The load dependent vehicle routing problem for temperature controlled road transportation and gain allocation to enable sustainable collaborative transportation



Temperature controlled transport is used to maintain quality of products such as fresh and frozen foods and pharmaceuticals. Road transportation is responsible for a considerable part of global emissions, and temperature controlled transportation exhausts even more emission than ambient temperature transport because extra fuel is needed to provide the energy for cooling. The transportation sector is under pressure to improve both its environmental and economic performance. To explore opportunities to reach this goal, the Load Dependent Vehicle Routing Problem (LDVRP) has been developed. However, this approach does not take into account the environmental effects of temperature regulation.

Therefore, an extension of the LDVRP to account for thermal energy requirements is needed. This extended LDVRP is applied in a case study in the Dutch fresh food industry. Our results show that taking into account energy needed for temperature control can result in different optimal routes and speeds compared to the LDVRP and the VRP. Also, it shows that taking into account thermal energy requirement can improve the estimation of fuel consumption and emissions related to temperature controlled transport.

In our search for ways to improve sustainability of transportation, we also look at  tactical level logistics concepts like collaboration. Currently, trucks are not efficiently used: on average, trucks driving in the EU use less than half of their available capacity. This results in the need to organize fresh food logistics more efficiently such that it will become more sustainable. Literature suggests that food companies collaborate in order to improve food supply chain sustainability.  However, the effects of collaboration on sustainability have only scarcely been quantified; most papers only focus on economic sustainability. We use the extended LDVRP to test collaboration scenarios and to find routes that minimize fuel, total emissions and costs. However, fair sharing of these cost savings (gains) is crucial to make the collaboration work. We look for a gain sharing method that reflects the contribution of partners to economic as well as to environmental sustainability.

Registration to Remy Spliet, is required for availability of lunch.