vector
X=(X,..0. X ), X €Z
» Categorical
X=(a,...,a,), a 1sa category (e.g. patient attributes)



Modeling dynamic problems
|

® Exogenous information:

W, = New information that first became known at time t

9 = (F’ép[st’f)t’EAt)

N

R = Equipment failures, delays, new arrivals
New drivers being hired to the network
[St = New customer demands
’ P, = Changes in prices
Iét = Information about the environment (temperature, ...)

Note: Any variable indexed by t is known at time t. This convention,
which is not standard in control theory, dramatically simplifies the
modeling of information.

7 Below, we let w represent a sequence of actual observations W, ,W,,....

W, (@) refers to a sample realization of the random variable W,.



Modeling dynamic problems
|

® The transition function
St+1 =" (SU X Wt+1)

“Plant model”
“Plant equation”
“Transition law”

R, =R +X+ F/im Inventories
Pa=P + DBy Spot prices
D, =D, + D,, Marketdemands
— W )
> ﬁn+1 :ﬂn/u)?_l_ﬁ Wn+1
' A"+ Y ¢ Bayesian updating of belief
Bl
Also known as the:
“System model” “Transfer function”
“State transition model”  “Transformation function”

“Law of motion”
“Model”



Modeling stochastic, dynamic problems

® The universal objective function
» Cumulative reward (classical bandit obj ectlve)

maXﬂE<ZC (St,X (Sy); t+1)|

L 1=0 J

'

» Final reward (“best arm” bandit objective)
max_EF(x™",W)

Given a system model (transition function)
M
S;., =35 (St, Xt9Wt+1(a)))
and a stochastic process:

(Sg W, W,,... W, )

t+1
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Outline

® Elements of a sequential decision model

® Mixed state problems
® Designing policies
® Searching for the best policy




Modeling dynamic problems

e
® Some major problem classes
» Pure physical state S™ = (R™)

 Inventory problems
 Stochastic shortest path problems

» Physical plus information S = (R", I")
 Inventory with exogenous prices, weather, ...

» Pure belief states S™ = (B")

» These are classical bandit problems
* Different types of belief models

» Belief plus information S™ = (I, B")
 Patient arriving to doctor’s office who then prescribes a drug.
* “Contextual bandit problems™

» Everything: S™ = (R", I, B™)
« Revenue management
 Clinical trials



Modeling dynamic problems

e ——
® Mixed state problems (physical and belief state)

» Clinical trials
* Learning the performance of a new drug (belief state)
 Tracking the number of patients signed up (physical state)

» Revenue management for hotels
* Learning market response to price (belief state)
« Tracking how many rooms have been reserved (physical state)

» An energy storage problem...



An energy storage problem

® Consider a basic energy storage problem:

Wind speed

YA

Electricityprices

| ”.MH L

ﬂem.-:;ﬂd

» We have to manage the flows of energy (blue lines)
while managing different sources of uncertainty.




An energy storage problem

® Transition function without learning

Wind speed L
E p Demand
\ Ilmﬂn 'Ilﬁ.ll'. ||r\hll’lhJI II'I A
] | I | \J I,.I | ""..II | 'II ,"l 1
1T ' L,/ M

Electricityprices
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oLl W]- L
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t+1
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An energy storage problem

® Transition function with passive learning

E

Electricityprices

i Wl" ¥

E. =E +

pt+1

t+1 — Tt,t+l

r pﬁ%//

E
(p-{ap G-
D —

battery battery
RE™ =R+

+1

L

Demgnd




Learning in stochastic optimization
N

® Updating the demand parameter

» Let ps,1 be the new price and let

= (X]| gt) = gto o +§t1 P +§t2 Pis

» We update our estimate 8; using our recursive least

squares equations: ( 0 \
_ — 1 t
‘9t+1 — Ht Bt ¢t€t+l ¢t = Pt

T D
Ctp1 — Ft(xt |‘9t )— Piirs I
1
Bt+1 — Bt _—(Bt gb(gb)T Bt )
Yt

Ve =1+(0) B ¢



An energy storage problem

® Transition function with active learning

Wind speed L
E s ) B p Demand
K I. '“.'MII II-' "'._II Ir“‘-,IIIIIJ'p'I IIII
L \. [V I'lﬁ N /)
e 1 I L L, / . \

Electricityprices W_‘f’ /J/
S

4_ “._Hl'- M

Et+1 — E + ét+
o pt +pt1 ptz XGB +&l,
Dt+1 — t,+1 + gtl

battery Rbattery
RE™ =R+
t

+1



Outline

® Elements of a sequential decision model

® Mixed state problems
@ Designing policies
® Searching for the best policy




Designing policies
N

® We have to start by describing what we mean by a
policy.

