DISCONTINUOUS DEMAND FUNCTIONS: ESTIMATION AND PRICING

Arnoud V. den Boer
University of Amsterdam

N. Bora Keskin
Duke University

Rotterdam
May 24, 2018
Dynamic pricing and learning:

- Learning optimal selling price from accumulating sales data
Dynamic pricing and learning:

- Learning optimal selling price from accumulating sales data
- Cont. armed MAB, observing demand $d(p)$ and reward $r(p) = p \cdot d(p)$
Dynamic pricing and learning:

- Learning optimal selling price from accumulating sales data
- Cont. armed MAB, observing demand \(d(p) \) and reward \(r(p) = p \cdot d(p) \)
- Standard assumption: \(d(\cdot) \) is continuous
Nous admettons que la fonction $F(p)$ qui exprime la loi de la demande ou du débit est une fonction continue...
Nous admettons que la fonction $F(p)$ qui exprime la loi de la demande ou du débit est une fonction continue...
Motivation

Is the assumption of continuous demand functions reasonable?
Motivation

Is the assumption of continuous demand functions reasonable?

- Price comparison websites: Substantial empirical evidence that seller’s rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)
Motivation

Is the assumption of continuous demand functions reasonable?

- Price comparison websites: Substantial empirical evidence that seller’s rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)

- Rankings in online marketplaces (e.g. Amazon’s BuyBox)
Motivation
Motivation

The Theory and Practice of Revenue Management (International Series in Operations Research & Management Science) (Paperback)

by Peter Wirtz, Kalyan T. Talluri

Customer reviews: 7

Access codes and supplements are not guaranteed with used items.

<table>
<thead>
<tr>
<th>Price + Shipping</th>
<th>Condition (Learn more)</th>
<th>Delivery</th>
<th>Seller Information</th>
<th>Buying Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>$172.39</td>
<td>Used - Good</td>
<td>- Arrives between Nov. 18 - Dec. 6. Want it delivered Wednesday, November 23? Choose Expedited Shipping at checkout. Shipping rates and return policy.</td>
<td>glenthebookseller 95% positive over the past 12 months. (400,091 total ratings)</td>
<td>Add to cart or Sign in to turn on 1-Click ordering.</td>
</tr>
<tr>
<td>$172.40</td>
<td>Used - Very Good</td>
<td>- Arrives between December 9-22. Ships from United Kingdom. Learn more about import fees and international shipping time. Shipping rates and return policy.</td>
<td>BetterWorldBooksUK 94% positive over the past 12 months. (54,979 total ratings)</td>
<td>Add to cart or Sign in to turn on 1-Click ordering.</td>
</tr>
<tr>
<td>$190.25</td>
<td>Used - Acceptable</td>
<td>- Arrives between Nov. 18 - Dec. 5. Want it delivered Tuesday, November 22? Choose Expedited Shipping at checkout. Shipping rates and return policy.</td>
<td>Bookbyte Textbooks 95% positive over the past 12 months. (249,558 total ratings)</td>
<td>Add to cart or Sign in to turn on 1-Click ordering.</td>
</tr>
<tr>
<td>$190.28</td>
<td>Used - Good</td>
<td>- Arrives between Nov. 18 - Dec. 6. Want it delivered Wednesday, November 23? Choose Expedited Shipping at checkout. Shipping rates and return policy.</td>
<td>HPB-Dallas 98%</td>
<td>Add to cart or Sign in to turn on 1-Click ordering.</td>
</tr>
</tbody>
</table>

Additional details:
- Item in good condition. Textbooks may not include supplemental items. (Read more)
- Item may show signs of shelf wear. Pages (Read more)
- Ships from the UK. Former library book. Great condition for use. (Read more)
Motivation

Is the assumption of *continuous* demand functions reasonable?

- **Price comparison websites**: Substantial empirical evidence that seller’s rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)

- **Rankings in online marketplaces** (e.g. Amazon’s BuyBox)
Motivation

Is the assumption of continuous demand functions reasonable?

- Price comparison websites: Substantial empirical evidence that seller’s rank heavily influences its demand. Ignoring these discontinuities may distort parameter estimates by 50 to 100 percent. (Baye et al., *J. Econ. Manag. Strategy* 2009)
- Rankings in online marketplaces (e.g. Amazon’s BuyBox)
- Product search with price thresholds
Motivation
Motivation

- Many online applications challenge Cournot’s continuity assumption
Motivation

- Many online applications challenge Cournot’s continuity assumption
- Not treated in dynamic pricing or MAB literature
Central questions

1. Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?
Central questions

1. Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?

