
From Multiarmed Bandits to
Stochastic Optimization

Multiarmed Bandits Workshop
Rotterdam, NL

May 24, 2018

Warren B. Powell

Princeton University
Department of Operations Research

and Financial Engineering

© 2018 Warren B. Powell, Princeton University

The multiarmed bandit story

Materials science

» Optimizing payloads: reactive
species, biomolecules,
fluorescent markers, …

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity

Learning problems

Health sciences
» Sequential design of

experiments for drug discovery

» Drug delivery – Optimizing the
design of protective
membranes to control drug
release

» Medical decision making –
Optimal learning for medical
treatments.

Drug discovery

Optimizing the configuration of molecules

Design of effective policies can
accelerate the search process for
new drugs.

Optimal learning in diabetes
How do we find the best treatment
for diabetes?

» The standard treatment is a
medication called metformin,
which works for about 70 percent
of patients.

» What do we do when metformin
does not work for a patient?

» There are about 20 other
treatments, and it is a process of
trial and error. Doctors need to
get through this process as quickly
as possible.

Truckload brokerages
Now we have a logistic curve for
each origin-destination pair (i,j)

Number of offers for each (i,j) pair
is relatively small.
Need to generalize the learning
across “traffic lanes.”
Slides that follow are from senior
thesis of Connor Werth ’2017

0

0(, |)
1

  

  


 

 




a
ij ij ij

a
ij ij ij

p a
Y

p a

eP p a
e

Shipper Carrier

Offered price

Optimizing bids for internet ads
» In partnership with

Roomsage.com
» Developed Princeton ad-click

game
» Teams compete to find best policy

Ad-click optimization

Bid ($/click)

C
lic

ks

Profits

Emergency storm response

Hurricane Sandy
» Once in 100 years?
» Rare convergence of events
» But, meteorologists did an

amazing job of forecasting
the storm.

The power grid
» Loss of power creates

cascading failures (lack of
fuel, inability to pump water)

» How to plan?
» How to react?

XX

X

X

X

X

10
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.26 0.38 0.78 0.6 0.6

0

0

0
0.02

0.03

0.04

0.04

0.05

0.064

0.0640.064 0.064

0.502 0.502

0.502 0.502 0.502

0.603 0.603

0.670.670.05

0.05

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

Emergency storm response

XX

X

X

X

X

11
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.0 0.0 0.0 0.0 0.0

0

0

0
0.032

0.048

0.05
6 0.056

0.08

0.0604

0.06040.0604 0.0604

0.51 0.51

0.51 0.51 0

0.62 0.62

00.990.08

0.08

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

Emergency storm response

XX

X

X

X

X

12
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.0 0.0 0.0 0.0 0.0

0

0

0
0.0

0.0

0.0
0.0

0.06

0.060.06 0.06

0 0

0 0

0 0

000.0

0.0

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

00.0

Emergency storm response

The “bandit” vocabulary

The “bandit” vocabulary

Arms…

… and bandits

Multiarmed bandit problems

What is a “bandit problem”?
» The literature seems to characterize a “bandit problem”

as any problem where a policy has to balance
exploration vs. exploitation.

» But this means that a bandit “problem” is defined by
how it is solved. E.g., if you use a pure exploration
policy, is it a bandit problem?

My definition:
» Any sequential decision problem which involves

learning, and where we have direct or indirect control
over the information that is collected.

Multiarmed bandit problems

Dimensions of a “bandit” problem:
» The “arms” (decisions) may be

• Binary (A/B testing, stopping problems)
• Discrete alternatives (drug, catalyst, …)
• Continuous choices (price)
• Vector-valued (basketball team, products, movies, …)
• Multiattribute (attributes of a movie, song, person)
• Static vs. dynamic choice sets
• Sequential vs. batch

» Information (what we observe)
• Success-failure/discrete outcome
• Exponential family (e.g. Gaussian, exponential, …)
• Heavy-tailed (e.g. Cauchy)
• Data-driven (distribution unknown)
• Stationary vs. nonstationary processes
• Lagged responses?
• Adversarial?

Multiarmed bandit problems

Dimensions of a “bandit” problem:
» Belief models

• Lookup tables (these are most common)
– Independent or correlated beliefs

• Parametric models
– Linear or nonlinear in the parameters

• Nonparametric models
– Locally linear
– Deep neural networks/SVM

• Bayesian vs. frequentist

» Objective function
• Expected performance (e.g. regret)
• Offline (final reward) vs. online (cumulative reward)

– Just interested in final design?
– Or optimizing while learning?