» Definition:

A policy Is a mapping from a state to an action.
... any mapping.

® How do we search over an arbitrary space of
policies?



Designing policies
N

® Two fundamental strategies:

1) Policy search — Search over a class of functions for
making decisions to optimize some metric.

T
maXﬂ:(feFﬁfE@f) E{tz(;ct (Sta Xtﬂ(st | 9)) | SO}

2) Lookahead approximations — Approximate the impact
of a decision now on the future.

t'=t+1

.
Xt*(st) = arg max, (C(St, X, )+ E{maxﬂen {E Z C(S,, X[ (S,))] St+1} S, Xt}]



Designing policies
N

® Policy search:

1a) Policy function approximations (PFAs) x = X "™(S, | 6)

* Lookup tables
— “when 1n this state, take this action™

« Parametric functions
— Order-up-to policies: if inventory 1s less than s, order up to S.
— Affine policies - X, =X (S, 16) =) 0,4,(S,)
— Neural networks feF

* Locally/semi/non parametric
— Requires optimizing over local regions

1b) Cost function approximations (CFAs)
* Optimizing a deterministic model modified to handle uncertainty
(buffer stocks, schedule slack)

CFA
X

(S, |6) = argmax, (z, +60, )



Designing policies
N

® Lookahead policies

2a) Value function approximations

We approximate the impact of a decision on the future

max o {

Approximating the value of being in a downstrgam state using
machine learning (“value function approximatigns™)

(e (5.8, x))

X!™(8,) = argmax, (C(S,,%)+E{V,,(S,,))[ S %})
=argmax, (C(S,,%)+V*(5)))

T
EY C(S, XF (SIS,

t'=t+1

X.(S,)=arg max, (C(St, X, )+ E{

]

X, (S,)=arg max, (C(St , %)+ E



Designing policies
N

® Lookahead policies

2a) Value function approximations

We approximate the impact of a decision on the future

max o {

Approximating the value of being in a downstrgam state using
machine learning (“value function approximatipns™

T
EY C(S, XF (SIS,

t'=t+1

X.(S,)=arg max, (C(St, X, )+ E{

]

X[ (S,) =argmax, (C(S;, )+ BE{V,,(S.)1S.%})

X\ (S = argmax, (C(S.%) + B, (5, ) S.. %

= arg max,, (C(St , %) +\7tx(stx))



Designing policies
N

® Lookahead policies

2a) Value function approximations
We approximate the impact of a decision on the future

T
X;(S,) = argmax, (qst, X.) @{E > C(S,, X (S| sm} S, X,
t'=t+1

Approximating the value of being in a downstreanf state using
machine learning (“value function approximations™)

X{(S,) =argmax, (C(S,,x)+BE{V (S.)]S,x})

X™(8,) = argmax, (C(S,,%)+E{N.(S) 1S %})

= argmax, (C(St , %)



Designing policies

® 2b) Direct lookahead policies




Designing policies
N

® 2b) Direct lookahead policies

» We replace the exact lookahead...

t'=t+1

Xt*(st) = argmax, (C(SU Xt)+E{maXﬂeH {E‘ i C(St o (S )| St+1} | St’ Xt})

.. with an approximation called the lookahead model:

- _ t+H -
X, (S,) =argmax, (C(st,xam{maxﬁeﬁ {EZ C(Su X (S >>|Stm}| xt}]

t'=t+1

» A lookahead policy works by approximating the
lookahead model.



Designing policies
N

@ Types of lookahead approximations

» One-step lookahead — Widely used 1n pure learning
policies:
« Bayes greedy/naive Bayes
* Thompson sampling
« Value of information (knowledge gradient)

» Multi-step lookahead

» Deterministic lookahead, also known as model predictive
control, rolling horizon procedure
 Stochastic lookahead:
— Two-stage (widely used in stochastic linear programming)
— Multistage
» Monte carlo tree search (MCTS) for discrete action
spaces
» Multistage scenario trees (stochastic linear
programming) — typically not tractable.