2. If yes, how to implement estimation and pricing in the presence of demand discontinuities?
Model

- **Price-setting monopolist**: decision variable $p_t \in [p, \bar{p}]$
Model

- **Price-setting monopolist**: decision variable $p_t \in [p, \bar{p}]$

- **Consumer demand**: Poisson random variable with mean $d(p_t)$

\[
d(p) = \begin{cases}
 e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \leq p \leq \kappa_1 \\
 e^{\alpha_n + \beta_n p} & \text{if } \kappa_n < p \leq \kappa_{n+1} \quad (n = 1, \ldots, N)
\end{cases}
\]
Model

- **Price-setting monopolist:** decision variable \(p_t \in [p, \bar{p}] \)

- **Consumer demand:** Poisson random variable with mean \(d(p_t) \)

\[
d(p) = \begin{cases}
 e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \leq p \leq \kappa_1 \\
 e^{\alpha_n + \beta_n p} & \text{if } \kappa_n < p \leq \kappa_{n+1} \quad (n = 1, \ldots, N)
\end{cases}
\]

- **Model uncertainty:**

 unknown demand parameters \(\theta_n = (\alpha_n, \beta_n) \quad (n = 0, 1, \ldots, N) \)

 unknown discontinuity points \(\kappa_n \quad (n = 1, \ldots, N) \)

 \(\theta = (\theta_0, \theta_1, \ldots, \theta_N) \in \Theta \)

 \(\kappa = (\kappa_1, \ldots, \kappa_N) \in \mathcal{K} \)
Model

- **Price-setting monopolist:** decision variable $p_t \in [p, \bar{p}]

- **Consumer demand:** Poisson random variable with mean $d(p_t)$

\[
d(p) = \begin{cases}
 e^{\alpha_0 + \beta_0 p} & \text{if } \kappa_0 \leq p \leq \kappa_1 \\
 e^{\alpha_n + \beta_n p} & \text{if } \kappa_n < p \leq \kappa_{n+1} \quad (n = 1, \ldots, N)
\end{cases}
\]

- **Model uncertainty:**
 unknown demand parameters $\theta_n = (\alpha_n, \beta_n) \quad (n = 0, 1, \ldots, N)$
 unknown discontinuity points $\kappa_n \quad (n = 1, \ldots, N)$
 $\theta = (\theta_0, \theta_1, \ldots, \theta_N) \in \Theta$
 $\kappa = (\kappa_1, \ldots, \kappa_N) \in \mathcal{K}$

- **Pricing policy:** $\pi = (p_1, p_2, \ldots)$ non-anticipating
Performance

- Revenue loss in T periods relative to a clairvoyant
Performance

- Revenue loss in T periods relative to a clairvoyant

 - Single-period revenue function $R(p, \kappa, \theta) = p d(p, \kappa, \theta)$
Performance

- Revenue loss in T periods relative to a clairvoyant

 - Single-period revenue function $R(p, \kappa, \theta) = p d(p, \kappa, \theta)$

 - Regret or “revenue loss due to demand model uncertainty”

\[
\Delta_\pi(T, \kappa, \theta) = \sum_{t=1}^{T} \mathbb{E}_\pi \left\{ \sup_{p \in [p, \bar{p}]} \{ R(p, \kappa, \theta) \} - R(p_t, \kappa, \theta) \right\}
\]
Performance

- Revenue loss in T periods relative to a clairvoyant
 - Single-period revenue function $R(p, \kappa, \theta) = p d(p, \kappa, \theta)$
 - Regret or “revenue loss due to demand model uncertainty”

$$
\Delta_\pi(T, \kappa, \theta) = \sum_{t=1}^{T} \mathbb{E}_\pi \left\{ \sup_{p \in [p, \bar{p}]} \{ R(p, \kappa, \theta) \} - R(p_t, \kappa, \theta) \right\}
$$

- **Objective:** choose π to minimize

$$
\mathcal{R}_\pi(T) = \sup \{ \Delta_\pi(T, \kappa, \theta) : \kappa \in \mathcal{K}, \theta \in \Theta \}
$$
Central questions

1. Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?

