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Abstract 

This note is a reply to two recent articles by Sorjonen and colleagues in Frontiers in Psychology that 

comment on Necessary Condition Analysis (NCA) and its statistical significance test. The first 

comment states that NCA does not protect the NCA researcher from making type I error. The second 

comment states that NCA’s significance test is powerful but does not test necessity. We argue that 

NCA’s test is powerful and protects the researcher against type I error (as statistically defined), and 

that - contrary to Sorjonen & Melin’s suggestion - testing the research hypothesis, cannot be expected 

from any null hypothesis test, including not from NCA’s test.  

1 Introduction 

Necessary Condition Analysis (NCA) is a novel data analysis approach that is based on necessity 

logic (Dul, 2016). We welcome the two comments on NCA from Sorjonen and colleagues (Sorjonen, 

Wikström & Melin, 2017; Sorjonen & Melin, 2019), which contribute to the scientific debate and to 

the advancement and proper use of NCA. NCA predicts the absence of an outcome when the 

condition is absent, rather than the presence of the outcome when the condition is present. To 

quantify this effect, NCA draws a ceiling line on top of the data in an XY scatter plot. The ceiling 

line represents the level of X that is necessary but not sufficient for reaching a given level of Yi. The 

empty space above the ceiling line is the necessity effect size. This empty space characterizes the 

constraint that X puts on Y. The lower the line, the larger the empty space and the higher the required 

X for a given Y. For example, in this journal, Shi, Wang, Yang, Zhang and Xu (2017) used NCA to 

show that intelligence is necessary for creativity, replicating previous findings (Karwowski, Dul, 

Gralewski, Jauk, Jankowska, Gajda, Chruszczewski, & Benedek, 2016).  

2 Comment 1: randomness of the empty space and Type I error 

The first comment on NCA (Dul, 2016) and one of its earliest applications in psychology 

(Karwowski et al., 2016) is the article ‘Necessity as a function of skewness’ by Sorjonen et al. 

(2017). Sorjonen et al. (2017) simulate that an empty space in the upper left corner can be produced 
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by unrelated variables with skewed distributions, hence not only by a necessity relationship between 

X and Y. This observation is correct. However, the randomness of the empty space can be detected 

by NCA’s significance test (Dul, van der Laan, & Kuik, 2019). NCA’s significance test is a null 

hypothesis test, assuming that the variables are unrelated. Specifically, NCA’s test is a permutation 

test that produces a sampling distribution that represents the null hypothesisii. The permutation test, 

and NCA’s significance test, are also called a ‘randomness tests’. Although both ‘significance test’ 

and ‘randomness test’ are used names for NCA’s null hypothesis test, in this note we will call the test 

‘randomness test’ because this explicitly reflects the purpose of the test. The test consist of the 

following steps (Dul et al., in press, p. 4): “Step 1: Calculate the necessity effect size for the sample. 

Step 2: Formulate the null hypothesis, which states that X and Y in the population are not related. 

Step 3: Create a large random set of resamples (e.g., 10,000) using approximate permutation. Step 4: 

Calculate the effect size of all resamples. Step 5: Compare the estimated distribution of effect sizes of 

random resamples with the effect size of the observed sample (see Step 1). The fraction of random 

resamples for which the effect size is equal to or greater than the observed effect size (p-value) 

informs us about the statistical (in)compatibility of the data with the null hypothesis.” 

Dul et al. (2019) show by simulations and by referring to mathematical proofs that NCA’s 

randomness test can identify whether an empty space may be due to random chance or not. The test 

“…is intended to answer the question: ‘Can the observed effect size be the result of random chance?’ 

by responding: ‘Yes, but with probability smaller than p.’” (Dul et al., 2019, p.2). When researchers 

use the test for making a binary decision about the null hypothesis, a low actual p-value (e.g. smaller 

that the threshold p-value of 0.05) indicates that that null hypothesis should be rejected, and a high 

actual p-value (e.g. greater than the threshold p-value of 0.05) indicates that that null hypothesis 

should not be rejected. The latter outcome helps researchers to avoid making type I error: rejecting 

the null hypothesis when the null is true. 

