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Abstract 

In this article, we present a statistical significance test for necessary conditions. This is an 

elaboration of the Necessary Condition Analysis (NCA), which is a data analysis approach that 

estimates the necessity effect size of a condition X for an outcome Y. NCA puts a ceiling on the 

data, representing the level of X that is necessary (but not sufficient) for a given level of Y. The 

empty space above the ceiling relative to the total empirical space characterizes the necessity 

effect size. We propose a statistical significance test that evaluates the evidence against the null 

hypothesis of an effect being due to chance. Such a randomness test helps to protect researchers 

from making Type 1 errors and drawing false positive conclusions. The test is an ‘approximate 

permutation test’. The test is available in NCA software for R. We provide suggestions for 

further statistical development of NCA. 

. 

Keywords:  Null hypothesis testing, permutation test, Necessary Condition Analysis, 

statistical significance, p-value 
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A Statistical Significance Test for Necessary Condition Analysis 

Necessary Condition Analysis (Dul, 2016) is as a tool for researchers to develop and test 

necessary, but not sufficient conditions. A necessary condition enables the outcome when present 

and constrains the outcome when absent. NCA assumes that outcome Y is bound by condition X 

by drawing a ceiling line on top of the data in an XY scatter plot. The line defines the empty 

space in the upper left corner of the scatter ploti. This empty space suggests that high values of Y 

are not possible with low values of X and indicates that X constrains Y. The size of the empty 

space relative to the total space with observations reflects the extent of the constraint that X 

poses on Y: the larger the empty space, the more X constrains Y. The necessity effect size (d) is 

the size of the empty space above the ceiling as a fraction of the total space where cases are 

observed or could be observed given by the minimum and maximum empirical or theoretical 

values of X and Y (‘scope’ii). NCA’s effect size d has values between 0 and 1. 

The NCA effect size has been used in various organizational studies for testing the 

necessary condition hypothesis that ‘X is necessary for Y’. For example, Van der Valk, Sumo, 

Dul, and Schroeder (2016) test whether trust and contracts are necessary for successful 

collaboration between buyers and suppliers for innovation.  Arenius, Engel, and Klyver (2017) 

test whether particular gestation activities for establishing a new firm are necessary for profit two 

years after the firm’s start, and Karwowski et al. (2016), Karwowski, Kaufman, Lebuda, 

Szumski, and Firkowska-Mankiewicz (2017) and Shi, Wang, Yang, Zhang, and Xu (2017) test 

the hypothesis that intelligence is necessary for creativity. Currently, such necessity hypotheses 

are assessed based on NCA effect size. A 0.1 threshold level for effect size is often applied, 
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hence a hypothesis is considered to be supported if the empty space above the data is at least 

10% of the scope. However, testing a necessary condition hypothesis only based on effect size 

may produce unjustified conclusions, as the result may not be statistically significant. The 

observed necessity empty space may be caused by random chance. For example, when low X-

values and high Y-values are relatively rare, an empty space is likely but may not be the result of 

necessity. This can happen when X and Y are unrelated random variables with normal or skewed 

distributions, which is not uncommon in the organizational sciences. Therefore, there is a need to 

protect the researcher who applies NCA against a Type 1 error: concluding that the empty space 

represents necessity, when it is actually a random occurrence.  

In this article, we presume that the reader is familiar with NCA (Dul 2016). We advance 

the NCA’s hypothesis testing approach by proposing a statistical significance test for testing the 

randomness of the effect size. Specifically, we provide a permutation test for NCA users to 

calculate the p-value. The test is intended to answer the question: ‘Can the observed effect size 

be the result of random chance?’ by responding: ‘Yes, but with probability smaller than p.’ We 

demonstrate the application of the test with an example dataset and use Monte Carlo simulations 

to show that the permutation approach is a generic and valid randomness test. We provide 

suggestions for further statistical development of NCA. 

 

Permutation test 

Since Fisher (1935), statisticians have used the permutation test for statistical significance 

testing. Until recently, the test was not popular due to high computational demands (Hayes, 

1996; Ludbrook & Dudley, 1998). Since the availability of fast computers, permutation tests 

have been developed for correlation and regression (Anderson & Robinson, 2001; DiCiccio & 
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Romano, 2017), ANOVA (Anderson, 2001), the General Linear Model (Winkler, Ridgway, 

Webster, Smith, & Nichols, 2014), and Qualitative Comparative Analysis (Braumoeller, 2015). 

