Developing New Methods for Efficient Container Stacking Operations Defended on Tuesday, 27 November 2012
Containerized transportation has become an essential part of the intermodal freight transport. Millions of containers pass through container terminals on an annual basis. Handling a large number of containers arriving and leaving terminals by different modalities including the new mega-size ships significantly affects the performance of terminals. Container terminal operators are always looking for new technologies and smart solutions to maintain efficiency. They need to know how different operations at the terminal interact and affect the performance of the terminal as a whole. Among all operations, the stacking area is of special importance since almost every container must be stacked in this area for a period of time. If the stacking operations of the terminal are not well managed, then the response time of the terminal significantly increases and consequently the performance decreases. In this dissertation, we propose, develop, and test optimization methods to support the decisions of container terminal operators in the stacking area. First, we study how to sequence storage and retrieval containers to be carried out by a single or two automated stacking cranes in a block of containers. The objective is to minimize the makespan of the cranes. Finally, we study how to minimize the expected number of reshuffles when incoming containers have to be stacked in a block of containers. A reshuffle is the removal of a container stacked on top of a desired container. Reshuffling containers is one of the daily operations at a container terminal which is time consuming and increases a ship's berthing time.
Keywords
container yard operations, stacking operations, scheduling, yard crane, minimize total travel time, minimize the number of reshuffles