2. If yes, how to implement estimation and pricing in the presence of demand discontinuities?
Cost of ignoring demand discontinuities

No discontinuity

Loss \approx T^{1/2}
Cost of ignoring demand discontinuities

- No discontinuity: Loss $\approx T^{1/2}$
- Ignored discontinuity: Loss $\approx T$
Central questions

1. Is there a substantial cost of neglecting demand discontinuities in dynamic pricing and learning?

2. If yes, how to implement estimation and pricing in the presence of demand discontinuities?
Estimating a discontinuous demand function

- **Two-step maximum likelihood estimation:**
 - Log-likelihood function
 \[
 \mathcal{L}_t : (\kappa, \theta) \mapsto \sum_{s=1}^{t} \sum_{n=0}^{N} \left(d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)} \right) \mathbb{I}\{\kappa_n < p_s \leq \kappa_{n+1}\}
 \]
 \[
 \hat{\theta}_t(\kappa) = \arg \max_{\theta} \mathcal{L}_t(\kappa, \theta)
 \]

 - Step 1 (discontinuity estimation)
 \[
 \hat{\kappa}_t = \arg \max_{\kappa} \mathcal{L}_t(\hat{\kappa}_t, \hat{\theta}_t(\hat{\kappa}_t))
 \]
 - Step 2 (demand parameter estimation)
 \[
 \hat{\theta}_t = \hat{\theta}_t(\hat{\kappa}_t)
 \]
Estimating a discontinuous demand function

- Two-step maximum likelihood estimation:
 - Log-likelihood function
 \[
 \mathcal{L}_t : (\kappa, \vartheta) \mapsto \sum_{s=1}^{t} \sum_{n=0}^{N} \left(d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)} \right) \mathbb{I}\{\kappa_n < p_s \leq \kappa_{n+1}\}
 \]
 \[
 \hat{\theta}_t(\kappa) = \arg \max_{\vartheta} \{\mathcal{L}_t(\kappa, \vartheta)\}
 \]
 - Step 1 (discontinuity estimation)
 \[
 \hat{\kappa}_t = \arg \max_{\kappa} \{\mathcal{L}_t(\kappa, \hat{\theta}_t(\kappa))\}
 \]
Estimating a discontinuous demand function

- **Two-step maximum likelihood estimation:**
 - Log-likelihood function
 \[
 \mathcal{L}_t : (\kappa, \vartheta) \mapsto \sum_{s=1}^{t} \sum_{n=0}^{N} (d_s \vartheta_n \cdot (1, p_s) - e^{\vartheta_n \cdot (1, p_s)}) \mathbb{I}\{\kappa_n < p_s \leq \kappa_{n+1}\}
 \]
 \[
 \hat{\vartheta}_t(\kappa) = \arg \max_{\vartheta} \{\mathcal{L}_t(\kappa, \vartheta)\}
 \]
 - Step 1 (discontinuity estimation)
 \[
 \hat{\kappa}_t = \arg \max_{\mathcal{K}} \{\mathcal{L}_t(\mathcal{K}, \hat{\vartheta}_t(\mathcal{K}))\}
 \]
 - Step 2 (demand parameter estimation)
 \[
 \hat{\vartheta}_t = \hat{\vartheta}_t(\hat{\kappa}_t)
 \]
Estimating a discontinuous demand function

\[D(p) = \exp(a_1 + b_1 p) \]

\[D(p) = \exp(a_2 + b_2 p) \]
Estimating a discontinuous demand function
Estimating a discontinuous demand function

\[p(2) \leq \hat{\kappa}_1 < p(3) \]
Estimating a discontinuous demand function

\[p(3) \leq \hat{\kappa}_1 < p(4) \]
Estimating a discontinuous demand function

\[p(4) \leq \hat{\kappa}_1 < p(5) \]
Estimating a discontinuous demand function

\[p(5) \leq \hat{\kappa}_1 < p(6) \]
Estimating a discontinuous demand function

\[
p(6) \leq \hat{\kappa}_1 < p(7)
\]
Estimating a discontinuous demand function

\[p(7) \leq \hat{\kappa}_1 < p(8) \]
Estimating a discontinuous demand function

\[p(8) \leq \hat{\kappa}_1 < p(9) \]
Estimating a discontinuous demand function

Highest likelihood if $p(4) \leq \hat{\kappa}_1 < p(5)$.
Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon $\{1, \ldots, T\}$.

Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon $\{1, \ldots, T\}$.

(1) [Explore] Use M equidistant prices $p = p_1 < \cdots < p_M = \bar{p}$.
Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon $\{1, \ldots, T\}$.

1. [Explore] Use M equidistant prices $p = p_1 < \cdots < p_M = \bar{p}$.

2. [Estimate] Compute $\hat{\kappa}$ and $\hat{\theta}$.
Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon $\{1, \ldots, T\}$.

(1) [Explore] Use M equidistant prices $p = p_1 < \cdots < p_M = \bar{p}$.

(2) [Estimate] Compute $\hat{\kappa}$ and $\hat{\theta}$.

