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Motivation

Is the assumption of continuous demand functions reasonable?

Price comparison websites: Substantial empirical evidence that seller’s

rank heavily influences its demand. Ignoring these discontinuities may

distort parameter estimates by 50 to 100 percent. (Baye et al., J. Econ.

Manag. Strategy 2009)
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Model

Price-setting monopolist: decision variable pt ∈ [p, p]

Consumer demand: Poisson random variable with mean d(pt)

d(p) =

{
eα0+β0p if κ0 ≤ p ≤ κ1

eαn+βnp if κn < p ≤ κn+1 (n = 1, . . . , N)

Model uncertainty:

unknown demand parameters θn = (αn, βn) (n = 0, 1, . . . , N)

unknown discontinuity points κn (n = 1, . . . , N)

θ = (θ0, θ1, . . . , θN ) ∈ Θ

κ = (κ1, . . . , κN ) ∈ K

Pricing policy: π = (p1, p2, . . .) non-anticipating
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Performance

Revenue loss in T periods relative to a clairvoyant

Single-period revenue function R(p,κ,θ) = p d(p,κ,θ)

Regret or “revenue loss due to demand model uncertainty”

∆π(T,κ,θ) =

T∑
t=1

Eπ
{

sup
p∈[p,p]

{R(p,κ,θ)} −R(pt,κ,θ)

}

Objective: choose π to minimize

Rπ(T ) = sup
{

∆π(T,κ,θ) : κ ∈ K, θ ∈ Θ
}
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Estimating a discontinuous demand function

Two-step maximum likelihood estimation:

Log-likelihood function

Lt : (κ,ϑ) 7→
t∑

s=1

N∑
n=0

(
dsϑn · (1, ps)− eϑn·(1,ps)

)
I{κn < ps ≤ κn+1}

θ̂t(κ) = arg maxϑ{Lt(κ,ϑ)}

Step 1 (discontinuity estimation)

κ̂t = arg max
κ

{
Lt
(
κ, θ̂t(κ)

)}
Step 2 (demand parameter estimation)

θ̂t = θ̂t(κ̂t)
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Estimating a discontinuous demand function

Highest likelihood if p(4) ≤ κ̂1 < p(5).



Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon {1, . . . , T}.

(1) [Explore] Use M equidistant prices p = p1 < · · · < pM = p.

(2) [Estimate] Compute κ̂ and θ̂.

(3) [Exploit] Based on κ̂ and θ̂, use the estimated optimal price in the

remaining T −M periods, but a factor log(M)/M away from the

estimated discontinuities.
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Analysis of estimation errors

Theorem (discontinuity estimation error)

There exist constants M1, z1, γ1 > 0 such that, if M ≥M1, then

Pπ
{
|κ̂n − κn| >

z1 logM

M
for some n = 1, . . . , N

}
≤ γ1

M
.

Theorem (parameter estimation error)

There exist constants M2, z2, γ2 > 0 such that, if M ≥M2, then

Pπ
{
‖θ̂n − θn‖2 >

z2 logM

M
for some n = 0, 1, . . . , N

}
≤ γ2

M
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Sufficient condition for good performance

Theorem (upper bound on regret)

There exists a constant C > 0 such that, if M = d
√
T e, then

Rπ(T ) ≤ C
√
T log T

for all T ≥ 4(N + 1)2.
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What if discontinuities vary over time?

Include change-point detection module in policy

Retains O(
√
T log T ) regret

What if there are inventory constraints?

Asymptotic regime, inventory ξ · T , T →∞.

Include stochastic-approximation module in policy

Retains O(
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T log T ) regret
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Message of this talk

Neglecting discontinuities can cost a lot (linear regret)

Taking it into account retains asymptotic optimality

Extensions in the paper: changing discontinuity points, inventory

constraints

Interesting research problems:

- Rank-induced discontinuities in other problems?

- Nonparametric approach to discontinuous MABs.
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