3 Comment 2: Type I error, power, and accepting an alternative 

The second comment on NCA is the article ‘Predicting the significance of necessity’ by Sorjonen & 

Melin (2019). In this study, three simulations are performed. In the first simulation the population has 

a true necessity effect (upper left corner is empty), in the second simulation the population has true 

necessity effect and a true sufficiency effect (the upper left corner is empty and the lower right corner 

is empty), and in the third simulation the population has a true sufficiency effect (lower right corner 

is empty). The simulations are performed with different values of the necessity and/or sufficiency 

effect sizes (different sizes of the corresponding empty spaces). For each simulation the performance 

of NCA’s randomness test is evaluated as follows: “The objective of the present study was to 

evaluate if and how calculated p-values for necessity effects can be predicted from true population 

necessity effect (i.e., amount of empty space in the upper-left corner in an X–Y-plot), true population 

sufficiency effect, and sample size. This gives indications of the power of the method as well as risk 

for type 1-errors.” (Sorjonen & Melin, 2019, p. 2). Type I error is defined as the chance of rejecting 

the null hypothesis when the null is true. Power is defined as the chance of rejecting the null 

hypothesis when the alternative is true. Although the validity of the NCA’s randomness test 

regarding type I error has already been proven (see above), Sorjonen & Melin (2019) re-evaluate this 

quality. In addition, they evaluate the power of the test for the first time. Furthermore, they discuss 

their simulation results in terms of ability of NCA’s test to test the alternative necessity hypothesis. 

Below we discuss Sorjonen & Melin’s (2019) interpretations of the findings.  

3.1 Type I error 
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Sorjonen & Melin (2019) calculate actual p-values (with NCA’s randomness test) for the three 

simulated relationships between X and Y outside the null hypothesis: necessity relation (H1: 

alternative 1), necessity and sufficiency relation (H2: alternative 2), and sufficiency relation (H3: 

alternative 3). Given the definition of type I error (rejecting a true null), type I error can only be 

evaluated when the null is true (H0 = null hypothesis). The null being true (randomness, un-

relatedness of X and Y) implies the non-emptiness of all corners in the XY scatter plot. This is the 

situation that occurs in the three simulations when the necessity and sufficiency effect sizes are zero. 

Inspection of Sorjonen & Melin’s (2019) simulation results indeed shows that when all effect sizes 

are zero and thus X and Y are unrelated (null is true), NCA’s test correctly identifies randomness. 

With a chosen threshold value of p = 0.05, NCA’s randomness test shows that the null, as expected, 

is not rejected in approximately 95% of the samples. The corresponding type I error rate is 5%, thus 

in approximately 5% of the samples the true null is rejected. Sorjonen & Melin (2019, p.5) seem to 

acknowledge this quality of NCA’s randomness test: “Without any true population sufficiency effect, 

NCA did not seem to result in more type 1-errors than expected, i.e., 5%”, at least for the case that 

the necessity effect is also absent (ensuring that the null is true). Hence, the conclusion remains that 

when X and Y are unrelated, NCA’s randomness test is valid. 

3.2 Power 

Sorjonen & Melin (2019) also have results on the power of the test for several simulated relationships 

between X and Y. Given the definition of power (rejecting the null when the alternative is true), the 

correctness of the prediction of power can only be evaluated when the alternative is true. The 

alternative of the null is that X and Y are not unrelated, thus are related. In Sorjonen & Melin’s 

(2019) simulation three specifications of the alternative are evaluated: necessity (H1), sufficiency 

(H3), and both (H2). When an alternative is true, the actual p-value should be small. The simulation 

results indeed show that the actual p-value rapidly approaches zero when necessity and/or sufficiency 

effect sizes increase. Hence, NCA’s randomness test is not only valid regarding type I error but has 

also high power. Sorjonen & Melin (2019, p. 3) seem to acknowledge also this quality of NCA’s 

randomness test: “this apparent high power of NCA could be seen as a positive characteristic.”  

3.3 Over-interpretation of the null hypothesis test result 

The value of Sorjonen & Melin’s article is not only that they show that NCA’s randomness test can 

handle type I error and has power. They also show that over-interpretation of the test results of a null 

hypothesis test like NCA’s randomness test can be dangerous. Sorjonen & Melin (2019) over-

interpret the test results, namely that a rejection of the null hypothesis can be understood as the 

acceptance of a specific alternative hypothesis, in this case necessity. When introducing NCA’s test, 

Dul et al. (2019, p. 1) had the following goal: “We propose a statistical significance test that 

evaluates the evidence against the null hypothesis of an effect being due to chance. Such a 

randomness test helps protect researchers from making Type 1 errors and drawing false positive 

conclusions”. We warned against over-expectation regarding the test: “just like any other statistical 

method that uses the p-value for statistical inference, the proposed approximate permutation test has 

all the limitations of the p-value”. One of these limitations and its related over-interpretation is the 

one discussed in Sorjonen & Melin’s article and that is formulated by Szucs & Ioannidis (2017, p 8.) 