• Risk metrics

Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy

Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy

Modeling

Any sequential decision problem consists of five
core elements:

» State variables
» Decision variables
» Exogenous information
» Transition function
» Objective function

Modeling dynamic problems

The state variable:

 

Controls community
 "Information state"
Operations research/MDP/Computer science
 , , System state, where:
 Resource state (physical state)
 Loca

t

t t t t

t

x

S R I B
R



 



tion/status of truck/train/plane
 Energy in storage
 Information state
 Prices
 Weather
 Belief state ("state of knowl

t

t

I

B



 edge")
 Belief about traffic delays
 Belief about the status of equipment











Modeling dynamic problems

The state variable:
» The initial state ଴ contains:

• All deterministic parameters
• Initial values of dynamic parameters
• Prior distribution of belief about unknown parameters

» The dynamic state ௡ contains
• All information that changes over time.
• Physical state

ܴ௡ାଵ ൌ ܴ௡ ൅ ௡ݔ ൅ ෠ܴ௡ାଵ
• Information state

௡ାଵ݌ ൌ ௡݌ ൅ ௡ାଵ̂݌
• Belief state (Bayesian updating):

1
1

1

n n W n
n x
x n W

n n W
x x

Wb m b
m

b b

b b b

+
+

+

+
=

+

= +

Modeling dynamic problems

Decisions:
Markov decision processes/Computer science
 Discrete action
Control theory
 Low-dimensional continuous vector
Operations research
 Usually a discrete or continuous but high-dimensional

t

t

t

a

u

x







 vector of decisions.











At this point, we do not specify to make a decision.
Instead, we define the function () (or () or ()),
where specifies the type of policy. " " carries information
about the type of functi

how
X s A s U s  

 
.on , and any tunable parameters ff  

The decision variables

Styles of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1(,...,), K kx x x x 

1(,...,), K kx x x x 

1(,...,), is a category (e.g. patient attributes)I ix a a a

Classic bandit model¬

Modeling dynamic problems

Exogenous information:











 
New information that first became known at time

ˆ ˆ ˆˆ = , , ,

ˆ Equipment failures, delays, new arrivals
 New drivers being hired to the network

ˆ New customer demands

t

t t t t

t

t

W t

R D p E

R

D






ˆ Changes in prices
ˆ Information about the environment (temperature, ...)
t

t

p

E





Note: Any variable indexed by t is known at time t. This convention,
which is not standard in control theory, dramatically simplifies the
modeling of information.

 
1 2Below, we let represent a sequence of actual observations , ,....

 refers to a sample realization of the random variable .t t

W W
W W




Modeling dynamic problems

The transition function











1 1

1 1

1 1

1 1

1
1

1

(, ,)
ˆ Inventories
ˆ Spot prices
ˆ Market demands

M
t t t t

t t t t

t t t

t t t

n n W n
n x
x n W

n n W
x x

S S S x W

R R x R
p p p

D D D

W  
 

  

 

 

 

 








  

 

 





 

Bayesian updating of belief







Also known as the:
“System model”
“State transition model”
“Plant model”
“Plant equation”
“Transition law”

“Transfer function”
“Transformation function”
“Law of motion”
“Model”

The universal objective function
» Cumulative reward (classical bandit objective)

» Final reward (“best arm” bandit objective)

Given a system model (transition function)

and a stochastic process:

 1 0
0

max , (), |
T

t t t t t
t

C S X S W S
 



 
 
 


Modeling stochastic, dynamic problems

 1 1, , ()M
t t t tS S S x W  

 0 1 2, , ,..., TS W W W

, ˆmax (,)NF x W
 

Stochastic
programming

Markov
decision
processes

Reinforcement
learning

Optimal
control

Model
predictive

control

Robust
optimization

Approximate
dynamic

programming

Online
computation

Simulation
optimization

Stochastic
search

Decision

analysis

Stochastic
control

Simulation
optimization

Dynamic
Programming

and
control

Optimal
learning

Bandit
problems

Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy

Modeling dynamic problems

Some major problem classes
» Pure physical state ௡ ௡

• Inventory problems
• Stochastic shortest path problems

» Physical plus information ௡ ௡ ௡

• Inventory with exogenous prices, weather, …

» Pure belief states ௡ ௡

• These are classical bandit problems
• Different types of belief models

» Belief plus information ௡ ௡ ௡

• Patient arriving to doctor’s office who then prescribes a drug.
• “Contextual bandit problems”