The permutation test produces a p-value. The test is particularly useful when analytical 

approaches to estimate the p-value are not available, or when assumptions for these approaches 

do not hold. 

The p-value is the theoretical probability that the value of a test statistic that summarizes 

the observed sample data, e.g., the observed effect size, is equal to, or larger than the value of 

this test statistic when the null hypothesis is true. Significance tests including the permutation 

test usually employ a reductio ad absurdum argumentation. This means that the null hypothesis 

is formulated, which states that the data of the observed sample are the result of a random data 

generation process in the population where X and Y are unrelated: the null hypothesis. Next, the 

probability (p) that the effect size of the observed sample is equal to or larger than the effect size 

of random samples is calculated. If this probability is small (e.g., p < 0.05), it is concluded that 

the observed sample is unlikely the result of a random process of unrelated variables (the null 

hypothesis is rejected), suggesting support for an alternative hypothesis.  

In the permutation test, a distribution of random samples is produced under the null 

hypothesis by reshuffling observed X and Y values of cases of the observed sample. This ensures 

that under the null hypothesis X and Y are not related and a possible effect size is due to random 

chance. Notice that resampling X and Y values by permutation aims to mimic the null-hypothesis 

distribution. This is different from resampling cases by bootstrapping which aims to mimic the 

population distribution.  Applying standard bootstrapping to NCA would result in an invalid 

significance test where the null hypothesis is overly rejectediii. Specifically, permutation 

resamples are constructed by assigning observed Y-values to observed X-values to obtain all 
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possible combinations (permutations) of observed X and Y values. One way of achieving this in 

a bivariate dataset is by letting observed X-values have a fixed order, and then permutating Y-

values. For the permutation test, no assumptions about the distribution of the data are required. 

All that is needed to make the test valid is that the distribution of the Y (that is permutated) is 

‘exchangeable’ (for a discussion on exchangeability see Good, 2005). In an experimental study, 

we can assume exchangeability when cases are randomly allocated to groups. In an observational 

study, we can assume exchangeability when the sample is a random sample from the population, 

which are common assumptions for statistical inference. The permutation test is a valid test 

(Hoeffding, 1952; Kennedy, 1995). Lehman and Romano (1998, p. 633) provide formal proof of 

this in Theorem 15.2. 

Table 1 illustrates how the permutation test resamples from the observed sample. 

Suppose the sample consists of only three cases, thus with three values for X and three values for 

Y. The first observed Y value (y1) has three possibilities to be assigned to an X value (x1, x2, x3), 

for the second observed Y value (y2) two possibilities are left, and for the third observed Y value 

(y3) one possibility is left, which results in six (3x2x1 = 3 factorial = 3!) possible resamples 

(permutations). One from all possible six permutations corresponds to the observed sample. 

When the observed effect size is the smallest of the six random samples, the proportion of 

random samples that has an effect size that is equal to or larger than the observed effect size 

equals 6/6 = 1 (p=1). When the observed effect size is the largest of the six random samples, the 

proportion of random samples that has an effect size that is equal to or larger than the observed 

effect size equals 1/6 = 0.17  (p=0.17)iv.   

 

INSERT TABLE 1 ABOUT HERE 
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The number of permutations rapidly increases with sample size. For example, a bivariate 

sample of 10 cases (n=10) results in 10! = 3,628,800 permutations, and a sample of 50 cases 

(which is considered a small sample in many organizational fields) results in 50! permutations, 

which is around 

30,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 

permutations.   