as follows: “A widespread misconception … is that rejecting H0 allows for accepting a specific H1 

.... This is what most practicing researchers do in practice when they reject H0 and argue for their 

specific H1 in turn” [emphasis in the original]. When introducing NCA’s randomness test we might 

have been more explicit about this limitation of any null hypothesis test, including NCA’s, and using 

two names for the same test (“significance test” and randomness test”) may have confused some 
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readers. So let us be clear: NCA’s test is a test of the null hypothesis, not a test of the alternative 

hypothesis. The test does not attempt to prove necessity, but instead intends to reject or not reject 

randomness of the empty space. Not rejecting randomness is not the same as accepting necessity. The 

correct interpretation of a test result of actual p ≤ 0.05 is that the result is not due to random chance, 

no more, no less. 

Following the described common mis-conception of the null and its test, Sorjonen & Melin’s (2019) 

article focusses on NCA’s obvious inability to prove necessity when the null is rejected. In Sorjonen 

& Melin’s discussion of the power of the test (the probability of rejecting the null when the 

alternative is true), they only use necessity as the alternative hypothesis (H1). But the test also 

rejects, and should reject, the null when the sufficiency alternative is true (H2 and H3). Sorjonen & 

Melin (2019) do not mention this as another indication of the power of the test. Instead they call this 

latter result a ‘type 1 error’. For example, they state (p. 3) that “While sample size had no effect on 

the probability to get a significant observed necessity effect, i.e., the risk for type 1-error, this risk 

increased with increased true population sufficiency effect.” Note that this interpretation of “type I 

error” does not correspond to the definition in statistics (the probability of rejecting a true null), 

which is only defined when the null is true, not when an alternative is true. Also in the discussion 

section Sorjonen & Melin (2019) focus on the incorrect over-interpretation of the test results. When 

referring to the high power of NCA’s test, they state: “However, one might also become a bit worried 

by the ease with which people wanting to claim that X is a necessary condition for Y can overcome 

the obstacle of significance”. In this worry, they assume that people make the incorrect over-

interpretation of having a significant (actual p ≤ 0.05) necessity result, whereas they truly have found 

a significant (actual p ≤ 0.05) non-random result. 

Sorjonen & Melin’s (2019) focus on the common misinterpretation of the null hypothesis is 

unfortunate because it obscures their contribution: showing that NCA’s randomness test is not only a 

valid test to identify that an empty space may be due to random chance, but is also a valid test 

regarding its ability to identify that an empty space is not due to random chance.  

4 Conclusion 

NCA’s randomness test is a valid and powerful test to test the randomness of an empty space in the 

upper left corner of a XY scatter plot. A high actual p-value suggests that the result may be due to 

random chance and a low actual p-value suggests that the result may not be due to random chance. 

However, such low actual p-value cannot be interpreted as a proof of necessity. Rather, a low actual 

p-value can be considered as a “minimum statistical test” (Dul et al. 2019, p. 8), thus as a necessary 

but not sufficient condition for interpreting the empty space as being due to necessity. Sorjonen & 

Melin’s article shows again that results of null hypothesis tests should not be over-interpreted. 

It may seem disappointing that a null hypothesis test like NCA’s randomness test can only test 

whether a result is due to randomness or not, and cannot test for a specific alternative hypothesis. 

However, this is inherent to null hypothesis testing. For direct testing of a necessity hypothesis, other 

statistical approaches need to be developed, such as Bayesian approaches. Such approaches are 

currently not available for NCA and may be a topic for future research.  
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i The ceiling line has observations below it but not above it. The ceiling line represents therefore that a certain X value is 

necessary but not sufficient for a certain Y value on the ceiling line. It is possible that there is also a floor line. The floor 

line has observations above it but not below it. The floor line represents that a certain X value is sufficient but not 

necessary for a certain Y value on the floor line. It is not ‘paradoxical, as suggested by Sorjonen & Melin (2019), that a 

ceiling line and a floor line are both present at the same time: the ceiling line still represents that a certain X value is 

necessary but not sufficient for a certain Y value on the ceiling line, also if that X were sufficient but not necessary for a 

(lower) Y value on the floor line.   

ii The null sampling distribution is obtained by shuffling Y values over X values, or by shuffling X values Y values, 

which, contrary to what Sorjonen & Melin (2019) claim, gives identical results. 

                                                 