» Everything: ௡ ௡ ௡ ௡

• Revenue management
• Clinical trials

Modeling dynamic problems

Mixed state problems (physical and belief state)

» Clinical trials
• Learning the performance of a new drug (belief state)
• Tracking the number of patients signed up (physical state)

» Revenue management for hotels
• Learning market response to price (belief state)
• Tracking how many rooms have been reserved (physical state)

» An energy storage problem…

An energy storage problem

Consider a basic energy storage problem:

» We have to manage the flows of energy (blue lines)
while managing different sources of uncertainty.

An energy storage problem

Transition function without learning

E

G

B

L

1 1

1 0 1 1 2 2 1

1 , 1 1

1

ˆ
t t t

p
t t t t t

D D
t t t t

battery battery
t t t

E E E

p p p p

D f

R R x

   



 

   

  



 

   

 

 

An energy storage problem

Transition function with passive learning

E B

L

1 1

1 0 1 1 2 2 1

1 , 1 1

1

ˆ
t t t

p
t t t t t t t t

D D
t t t t

battery battery
t t t

E E E

p p p p

D f

R R x

   



 

   

  



 

   

 

 

Learning in stochastic optimization

Updating the demand parameter
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least
squares equations:

1 1
1

1
t t t t t

t

Bq q f e
g+ +

+

= -

()
1 1

1
1

1

(|) ,
1 ()

1 ()

t t t t t

T
t t t t

t

T
t t

F x p

B B B B

B

e q

f f
g

g f f

+ +

+
+

+

= -

= -

= +

0 1 1 2 2(|)n
t t t t t t tF x p p p      

1

2

t

t t

t

p
p
p

f -

-

æ ö÷ç ÷ç ÷ç ÷=ç ÷ç ÷ç ÷÷çè ø

An energy storage problem

Transition function with active learning

E B

L

1 1

1 0 1 1 2 2 3 1

1 , 1 1

1

ˆ
t t t

GB p
t t t t t t t t t

D D
t t t t

battery battery
t t t

E E E

p p p p x

D f

R R x

    



 

   

  



 

    

 

 

Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy

Designing policies

We have to start by describing what we mean by a
policy.
» Definition:

A policy is a mapping from a state to an action.
… any mapping.

How do we search over an arbitrary space of
policies?

Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact
of a decision now on the future.

  0(,)
0

max , (|) |f f

T

t t t tf F
t

C S X S S
 


  



 
 
 


*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty

(buffer stocks, schedule slack)

 (|) arg max
t

CFA
t x tx txX S    

(|)PFA
t tx X S 

(|) ()PFA
t t f f t

f F
x X S S  



  

Designing policies

Lookahead policies
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

Lookahead policies
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

Lookahead policies
2a) Value function approximations

We approximate the impact of a decision on the future

Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

2b) Direct lookahead policies
*

' ' ' 1
' 1

() arg max (,) max (, ()) | | ,
 

 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

Designing policies

2b) Direct lookahead policies
» We replace the exact lookahead…

… with an approximation called the lookahead model:

» A lookahead policy works by approximating the
lookahead model.

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

*
' ' ' , 1

' 1
() arg max (,) max (, ()) | | ,

t

t H

t t x t t tt tt tt t t tt t
t t

X S C S x C S X S S S x





 

            


      

Designing policies
Types of lookahead approximations
» One-step lookahead – Widely used in pure learning

policies:
• Bayes greedy/naïve Bayes
• Thompson sampling
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action
spaces

» Multistage scenario trees (stochastic linear
programming) – typically not tractable.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Po
lic

y
se

ar
ch

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

Lo
ok

ah
ea

d
ap

pr
ox

im
at

io
ns

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Fu
nc

tio
n

ap
pr

ox
.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Im
be

dd
ed

 o
pt

im
iz

at
io

n

Policies for pure learning problems

1) Policy function approximation (PFA)
» Revenue maximization problem

• Demand function

• Revenue

• PFA policy – pure exploitation

• PFA policy with active exploration (“excitation policy”)

• Need to tune ߪఢ

1 2(|)n n nD p pq q q= -

2
1 2(|) ()n n nR p pD p p pq q q= = -

1

22

n
n

np q
q

=

1

2

 (0,)
2

n
n n n

np N eq
e e s

q
= + 

Policies for pure learning problems

1) Policy function approximation (PFA)
» Linear decision rules (“affine policies”)