To handle this computational problemv, a large subset of all possible permutations is 

randomly selected to approximate the permutation distribution. Such a permutation test is called 

an ‘approximate permutation test’vi, which produces an estimate of the exact p-value. An 

observed Y-value is randomly selected from all observed Y-values without replacement (because 

a permutation does not allow the same value of Y to be assigned to X-values more than once) 

and assigned to an observed X-value. This process is repeated until all observed X-values have a 

Y-value, hence the size of the resample equals the observed sample size. This procedure is 

repeated to obtain a large random set of constructed resamples. The test statistic is computed for 

each resample, and the distribution of random test statistic is compared to the observed sample 

value of the test statistic. The proportion of random resamples for which the value of the test 

statistic is equal to or larger than the observed value of the test statistic is the estimated p-value, 

which informs us about the statistical (in)compatibility of the data with the null hypothesis. We 

propose the following five steps for performing an approximate permutation test for NCA: 

1. Calculate the necessity effect size for the sample. Presume that the sample is a 

random sample from the population for an observational study and that cases are 



SIGNIFICANCE TEST FOR NCA 8 

randomly allocated to groups for an experimental study. These are common 

assumption for statistical inference. 

2. Formulate the null hypothesis, which states that X and Y in the population are not 

related: Prob(Y|X) ≡ Prob(Y). Under the null hypothesis, the theoretical mean 

necessity effect size d = 0, whereas the effect size under the null hypothesis is 

likely d > 0 for a specific finite sample. This effect size is a random effect arising 

from (finite) sampling. 

3. Create a large random set of resamples (e.g., 10,000, see below) using 

approximate permutation. 

4. Calculate the effect size of all resamples. The set of effect sizes comprises an 

estimated distribution of effect size under the null hypothesis that X and Y are not 

related. 

5. Compare the estimated distribution of effect sizes of random resamples with the 

effect size of the observed sample (see step 1). The fraction of random resamples 

for which the effect size is equal to, or greater than the observed effect size (p-

value) informs us about the statistical (in)compatibility of the data with the null 

hypothesis. 

 

Demonstration 

Example  

For illustration, we applied the approximate permutation test to a dataset for testing the 

hypothesis that trust between companies is necessary for collaborative innovation performance. 

Van der Valk et al. (2016) studied buyer-supplier relations and used the NCA effect size to test 
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the hypothesis that trust is necessary for supplier-led innovation in collaborations between buyer 

and supplier firms. They studied 48 buyer-supplier service outsourcing collaborations. From the 

trust dimensions that were studied by Van der Valk et al. (2016) in the present paper we 

considered only goodwill trust. This trust dimension relates to the intention to fulfill an agreed 

role in the collaboration. 

The approximate permutation test is applied to this example as follows: 

1. Calculate the observed necessity effect size. 

If NCA’s CE-FDH ceiling linevii is selected, the necessity effect size for trust is 0.31. 

2. Formulate the null hypothesis.  

The null hypothesis states that trust and performance are not related and that any 

observed empty space in the upper left corner of the trust-performance scatterplot is due 

to random chance. 

3. Create a large random set of permutation resamples. 

A performance value (Y) is randomly selected without replacement from the observed 

performance values and assigned to an observed trust value (X). This process is repeated 

48 times (corresponding to the sample size) until all X-values have a Y-value, and a 

random resample is obtained. This procedure is repeated 10,000 times to obtain 10,000 

random resamples.  

4. Calculate the effect size of each resample. 

The CE-FDH effect size is calculated for all resamples.  

5. Compare the distribution of effect sizes of the random resample with the observed effect 

size (Figure 1).  

Figure 1 shows the distribution of the CE-FDH effect sizes of the 10,000 random samples.  
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INSERT FIGURE 1 ABOUT HERE 

 

The observed effect size of 0.31 is larger than all but 17 random effect sizes. Hence, the 

probability that the random effect size is equal to or larger than the observed effect size is less 

than 17/10,000 (p<0.0017). The example shows that the observed effect size under the 

assumption that the null hypothesis is true is very rare, which is an indication that the null 

hypothesis (the observed effect size is due to random chance) does not explain the data, hence 

that the alternative hypothesis may be supported (trust is necessary for performance). 

 

Monte Carlo simulation 

We performed a Monte Carlo simulation to evaluate if the NCA approximate permutation test 

can correctly recognize an empty space as random chance, if the data generation process was 

random. Specifically, we built on the simulation study by Sorjonen, Akex and Melin (2017) who 

produced empty spaces in the upper left corner when X and Y were unrelated random variables 

with beta distributions. They repeatedly drew random samples from beta distributions with 

different values of skewness of X (X-skew), skewness of Y (Y-skew) and different sample sizes. 