Four (meta)classes of policies

Policy search

Lookahead approximations

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions
2) Cost function approximation (CFAs)
CFA T
» X " (St | 9) — argmaxxé)?jf(g) C ( 1?2 t | 9)

3) Policies based on value function approximations (VFAS)

» X]7(S,) =argmax, (C(S,.x)+ 7" (S7(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mllz’ng horizon proc..model piﬂedictlve control

XLA D(S) arg maX C( it 2 ﬁ)—l_ ZC( n's tt

f """ ff+H l'. t+l
» Chance constrained programming

PlAx, < f(W)|<1-0
» Stochastic lookahead 'stochastic prog Monte (.'Targp lree search

XH2(S) = argmaxf( X, )+ Z p(0) Z C(S, (@), %, (D))

xrr’xrr+l’ >N+l wel), t'=1+1
»  “Robust optimization

XLA RO(S) arg max min C( ” ﬁ)+ZC( (w),x,.(w))

Xyt 5oy sy WEW, (O) foe




Four (meta)classes of policies

Function approx.

1) Policy function approximations (PKAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFASs)
» XS |0) = argmax .., C™(S,,x,|6)

3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax, (C(S,x) +7(S7(S,.x)))

4) Direct lookahead p011c1es (DLAS)
» Deterministic lookahead/rolling horizon proc./model predictive control

XLA D(S )= arg max C(Sttaxtt)+ Z C(Stt X))

""" X t'=t+1

» Chance constralned programmmg

P[AX < FW)]<1-6

» Stochastic lookahead /stochastic prog/Monte Carp tree search

X A7(S,) = argmax C(S, %) + D P(@) D, C(Sy(@), % (D))
_ X_tt’xt_,t+1"“’xt,t+T el t'=t+1
» ““Robust optimization™

i
XS =arg max min C(Sy, %)+ Y C(Sy (W), X (W)

Xit » t t+H W (9) t'=t+1




Four (meta)classes of policies

Imbedded optimization

1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFKAs)
CFA T
» XS |0) = argmax _. . C™(S,,x |6)
3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax (C(S,,x)+7," (87(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mlllng horizon proc. model predictlve control

XLA D(S) arg maX C( it > [[)+ ZC( mn'e I‘t

""" rreH 1'=t+1
» Chance oml‘mmed pl ogramming

PlAx < fW)]<1-6

» Stochastic lookahead 'stochastic prog Monte Car lo lree search

XH5(8,) =argmax C(S,, %,) + Zp(anZ C(S, (@), %, (D))

xrr’xrr+l’ ’xrr+T Q) 1'=r+1
» “Robust optimization”

X 7(S )y=arg max min (S s ﬂ)+ZC( (w),x,.(w))

X1 5esXy pypr WEW, (0) foe




Policies for pure learning problems
N

® 1) Policy function approximation (PFA)

» Revenue maximization problem
* Demand function

D(p|0™)=6"—6,p

D'(p)=6, +6p

e Revenue

Prior belief about demand function

R(p|60")=pD(p)=6,"p—0,'p’
* PFA policy — pure exploitation

D(p)

B
20,
* PFA policy with active exploration (“excitation policy”) !
gn
pn: 1_n_|_€n 8nNN(O,O'8)
20,

e Need to tune o€



Policies for pure learning problems

® 1) Policy function approximation (PFA)

» Linear decision rules (“affine policies™)

XPPA(S™0) = 6, + 0,6, (S") + 0,6, (S") + oo+ O (S™)

» Neural networks

7
S /‘M‘k@'ﬁ\
EES S LRS-

O N NN AY



Policies for pure learning problems

® 2) Cost function approximations (CFA)

» Upper confidence bounding

n
X

XUCB(Sn | QUCB) _ argmaXX (ﬁ: _I_gUCB log n ]

» Interval estimation

J‘zaa; X'(S"|0") =argmax, (& +0"5 )

» Boltzmann exploration (“soft max™) o
* Choose x with probability: P"(8) =

E e ﬂ)r(]'
X!

X Beltz(gm19) = arg max{z|P"(#) < U}.

I
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Policies for pure learning problems
® A learning problem with correlated beliefs



Policies for pure learning problems

® Picking 8'% = 0 means we are evaluating each choice
at the mean.

ERN
.y
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Policies for pure learning problems

® Picking 8'% = 2 means we are evaluating each choice
at the 95 percentile.

»////////////////////A
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Policies for pure learning problems
N

® PFAs and CFASs have to be tuned

» Final reward (“offline learning™)

7N AN 7N £ AIEN A
max . BF(¢CN W) =B, B, 0 By (X (0'%),W)

» Cumulative reward (“online learning”)
T

max . E* {Z C (S0 X7 (S 18F)W,, ) SO}
t=0

» Both require searching over tunable parameters.
 Offline tuning 1s classical stochastic search
* Online tuning 1s a relatively open research area



Cost function approximations
N

® Tuning the interval estimation policy

1

X'"®(S"|0")=argmax pu +6G]