» Neural networks

0 1 1 2 2(|) () () ... ()PFA n n n n
F FX S S S Sq q q f q f q f= + + + +

Policies for pure learning problems

2) Cost function approximations (CFA)
» Upper confidence bounding

» Interval estimation

» Boltzmann exploration (“soft max”)
• Choose x with probability:

log(|) arg max  
 

   
 

UCB n UCB n UCB
x x n

x

nX S
N

 (|) arg maxIE n IE n IE n
x x xX S     

0

n
xz

'

'

()



 



n
x

n
x

n
x

x

eP
e

55

Policies for pure learning problems

A learning problem with correlated beliefs

1 2 3 4 4 5

56

Policies for pure learning problems

Picking ூா means we are evaluating each choice
at the mean.

1 2 3 4 4 5

57

Policies for pure learning problems

Picking ூா means we are evaluating each choice
at the 95th percentile.

1 2 3 4 4 5

Policies for pure learning problems

PFAs and CFAs have to be tuned

» Final reward (“offline learning”)

» Cumulative reward (“online learning”)

» Both require searching over tunable parameters.
• Offline tuning is classical stochastic search
• Online tuning is a relatively open research area

 1 0
0

max , (|), |IE

T
IE

t t t t t
t

E C S X S W S 


 


 
 
 


1
, ,

ˆ,..., |
ˆ ˆmax (,) ((),)IE N

N N IE
WW W

F x W x W 
 

   

Cost function approximations

Tuning the interval estimation policy

(|) arg max    IE n IE n IE n
x x xX S

Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a physical state problem

  1 1() max (,) () |n n n n n n
xV S C S x E V S S  

Current node (e.g. node 2)

Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a physical state problem

  1 1() max (,) () |n n n n n n
xV S C S x E V S S  

Decision to go to a node (e.g. 5)

Downstream node (e.g. 5)

Policies for pure learning problems

3) Policies based on value function approximations
» VFAs using a learning problem

1 2 3 4 5

  1 1() max (,) () |n n n n n n
xV S C S x E V S S  

Current state of knowledge

Decision to make a measurement

New state of knowledge

5
2
5

 2
5 5 5,S N  

1 5(,...,)n n nS S S

Policies for pure learning problems

3) Policies based on value function approximations
» Illustration: finding the best drug in the set

ଵ ଶ ெ

» After a test we observe success or failure:

» Let ௫ Probability that drug x is successful. We
assume that

where ௡ ௡ ௡ is our belief state, with updating
equations:

1 1 Success
 If

0 Failure
n n

xW x x+
ìïï= =íïïî

| (,)n n n
x x xS Betar a b

1 1 1 1, (1)n n n n n n
x x x x x xW Wa a b b+ + + += + = + -

Policies for pure learning problems

3) Policies based on value function approximations
» Bellman’s equation:

» This can be solved for a stopping problem to determine
when to stop testing a single drug.

» Problematic if ௡ and ௡ are vectors. Gittins developed
a novel decomposition that allows us to solve this
problem for one drug (“arm”) at a time.

1 1 1 1(,) max (, 1) |n n n n n n n n n n
x xV W V W W Sa b g a b+ + + +é ù= + + + -ê úë û

Policies for pure learning problems

3) Policies based on value function approximations
» For normally distributed rewards, Gittins (1974) showed

that we can solve dynamic programs for each alternative.
» Produces a policy that looks like

where is the “Gittins index” obtained by

solving a dynamic program for whether to continue or
stop testing a single drug.

» Considered a computational breakthrough, but computing
Gittins indices is still a challenge, and only applies to
special cases.

() arg max ,
n

Gitt n n W x
x x WX S s
m s g

s

æ öæ ö÷ç ÷ç ÷÷= + Gç ç ÷÷ç ç ÷÷çç è øè ø

,
n
x
W

s
g

s

æ ö÷ç ÷Gç ÷ç ÷çè ø

Policies for pure learning problems

4) Policies based on direct lookaheads (DLA)
» The knowledge gradient for offline (final reward):

Proposed experiment

 , 1max (, ()) max (,)KG n n n
x y yE F y B x F y B  

Averaging over the
possible outcomes of the

experiment (and our
different beliefs about

parameters)

Finding the new design with our
new belief (but without knowing
the outcome of the experiment)

Current belief state

Choosing the best design
given what we know now.