The null hypothesis applied in all samples because X and Y were not related, and any effect size 

would be due to random chance.  

 

INSERT FIGURE 2 ABOUT HERE 
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Figure 2 (left) shows results of the original simulation of Sorjonen et al. (2017) with the effect 

size on the vertical axes (using the CR-FDH ceiling line) and different values of X-skew on the 

horizontal axes. The nine plots have different values of Y-skew and sample size. Figure 2 (left) 

shows 7,350 dots and each dot is a sample. The plots show that the effect size can be large, up to 

more than 0.6. The effect size is larger for smaller sample size, more negative skewness of X 

(low values of X are rarer) and more positive skewness of Y (high values of Y are rarer). 

We added the approximate permutation significance test to this simulation to verify if the 

test could detect that the effect sizes were due to random chance. Because of high computational 

demands when combining the permutation approach with the original simulation, we selected a 

relatively small number of permutations (500). Yet, the computation time for this simulation was 

about 15 hours. We calculated the p-value of the effect size for each sample. Figure 2 (right) 

presents the results of the estimation of the p-value using the NCA approximate permutation test. 

The plots on the right are the same as the plots on the left, except for the vertical axis: on the left, 

the vertical axis is the effect size and on the right, it is the estimated p-value for the effect size. 

The total number of dots (samples) is 7,350. The horizontal line in the plots on the right 

corresponds to a chosen threshold p-value of 0.05, thus considering sample effect sizes as 

random chance if p > 0.05. The results show 6,991 samples (out of 7,350) with NCA p > 0.05 

(suggesting randomness). This is 95.1% of all samples. This illustrates that the NCA significance 

test can identify randomness under different conditions and with a probability corresponding to 

the threshold significance level pre-selected by the researcher (in this case 0.05). We found 

similar results with additional simulations with other distribution functions (uniform, truncated 

normal, triangle, not reported here). In other words, our simulation findings for the NCA effect 
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size are consistent with the general analytical demonstrations of the validity of the permutation 

test in the literature (e.g., Lehman and Romano, 1998). 

Accuracy of the p-value estimation 

If all possible permutation resamples were part of the sampling distribution, the p-value would 

be exact. In the approximate permutation test the p-value has some uncertainty. The exact p-

value equals the estimated p-value plus or minus the accuracy of the estimated p-value (p-

accuracy). The p-accuracy can be estimated because the estimated p-value is a proportion that 

has a binomial distribution. The p-accuracy depends on the number of permutations and on the 

estimated p-value. Inversely, one can determine the required number of permutations for a 

desired p-accuracy, which depends on the estimated p-value (Table 2)viii. 

 

INSERT TABLE 2 ABOUT HERE 

 

Table 2 shows that with a large number of permutations the accuracy of the approximate 

permutation test is acceptable for the practical purposes of significance testing. The accuracy 

increases when increasing the number of permutations (within the limits of computation time). If 

the estimated p-value is 0.05, one can be confident (confidence level 95%) that the p-accuracy is 

around 0.004 with 10,000 permutations, with an exact p-value within the range of 0.046 to 0.054. 

P-accuracy is around 0.001 with 100,000 permutations, with an exact p-value within the range of 

0.049 to 0.051. Hesterberg (2014, p. 81) recommends (somewhat arbitrarily) “… 10,000 

permutations for routine use, and more when accuracy matters.” 
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Discussion 

The proposed statistical significance test for NCA is a relevant addition to the NCA effect size.  

The observed effect size may be the result of random chance. Hence, testing a hypothesis only 

based on an effect size threshold may be insufficient. Based only on effect size, the researcher 

may consider the alternative hypothesis as plausible, whilst the data fits the null hypothesis (false 

positive, due to Type 1 error). With the proposed approximate permutation test the NCA 

researcher has a tool to assess the randomness of the observed effect size. Observed effect sizes 

with p-values above 0.05 cast doubts about the statistical significance of the result.  