Opportunity cost

0 0 .I5 Tt 1 .I5 é 2.I5 3| 3.I5 4
IE
[E parameter €



Policies for pure learning problems
N

® 3) Policies based on value function approximations
» VFASs using a physical state problem

Current node (e.g. node 2)




Policies for pure learning problems
N

® 3) Policies based on value function approximations
» VFASs using a physical state problem

Vn(S”)mawﬂf{vnﬂ )[s"})

Decision to go to a node (e.g. 5)

Downstream node (e.g. 5)




Policies for pure learning problems

® 3) Policies based on value function approximations

» VFASs using a learning problem

Current state of knowledge New state of knowledge

Decision to make a measurement




Policies for pure learning problems
N

® 3) Policies based on value function approximations

» Illustration: finding the best drug in the set X €
{xl, xZ, cee ) xM}
» After a test we observe success or failure:

w1 |1 Success ;
W' = , Ifx" =X
0 Failure
» Let p, =Probability that drug X is successful. We

assume that
p, | S" ~ Beta(ay,, 3))

where S™ = (a™, ™) is our belief state, with updating
equations:

an+1 — a; _|_Wxn+1, ﬁn—H ﬂ; _|_(1_Wxn+1)

X X T



Policies for pure learning problems
N

® 3) Policies based on value function approximations

» Bellman’s equation:

Vn(&n,ﬁn):maXXE[Wthq+’Yvn+1(04n +Wn+l,ﬂn _|_1_Wn+1)|8n]

» This can be solved for a stopping problem to determine
when to stop testing a single drug.

» Problematic if a™ and ™ are vectors. Gittins developed
a novel decomposition that allows us to solve this
problem for one drug (“arm”) at a time.



Policies for pure learning problems
N

® 3) Policies based on value function approximations

» For normally distributed rewards, Gittins (1974) showed
that we can solve dynamic programs for each alternative.

» Produces a policy that looks like

n
O-X

X" (S")=argmax | +o"T Rl

n
O-X

wo

where I’ 1s the “Gittins index’ obtained by

o

solving a dynamic program for whether to continue or
stop testing a single drug.
» Considered a computational breakthrough, but computing

Gittins 1ndices 1s still a challenge, and only applies to
special cases.



Policies for pure learning problems

® 4) Policies based on direct lookaheads (DLA)

» The knowledge gradient for offline (final reward):
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the outcome of the experiment)

given what we know now.
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experiment (and our
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parameters)

Current belief state
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The knowledge gradient
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® 4) Policies based on direct lookaheads (DLA)

» The knowledge gradient computes the expected
improvement from a single experiment

Change which produces a
change in the decision.

@ \

Change in
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of option 5 due to
measurement.
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The knowledge gradient
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The knowledge gradient
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The knowledge gradient
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The knowledge gradient
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® Some properties of the knowledge gradient for
offline (final reward) problems.
» V,If “n >0
» Asymptotically optimal (finds best X in the limit)
» Optimal (by construction) if budget =1.

» Optimal for all n 1f number of alternatives =2 (e.g. A/B
testing).

» Only stationary policy that i1s both myopically and
asymptotically optimal.
® For online problems

» Asymptotically optimal (finds best X in the limit) as
y — 1
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Abstract. We consider sequential decision problems in which we adaptively choose one of
finitely many alternatives and observe a stochastic reward. We offer a new perspective on interpreting
Bayesian ranking and selection problems as adaptive stochastic multiset maximization problems and
derive the first finite-time bound of the knowledge-gradient policy for adaptive submodular objective
functions. In addition, we introduce the concept of prior-optimality and provide another insight
into the performance of the knowledge-gradient policy based on the submodular assumption on the
value of information. We demonstrate submodularity for the two-alternative case and provide other
conditions for more general problems, bringing out the issue and importance of submodularity in
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of the knowledge-gradient policy.
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1. Introduction. We consider sequential decision problems in which at each
time step, we choose one of finitely many alternatives and observe a random re-
ward. The rewards are independent of each other and follow some unknown prob-
ability distribution. One goal can be to identify the alternative with the best ex-
pected performance within a limited measurement budget, which is the objective of
Bayesian ranking and selection problems. Ranking and selection problems are exam-




The knowledge gradient

® Different belietf models

» Lookup tables

* Independent beliefs
* Correlated beliefs

-
M
w
B
4]

» Linear parametric models o
* Linear models
e Sparse-linear
* Tree regression

» Nonlinear parametric models
» Logistic regression
* Neural networks

Probability of Contract Price X Acceptance

» Nonparametric models
* Gaussian process regression
* Kernel regression
» Support vector machines
» Deep neural networks