Updated parameter estimates
after running experiment

with density x.

The knowledge gradient

4) Policies based on direct lookaheads (DLA)
» The knowledge gradient computes the expected

improvement from a single experiment

1 2 3 4 5








Change in
estimate of value
of option 5 due to

measurement.

Change which produces a
change in the decision.

The knowledge gradient

Estimated value of alternative

Standard deviation

Knowledge gradient

The knowledge gradient

The knowledge gradient

The knowledge gradient

Some properties of the knowledge gradient for
offline (final reward) problems.

௫
௄ீ,௡

» Asymptotically optimal (finds best x in the limit)
» Optimal (by construction) if budget =1.
» Optimal for all n if number of alternatives = 2 (e.g. A/B

testing).
» Only stationary policy that is both myopically and

asymptotically optimal.

For online problems
» Asymptotically optimal (finds best x in the limit) as

The knowledge gradient

Different belief models
» Lookup tables

• Independent beliefs
• Correlated beliefs

» Linear parametric models
• Linear models
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks

The knowledge gradient
The marginal value of information
» Repeatedly sampling the same alternative

Number of times we sample the same alternative

Va
lu

e
of

 in
fo

rm
at

io
n

The knowledge gradient
The marginal value of information
» The value of information may be concave if an experiment is noisy

Number of times we sample the same alternative

Va
lu

e
of

 in
fo

rm
at

io
n

The knowledge gradient
The marginal value of information
» The value of information may be concave if an experiment is noisy

Number of times we sample the same alternative

Va
lu

e
of

 in
fo

rm
at

io
n

, ,()     KG OL n n KG n
x x xN n

The knowledge gradient

From offline to online learning
» The knowledge gradient computes the value of

information for a terminal reward objective:

» Imagine that we have a budget of N experiments, and
that we are summing rewards over this horizon. The
value of information from a single experiment is now

 , 1max (, ()) max (,)KG n n n
x y yE F y B x F y B  

Expected reward Offline KG

Remaining horizon

The knowledge gradient

Knowledge gradient for offline and online learning

» This bridges what have historically been fundamentally
different fields.

Offline learning
, ,()     KG OL n n KG n

x x xN n,KG n
x

Online learning

Outline

Elements of a sequential decision model
Mixed state problems
Designing policies
Searching for the best policy

Designing policies

Finding the best policy
» We have to first articulate our classes of policies

» So minimizing over means:

» We then have to pick an objective such as

or

  0
0

max , (|) |
T

t t t
t

C S X S S
 



 
 
 


 , , ,

Parameters that characterize each family.f

f PFAs CFAs VFAs DLAs



 

 



 

 , ff    

 0max (,) |TF X W S
 

Multiarmed bandit problems

Policy search class
» Policies tend to be

relatively simple and
easy to compute

» Well suited to rapid (e.g.
internet speed) learning
applications needing fast
computation.

» Tuning is important, and
typically requires a
realistic simulator.

Lookahead class
» Policies can be

relatively complex to
compute.

» Well suited to
problems with
expensive
experiments.

» Typically avoids
tuning, but may
require a prior.

Multiarmed bandit problems

Notes:
» Any of the four classes of policies may be appropriate

depending on the characteristics of the problem.
» Active learning arises in many applications, but is often

overlooked.
» The “bandit” culture of coming up with problem

variations should be inherited by other communities.
» Bandit researchers often focus on good but not optimal

policies (e.g. UCB policies) with good characteristics
(e.g. robust across a wide range of distributions).

MOLTE
Modular, optimal learning
testing environment
» Matlab-based environment with

modular library of problems and
algorithms, each in its own .m
file.

» User specifies in a spreadsheet
which algorithms are run on which
problems

http://www.castlelab.princeton.edu/software/

MOLTE

Comparison on library problems

Princeton ad-click game

In collaboration with Roomsage.com

Princeton ad-click game

Bid ($/click)

C
lic

ks

Learning the bid-response curve

» Varies by hour of week
» Response depends on location, age, gender, device

Princeton ad-click game
The ad-click game:
» Learn the best policy for bidding for ads
» Bids compete in a simulated auction

following the rules used by Google

Thank you!

For more information, please visit:

http://www.castlelab.Princeton.edu

See “Courses” or the “jungle” webpages.

