Knowledge Discovery and Monotonicity Defended on Thursday, 1 April 2004

This thesis is positioned in the area of knowledge discovery with special attention to problems where the property of monotonicity plays an important role. Monotonicity is a ubiquitous property in all areas of life and has therefore been widely studied in mathematics. Monotonicity in knowledge discovery can be treated as available background information that can facilitate and guide the knowledge extraction process. While in some sub-areas methods have already been developed for taking this additional information into account, in most methodologies it has not been extensively studied or even has not been addressed at all. This thesis is a contribution to a change in that direction. In the thesis, four specific problems have been examined from different sub-areas of knowledge discovery: the rough sets methodology, monotone decision trees, function decomposition and frequent patterns discovery. In the first three parts, the monotonicity is domain knowledge and a requirement for the outcome of the classification process. The three methodologies are extended for dealing with monotone data in order to be able to guarantee that the outcome will also satisfy the monotonicity requirement. In the last part, monotonicity is a property that helps reduce the computation of the process of frequent patterns generation. Here the focus is on two of the best algorithms and their comparison both theoretically and experimentally.


knowledge discovery, monotonicity property, classification, attribute reduction, rough sets theory, monotone decision trees, pruning, splitting criteria, function decomposition, association rules, frequent patterns generation

  • Share on