The knowledge gradient

L
® The marginal value of information

» Repeatedly sampling the same alternative
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The knowledge gradient

® The marginal value of information

» The value of information may be concave if an experiment is noisy
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The knowledge gradient

® The marginal value of information

» The value of information may be concave if an experiment is noisy
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The knowledge gradient

® From offline to online learning

» The knowledge gradient computes the value of
information for a terminal reward objective:

= E {max, F(y,B""(x))} - max, F(y,B")

» Imagine thatwe have a budget of N experiments, and

Offline KG

Expected reward

Remaining horizon




The knowledge gradient
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® Knowledge gradient for offline and online learning

Offline learning Online learning

KG,n KG-0OL,n

v v = " + (N —nyyker

X

» This bridges what have historically been fundamentally
different fields.



Outline

® Elements of a sequential decision model

® Mixed state problems
® Designing policies
© Searching for the best policy




Designing policies
N

® Finding the best policy

» We have to first articulate our classes of policies

feF= {PFAS,CFAS,VFAS, DLAS}

0 € ®' = Parameters that characterize each family.

» So minimizing over z € I1 means:

H:{f ef,é’e@f}
» We then have to pick an objective such as

maXﬂE{iCt (S, X" (S, |9))|so}

or

max , B{F (X7 W)|S,}



Multiarmed bandit problems
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® Policy search class

»

»

»

Policies tend to be
relatively simple and
easy to compute

Well suited to rapid (e.g.
internet speed) learning
applications needing fast
computation.

Tuning 1s important, and
typically requires a
realistic simulator.

® Lookahead class

»

»

»

Policies can be
relatively complex to
compute.

Well suited to
problems with
expensive
experiments.

Typically avoids
tuning, but may
require a prior.



Multiarmed bandit problems
|

® Notes:

» Any of the four classes of policies may be appropriate
depending on the characteristics of the problem.

» Active learning arises in many applications, but 1s often
overlooked.

» The “bandit” culture of coming up with problem
variations should be inherited by other communities.

» Bandit researchers often focus on good but not optimal
policies (e.g. UCB policies) with good characteristics
(e.g. robust across a wide range of distributions).



MOLTE

@ Modular, optimal learning

testing environment
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» Matlab-based environment with m = B
modular library of problems and
algorithms, each in its own .m P A
file. ‘ '
Paoblew cla Prior [;:ﬂ';"f” Belief Model| Offiuc/ O hm:'::g“ ;m;::o?“
» User specifies in a spreadsheet | = fo o o ool
which algorithms are run on which | == o) e o o s )
problems o it el B o i il W | | TS TS
Problem Prior Measur | Belief Offline/ | Number of Policies
class ement Model Online
Budget
PayloadD | MLE 0.2 | ndependent | Offline | 4| kriging EXPL IE(1.7) | Thompson
Sampling
Branin MLE 10 | correlated Online | 4| OLkgcb | UCBEcb(*) | IE(2) BayesUCB
Bubeck4 uninformative 5 | mdependent | Online | 4| OLKG UCB SR UCBV
GPR Detault 0.3 | correlated Offline | 4| kriging kgch IE(*) EXPT

http://www.castlelab.princeton.edu/software/




MOLTE
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® Comparison on library problems

Opportunity Cost
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Princeton ad-click game

@ In collaboration with Roomsage.com
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Princeton ad-click game

® Learning the bid-response curve

1.0 1
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Bid ($/click)

» Varies by hour of week
» Response depends on location, age, gender, device



Princeton ad-click game

® The ad-click game:
» Learn the best policy for bidding for ads

» Bids compete in a simulated auction
following the rules used by Google
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Policy profit
|PresidentBidness LA 1 10528]
MaxBidder LAPS_alpha 8439
PresidentBidness PS 1 5553
Weebs LA EZPolicy 3458
IMaxBidder PS alpha 25?3'
Weebs LA MetropolisHastings 1740
[AKCB LA 1 1471}
pbchen_PS sdreal 790
BaoWang PS WeGo2 599
MnM_LAPS_M 219
MmegwaWagnerinterval estimation 61
[akCB Ps 1 0]
lohiustina LA 3 0]
lohiustina PS 3 0}
TnT_PS_M 0
ConnorDozie PS -7
pbchen LA sdreal -42
BaoWang PS WeGo -54
ConnorDozie LAPS -1007
|Breyerlohnson LA 3 -1242]
IBreyerlohnson PS 3 -7132]
WagnerMMegwa_ LAPS -13344

tw5_PS

-27302



Thank you!

For more information, please visit:

http://www.castlelab.Princeton.edu

See “Courses’ or the “jungle” webpages.