Just like any other statistical method that uses the p-value for statistical inference, the  

proposed approximate permutation test has all the limitations of the p-value (Wasserstein and 

Lazar, 2016). The p-value only provides indirect information about the evidence that an observed 

effect may be the result of random chance, and at best provides indirect support for the 

hypothesis of interest. Statistical testing of empirical data is a complex endeavor (Forstmeier, 

Wagenmakers, & Parker, 2016), and no universal method exists for statistical inference 

(Gigerenzer & Marewski, 2015). In the proposed p-test for NCA, we stay close to the original p-

value approach as suggested by Fisher (1925). A small p-value is either a rare result that happens 

only with probability p (or lower) or is an indication that the null hypothesis does not explain the 

data.  

Although the proposed statistical test for NCA is an important step forward, further 

statistical developments are needed. In the current ‘descriptive statistics’ phase of NCA 

development, the ceiling line and effect size just describe the data, and inferential statistics is 

limited to point estimates of NCA parameters. With the proposed approximate permutation test, 

we have entered the next phase of development: ‘statistical significance testing’, namely testing 
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effect sizes against a null hypothesis to avoid Type 1 error and false positives. In this phase, other 

null hypothesis testing approaches may be developed, such as testing approaches with 

assumptions about a relationship between X and Y under the null hypothesis, parametric 

analytical approaches based on assumptions of distributions of X and Yix, or bootstrapping 

approaches beyond standard bootstrapping. Analytical and bootstrapping approaches may be 

particularly useful for the next phase of development: ‘standard error/confidence interval’ 

estimations to provide interval estimates, namely developing a precision measure of the point 

estimates (which could also be used for significance testing). Further phases of statistical 

development of NCA could include more advanced approaches such as Bayesian approaches for 

directly testing the hypothesis of interest, instrumental variable approaches for checking assumed 

causal directions, and approaches that include modeling measurement error. 

Researchers wishing to perform NCA are recommended to test the randomness of the 

observed effect size by using the approximate permutation test. This test can be considered as a 

minimum statistical test for NCA. At least three necessary but not sufficient conditions exist for a 

condition being a necessary condition: (1) theoretical justification, (2) effect size d > 0, and (3) 

small p-value (e.g., p < 0.05). The approximate permutation test is implemented in the NCA 

software for R, version 3.0 onwards (Dul, 2015). 
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Tables 

Table 1 

The six possible permutations (samples) for three cases (A,B,C) and two variables (X,Y)      

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Case X Y 

A x1 y1 

B x2 y2 

C x3 y3 
 

Case X Y 

A x1 y2 

B x2 y3 

C x3 y1 
 

Case X Y 

A x1 y3 

B x2 y1 

C x3 y2 
 

Case X Y 

A x1 y1 

B x2 y3 

C x3 y2 
 

Case X Y 

A x1 y2 

B x2 y1 

C x3 y3 
 

Case X Y 

A x1 y3 

B x2 y2 

C x3 y1 
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Table 2 

Accuracy of p-value (p-accuracy) estimated by approximate permutation as a function of number 

of permutations (bold rows names) and estimated p-value (bold headers) (95% confidence that 

exact p-value = estimated p-value ± p-accuracy). For example, if the estimated p-value is 0.05, 

the exact p-value for 10,000 permutations lies with 95% confidence within the range from 0.046 

to 0.054, and for 100,000 permutations lies within the range from 0.049 to 0.051.  

Permutations p=0.2 p=0.1 p=0.05 p=0.01 p=0.005 p=0.001 p=0.0005 p=0.0001 

500 0.035 0.026 0.019 0.009 0.006 0.003 0.0020 0.0009 

1,000 0.025 0.019 0.014 0.006 0.004 0.002 0.0014 0.0006 

5,000 0.011 0.008 0.006 0.003 0.002 0.001 0.0006 0.0003 

10,000 0.008 0.006 0.004 0.002 0.001 0.001 0.0004 0.0002 

50,000 0.004 0.002 0.002 0.001 0.001 0.000 0.0002 0.0001 

100,000 0.002 0.002 0.001 0.001 0.000 0.000 0.0001 0.0001 

500,000 0.001 0.001 0.001 0.000 0.000 0.000 0.0000 0.0000 

1,000,000 0.001 0.001 0.000 0.000 0.000 0.000 0.0000 0.0000 
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Figures 

 

 

Figure 1. Statistical significance test with the null hypothesis stating that trust is not necessary 

for performance. (Data from Van der Valk et al. 2016). Distribution of necessity effect sizes 

(calculated with the CE-FDH ceiling line) under the null-hypothesis for 10,000 random samples 

generated by approximate permutation. Horizontal axis: effect size. Vertical axis: number of 

samples. Seventeen of the 10,000 random effect sizes are equal to or greater than the observed 

effect size (d = 0.31, p=0.0017), suggesting that the data do not fit the null hypothesis well.   
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Figure 2. Monte Carlo simulation of CR-FDH effect size under the null hypothesis of no relation 

between X and Y, and effect size due to random chance (left), and corresponding p-values (right). 

