Prediction, Judgment, and Complexity



We interpret recent developments in the field of artificial intelligence (AI) as improvements in prediction technology. In this paper, we explore the consequences of improved prediction in decision-making. To do so, we adapt existing models of decision-making under uncertainty to account for the process of determining payoffs. We label this process of determining the payoffs ‘judgment.’ There is a risky action, whose payoff depends on the state, and a safe action with the same payoff in every state. Judgment is costly; for each potential state, it requires thought on what the payoff might be. Prediction and judgment are complements as long as judgment is not too difficult. We next consider a tradeoff between prediction frequency and accuracy. We show that as judgment improves, accuracy becomes more important relative to frequency. We show that in complex environments with a large number of potential states, the effect of improvements in prediction on the importance of judgment depend a great deal on whether the improvements in prediction enable automated decision-making. We discuss the implications of improved prediction in the face of complexity for automation, contracts, and firm boundaries.