(3) [Exploit] Based on $\hat{\kappa}$ and $\hat{\theta}$, use the estimated optimal price in the remaining $T - M$ periods,
Designing a near-optimal policy

Discontinuity estimation and pricing policy π

Time horizon $\{1, \ldots, T\}$.

1. [Explore] Use M equidistant prices $p = p_1 < \cdots < p_M = \bar{p}$.

2. [Estimate] Compute $\hat{\kappa}$ and $\hat{\theta}$.

3. [Exploit] Based on $\hat{\kappa}$ and $\hat{\theta}$, use the estimated optimal price in the remaining $T - M$ periods, but a factor $\log(M)/M$ away from the estimated discontinuities.
Analysis of estimation errors

Theorem (discontinuity estimation error)

There exist constants $M_1, z_1, \gamma_1 > 0$ such that, if $M \geq M_1$, then

$$\mathbb{P}_\pi \left\{ |\hat{\kappa}_n - \kappa_n| > \frac{z_1 \log M}{M} \text{ for some } n = 1, \ldots, N \right\} \leq \frac{\gamma_1}{M}.$$
Analysis of estimation errors

Theorem (discontinuity estimation error)

There exist constants $M_1, z_1, \gamma_1 > 0$ such that, if $M \geq M_1$, then

$$\mathbb{P}_\pi \left\{ |\hat{\kappa}_n - \kappa_n| > \frac{z_1 \log M}{M} \text{ for some } n = 1, \ldots, N \right\} \leq \frac{\gamma_1}{M}.$$

Theorem (parameter estimation error)

There exist constants $M_2, z_2, \gamma_2 > 0$ such that, if $M \geq M_2$, then

$$\mathbb{P}_\pi \left\{ \|\hat{\theta}_n - \theta_n\|^2 > \frac{z_2 \log M}{M} \text{ for some } n = 0, 1, \ldots, N \right\} \leq \frac{\gamma_2}{M}.$$
Sufficient condition for good performance

Theorem (upper bound on regret)

There exists a constant $C > 0$ such that, if $M = \lceil \sqrt{T} \rceil$, then

$$R_\pi(T) \leq C \sqrt{T} \log T$$

for all $T \geq 4(N + 1)^2$.
Summary of results

No discontinuity

Loss \approx T^{1/2}

Ignored discontinuity

Loss \approx T
Summary of results

- Discontinuity estimation:
 - Ignored discontinuity
 - Loss $\approx T$
 - No discontinuity
 - Loss $\approx T^{1/2}$
 - Discontinuity estimation
 - Loss $\approx T^{1/2} \log T$
Some intuition
• What if discontinuities vary over time?
Extensions

- What if discontinuities vary over time?

 Include change-point detection module in policy
 Retains $O(\sqrt{T} \log T)$ regret
Extensions

- What if discontinuities vary over time?

 Include change-point detection module in policy
 Retains $O(\sqrt{T} \log T)$ regret

- What if there are inventory constraints?
Extensions

- What if discontinuities vary over time?

 Include change-point detection module in policy
 Retains $O(\sqrt{T} \log T)$ regret

- What if there are inventory constraints?

 Asymptotic regime, inventory $\xi \cdot T$, $T \to \infty$.
Extensions

- What if discontinuities vary over time?
 Include change-point detection module in policy
 Retains $O(\sqrt{T} \log T)$ regret

- What if there are inventory constraints?
 Asymptotic regime, inventory $\xi \cdot T, T \to \infty$.
 Include stochastic-approximation module in policy
Extensions

- What if discontinuities vary over time?
 Include change-point detection module in policy
 Retains $O(\sqrt{T \log T})$ regret

- What if there are inventory constraints?
 Asymptotic regime, inventory $\xi \cdot T$, $T \to \infty$.
 Include stochastic-approximation module in policy
 Retains $O(\sqrt{T \log T})$ regret
Message of this talk

Neglecting discontinuities can cost a lot (linear regret)
Taking it into account retains asymptotic optimality
Extensions in the paper: changing discontinuity points, inventory constraints

Interesting research problems:
- Rank-induced discontinuities in other problems?
- Nonparametric approach to discontinuous MABs.
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints

Interesting research problems:
- Rank-induced discontinuities in other problems?
- Nonparametric approach to discontinuous MABs.
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:
 - Rank-induced discontinuities in other problems?
Message of this talk

- Neglecting discontinuities can cost a lot (linear regret)
- Taking it into account retains asymptotic optimality
- Extensions in the paper: changing discontinuity points, inventory constraints
- Interesting research problems:
 - Rank-induced discontinuities in other problems?
 - Nonparametric approach to discontinuous MABs.
THE END