Each dot is a sample. In both plots the total number of samples is 7,350. 

Left: Simulation with different values of sample size (n), X-skew, and Y-skew (adapted from 

Sorjonen et al. 2017). Right: Corresponding p-values of the approximate permutation test. 95.1% 

of the samples have a p-value > 0.05 (the samples above the horizontal line) indicating that the 

test can identify that the effect size is due to random chance. 
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NOTES 
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i We presume that X is on the horizontal axis and increases to the right, and Y is on the 

vertical axis and increases upwards.   

ii  The scope can be empirical (using the empirical minima and maxima of X and Y) or 

theoretical (using theoretical minimum and maximum of X and Y). The theoretical scope has a 

larger empty space relative to the scope than the empirical scope, hence results in a larger effect 

size. For most NCA applications we recommend using the empirical scope to avoid over-

estimation of the effect size. 

iii Standard bootstrap samples are obtained by sampling cases with replacement until the 

size of the bootstrap sample equals the size of the original sample. The standard deviation of the 

bootstrap sampling distribution can be used to estimate the standard error and the confidence 

interval. The confidence interval can be used for null hypothesis testing: testing whether the null 

is covered by the 95% confidence interval, which corresponds to null hypothesis testing with p-

value 0.05. Producing a valid confidence interval for NCA’s effect size implies that the estimated 

effect size has an upper confidence bound and a lower confidence bound. However, in NCA all 

cases are on or below the ceiling line by definition, and resampling of cases does not result in a 

ceiling line above the original ceiling line. Consequently, the lower bound effect size cannot be 

validly produced and bootstrapping will disproportionally often produce a (nearly same) effect 

size as the original effect size. Applying standard bootstrapping to NCA would result in invalid 

significance tests where the null hypothesis is excessively rejected.  

iv In this example with three cases, the p-value cannot be smaller than 0.17. 

v To illustrate this problem, it takes about one minute to calculate a p-value for 100,000 

permutations on a personal computer. For N=10 the number of permutations is 3,628,800 and the 
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time for calculating a p-value is more than 30 minutes. The computation time for N=11 is more 

than six hours, for N=12 more than three days, for N=13 more than a month, for N=14 more than 

a year, for N=15 more than 20 years, and for N=16 more than a lifetime. 

vi Other names for the approximate permutation test are ‘Monte Carlo permutation test’, 

and ‘random permutation test’. 

vii  Several ceiling techniques can be selected within NCA. The two default ceiling 

techniques are Ceiling Envelopment - Free Disposal Hull (CE-FDH), which results is a non-

decreasing step function ceiling line that can be used when the data are discrete, and Ceiling 

Regression - Free Disposal Hull (CR-FDH), which is a trend line through the corners of the CE-

FDH step function and can be used for (practically) continuous data. For more information on 

ceiling techniques see Dul (2016).  

viii The p-value that is estimated by approximate permutation follows a binomial 

distribution. The formula for the standard error of a binomial distribution is:  

SE = √𝑝(1 − 𝑝)/𝑛, where p is the estimated p-value and n is the number of permutations. For a 

95% confidence level the p-accuracy of the estimated p-value is: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1.96 ∗

 √𝑝(1 − 𝑝)/𝑛.  For a desired particular p-accuracy, the minimum number of permutations is: 

𝑁 =   [(1.96√𝑝(1 − 𝑝))/𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ] 2. 

ix The analytical approach uses a formula with several assumptions, including 

assumptions about distributions for calculating the standard error of the NCA effect size. 

Currently, no formula is available for this purpose, and such formula cannot be easily derived. 

One main problem is the discontinuity of NCA effect size as a function of the distribution (the 

data generation process). 


